IS 733 Lesson 7/

Supervised Learning (Continued)

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal,
Data Mining: Concepts and Techniques by Han et al., and Vandana Janeja and James Foulds



In the naive Bayes classifier, it is assumed
that the attributes are ____, given the class.
This means that their probabilities can be

together to obtain their combined

probability.

Independent, added
Not independent, added
Independent, multiplied

Not independent, multiplied
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Sets of data points that cannot be separated
by a single hyperplane ____ be

discriminated correctly by logistic

regression.

Can

Cannot
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For support vector machines, the instances

with the ____ distance to the margin

hyperplane are called the support vectors.

Maximum, maximum
Maximum, minimum
Minimum, maximum

Minimum, minimum
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Learning outcomes

By the end of the lesson, you should be able to:

* Perform the steps of the training algorithms for the
naive Bayes classifier, given a small dataset

e Explain the assumptions made by naive Bayes models

* Discuss how logistic regression and support vector
machines (SVMs) extend the simple linear regression
model into powerful techniques for classification



Simple probabilistic modeling:
Naive Bayes classifier

* Remember how 1R uses only one attribute?
Naive Bayes is “opposite” of 1R: use all the attributes

 Two assumptions: Attributes are
* equally important
» statistically independent (given the class value)

* This means knowing the value of one attribute tells us nothing
about the value of another takes on (if the class is known)



Simple probabilistic modeling:
Naive Bayes classifier

otter | cheap oy [sale .. s
1 0 0 1 1

Naive Bayes assumption:

Knowing, e.g., Offer = 1 does not affect the probability that Sale = 1,
given we know that the class Spam = 1, etc.



Simple probabilistic modeling:
Naive Bayes classifier

The Naive Bayes independence assumption is almost
never correct!!!

But ... this scheme often works surprisingly well in practice
(why?)

Easy to implement in a program and very fast



Probability

* A framework for reasoning with uncertainty

* Boolean logic expresses that statements are
either necessarily true, or necessarily false

* Probability theory relaxes Boolean logic to
allow for the expression of uncertainty in such

statements w




Probability

* A variable which is subject to random chance, or is
uncertain, is called a random variable

— E.g. x = the value of the roll of a die

e Each value that the random variable can take is called
an outcome

— E.g. for adieroll, the value x =6

* Probabilities P(x) are values >= 0, assigned to each
value of the sample space,
which sumto 1




Conditional Probability

Probability of x, given that we know that
Conditional probabili/
P( )

y takes a particular value
r=ai,y=>b;) .
P(x=a;|y=b)) Pl=b) = if P(y=0b;) #0. (2.5)
=Y

[If P(y=>b;) =0 then P(x=a;|y=>;) is undefined.]

We pronounce P(x=a;|y=0;) ‘the probability that = equals a;, given
y equals b;’.




Bayes’ rule

Our goal:

To infer the probability of a hypothesis H, given evidence E.
This probability distribution is called the posterior distribution, Pr(H|E)

We have:
Prior beliefs about H, encoded as a probability distribution,
the prior distribution Pr(H)

A model for how the data were generated, given the hypothesis, the
likelihood Pr(FE|H)
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Bayes’ rule

e Bayes’ rule allows us to combine observed evidence and prior beliefs to

obtain the posterior,

likelihood X prior

osterior =
P i marginal likelihood

Pr(E|\H)Pr(H)

P’I"(E)\

Pr(H|F) =

A normalizing constant
16



Deconstructing Bayes’ rule

Pr(H, E
P ?“(H ‘E ) — ;( (_’E) ) Definition of conditional probability
T
Pr(H,FE)= Pr(E|H)Pr(H) Product rule
P?"(H ’E) — PT(E|H) PT(H) Plug in equation for joint

Pr(FE)

PT(E) — ZPT(E, H) Sum rule
H



Example of Bayes Theorem
* Given:

— A doctor knows that meningitis causes stiff neck 50% of the time
— Prior probability of any patient having meningitis is 1/50,000
— Prior probability of any patient having stiff neck is 1/20

* |f a patient has stiff neck, what’s the probability
he/she has meningitis?

P(S|M)P(M) 0.5x1/50000

PIMI3) = P(S) 1/20

=0.0002
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Bayesian Classifiers

 Consider each attribute and class label as
random variables

* Given a record with attributes (A, A,,...,A,)
— Goal is to predict class C

— Specifically, we want to find the value of C that
maximizes P(C| A, A,,...,A,)

* Can we estimate P(C| A, A,,..., A, ) directly from
data?
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Bayesian Classifiers

* Approach:

— compute the posterior probability P(C | A, A,, ..., A,) for all
values of C using the Bayes theorem

— Choose value of C that maximizes
P(C|ALA, ...,A)

— Equivalent to choosing value of C that maximizes
P(A,, A,, ..., A |C) P(C)

* How to estimate P(A,, A,, ..., A | C)?

20



Naive Bayes Classifier

* Naive assumption: evidence splits into parts (i.e., attributes)
that are conditionally independent

* Assume independence among attributes A; when class is
given:

— P(Ay, Ay, ..., A, |C) = P(A,] C) P(A,] C)... P(A,] C)

— Can estimate P(A,| Cj) for all A; and C;.

* This means, given n attributes, we can write Bayes’ rule using
a product of per-attribute probabilities
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Probabilities for weather data

Outlook Temperature Humidity Windy Play

Yes MNo Yes MNo Yes MNo Yes MNo | Yes MNo

Sunny 2 3 | Hot 2 High 3 4 | False 6 2 9 5

Overcast 0 | Mild Normal 6 1 | True 3 3

Rainy 3 2 | Cool 3 1

Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5 9/ 5/

Overcast 4/9 0/5 |Mid  4/9 2/5 |Normal 6/9 1/5 | True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No




Probabilities for weather data

Outlook Temperature Humidity Windy Play
Yes NMNo Yes NMNo Yes MNo Yes MNo | Yes Mo
Sunny Hot 2 2 High 3 4 | False 6 2 9 5
Overcast Mild 4 2 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 3 1
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5| 9/ 5/
Overcast  4/9 0/5 [Mid  4/9 2/5 | Normal 6/9 1/5 | True 3/9 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
e A new day: Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

P(yes | E) = P(Outlook = Sunny | yes)
P(Temperature = Cool | yes)
P(Humidity = High | yes)
P(Windy = True| yes)
P(yves) ! P(E)
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Probabilities for weather data

Outlook Temperature Humidity Windy Play
Yes NMNo Yes NMNo Yes MNo Yes MNo | Yes Mo
Sunny 2 3 | Hot 2 2 High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 2 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 3 1
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5| 9/ 5/
Overcast [4/9 0/5 [Mid  4/9 2/5 | Normal 6/9 1/5 | True 3/9 3/5| 14 14
Rainy /3/9 2/5 | Cool 3/9 1/5
e A new day: Outlook Temp. Hun-1idity Windy Play P(C)
Sunny Cool High True ? /

P(Outlook=sunny|C) =

Likelihood of the two classes

d

For “yes” =72/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053
For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206
Conversion into a probability by normalization:
P("yes”|E) = 0.0053 / (0.0053 + 0.0206) = 0.205
P("no”|E) = 0.0206 / (0.0053 + 0.0206) = 0.795
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Weather data example

Outlook  Temp. Humidity Windy Play
Sunny Cool High True ?

<€— Evidence E

P(yes | E) = P(Outlook = Sunny | yes)

P(Temperature = Cool | yes)
Probability of

P(Humidity = High
class “yes” (Humidity igh|yes)

P(Windy = True| yes)
P(yes)! P(E)

_2/973/973/973/979/14
P(E)
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Today Outlook = Rainy, Temperature = Cool,
Humidity = Normal, Windy = False. Should

we play today, according to the naive Bayes

classifier?

Yes

NO

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Outlook

Temp.

Humidity Windy Play

Rainy

Cool Normal

False ?

/

Probability of

P(yes | E) = P(Outlook = Rainy | yes)
P(Temperature = Cool | yes)
P(Humidity = Normal | yes)
P(Windy = False | yes)

class “yes” given E

Probabilityof/ ~ 3/9x3/9%x6/9x6/9x9/14

P(yes)/P(E)

<€— Evidence E

S
Prob. of

evidence,
given “yes”

L =0.0317
class “yes P(E)
Outlook Temperature Humidity Windy Play
Yes MNo Yes MNo Yes MNo Yes NMNo | Yes MNo
Sunny 2 3 | Hot 2 2 High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 2 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 3 1
Sunny 2/9 3/5 |Hot 2/9 2/5 |High 3/9  4/5 | False 2/5 5/
Overcast 4/9 0/5 | Mild 4/9 2/5 | Normal 1/5 | True 3/9 3/5 3 14
Rainy 2/5 | cool 1/5




Outlook

Temp.

Humidity Windy Play

Rainy

Cool

Normal

False

?

/

P(no| E) = P(Outlook = Rainy | no)

Probability of
class “no”

P(Temperature = Cool | no)
P(Humidity = Normal | no)
P(Windy = False | no)

<€— Evidence E

P(no)/P(E)
_ 2/5x1/5x1/5x2/5x5/14 —0.0023
P(E)
Outlook Temperature Humidity Windy Play

Yes  No Yes  No Yes  No Yes MNo | Yes NMNo
Sunny 2 3 | Hot 2 High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 2 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 3 1
Sunny 2/9 3/5 |Hot 2/9 2/5 |High 3/9 4/5 |False  6/9 @) o/ (5
Overcast 4/9 0/5 | Mild 4/9 2/5 | Normal 6/9 €1/5 )True 3/9 3/5 14 14
Rainy 39 ool 39 (U5




Outl.ook Temp. Humidity Windy Play ¢ Evidence E
Rainy Cool Normal False ?
3/9x3/9x6/9x6/9x9/14
P(yes|E) = =0.0317
P(E)
2/5x1/5%x1/5x2/5%x5/14
P(no|E)= =0.0023
P(E)
P(E)=0.0317 +0.0023
P(yes|E) =0.0317/(0.0317 +0.0023) = 0.93
Yes, we should play today!
Outlook Temperature Humidity Windy Play
Yes Mo Yes Mo Yes Mo Yes MNo | Yes NMNo
Sunny 2 3 | Hot High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 3 1
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5| 9/ 5/
Overcast 4/9 0/5 | Mild 4/9 2/5 | Normal 6/9 1/5 | True 3/9 3/5 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5




The “zero-frequency problem”

 What if an attribute value does not occur with every
class value?
(e.g., “Humidity = high” for class “yes”)
*  Probability will be zero: P(Humidity = High | yes)=0
« A posteriori probability will also be zero: P(yes|E)=0
(Regardless of how likely the other values are!)

* Remedy: add 1 to the count for every attribute value-
class combination (Laplace estimator)

e Result: probabilities will never be zero

* Additional advantage: stabilizes probability estimates
computed from small samples of data

Intuition: these extra counts encode “previous observations,” representing prior knowledge



Laplace estimator example

Outlook Temperature Humidity Windy Play
Yes MNo Yes MNo Yes MNo Yes MNo | Yes Mo
Sunny 2 Hot High 3 4 | False 6 2 9 5
Overcast 4 Mild 4 Normal 6 1 | True 3 3
Rainy 3 Cool 3
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5| 9/ 5/
Overcast 4/9 0/5 |Mid  4/9  2/5 | Normal 6/9 1/5 | True 3/9 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
u Add 1 to counts, compute probabilities using new counts. (Must sum to one!)
Outlook Temperature Humidity Windy Play
Yes MNo Yes MNo Yes MNo Yes MNo | Yes Mo
Sunny 3 4 | Hot 3 3 High 4 5 | False 7 3 10 6
Overcast 5 1 | Mild 5 3 Normal 7 2 | True 4 4
Rainy 4 3 | Cool 4 2
Sunny 3/12 4/8 | Hot 3/12 3/8 | High 4/11 5/7 | False 7/11  3/7 | 10/ 6/
Overcast 5/12 1/8 [Mid 5/12 3/8 | Normal 7/11 27 | True 4/11 47| 16 16
Rainy 4/12 3/8 | Cool 4/12 2/8




Missing values

Training: instance is not included in frequency count for
attribute value-class combination

Classification: attribute will be omitted from calculation

Example:

Outlook Temp. Humidity Windy Play
? Cool High True ?

Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
Likelihood of “"no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343
P(“yes”|E) = 0.0238 / (0.0238 + 0.0343) = 41%
P("no”|E) = 0.0343 / (0.0238 + 0.0343) = 59%
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Numeric attributes

e Usual assumption: attributes have a normal or Gaussian
probability distribution (given the class)

* The probability density function for the normal
distribution is defined by two parameters:

| X
e S I - — Xi.
ample mean v N; _
1
* Standard deviation o= ﬁz (xi—p)*
i=1
1 _ew?

€ 202

 Then the density function f(x) is f(x) = VAo



Statistics for weather data

Outlook Temperature Humidity Windy Play

Yes MNo Yes No Yes No Yes Mo | Yes MNo
Sunny 2 3 64, 68, 65,71, 65, 70, 70, 85, | False 6 2 9 5
Overcast 4 0 69, 70, 72,80, 70, 75, 90, 91, | True 3 3
Rainy 3 2 72, .. 85, ... 80, ... 95, ...
Sunny 2/9 3/5 u=73  u=75 11 =79 1 =86 | False 6/9 2/5| 9/ 5
Overcast  4/9 0/5 c=62 =79 c=102 ©=9.7 | True 39 35| 14 14
Rainy 3/9 2/5

* Example density value:
1 _(66-73)%
f(temperature = 66|yes) = e 262 =0(.0340

21 6.2
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Classifying a new day

A new day: Outlook  Temp. Humidity Windy Play
Sunny 66 90 true ?

Likelihood of “yes” = 2/9 x 0.0340 x 0.0221 x 3/9 x 9/14 = 0.000036
Likelihood of "no” = 3/5 x 0.0221 x 0.0381 x 3/5 x 5/14 = 0.000108
P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%
P(*"no”) = 0.000108 / (0.000036 + 0. 000108) = 75%

* Missing values during training are not included
in calculation of mean and standard deviation
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Naive Bayes: discussion

Naive Bayes works surprisingly well even if independence
assumption is clearly violated

Why? Because classification does not require accurate
probability estimates as long as maximum probability is
assigned to the correct class

However: adding too many redundant attributes will cause
problems (e.g., identical attributes)



Nailve Bayes

* Representation

— Probabilistic model, with naive Bayes conditional
independence assumption

* Objective function for training
— Log probability of training data under the model, log Pr(C,A).

* Search algorithm

— Estimate all probabilities required for Bayes rule, under naive
Bayes assumption, according to frequencies on training data



Linear functions

* Remember the equation for a line?

Yy = mx +c

slope intercept term /




Linear functions

* Remember the equation for a line?

Yy =mx + ¢

/]

&'\/

slope intercept term
Different notation for L \ \ /
machine learning: L = Wi1a1q + Wwo



Linear functions

* Remember the equation for a line?

Yy = mx +c

[ /]

slope intercept term

/ b
Different notation for \ \

machine learning: L = Wi1a1q + Wwo

Generalize to
multiple attributes: X — W( +wia; +waay + -0+ wiag



Linear models: linear regression

 Work most naturally with numeric attributes

e Standard technique for numeric prediction

e Qutcomeiis linear combination of attributes

X=wot+wia; +weap + - + wrag

 Weights are calculated from the training data



Linear models: linear regression

We can simplify and get rid of the intercept term w, by

assuming each instance is extended with a constant attribute
with value 1.

Predicted value for first training instance a(%):

k
Woagl) + Wla(ll) + wQag) + .0 + wkag) = Z wjaﬁl)
j=0



Minimizing the squared error

Choose k +1 coefficients to minimize the squared error on the
training data

n k 2
Squared error: > (x(i) - Wjaﬁf))
j=0

i=1

Coefficients can be derived using standard matrix operations

e (Can be done if there are more instances than attributes
(roughly speaking)

 Minimizing absolute error is more difficult, but can be done



Classification

* Any regression technique can be used for classification

e Training: perform a regression for each class, setting the output to 1
for training instances that belong to class, and 0 for those that don’t

* Prediction: predict class corresponding to model with largest output
value (membership value)

* For linear regression this method is also known as
multi-response linear regression
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Classification

* Any regression technique can be used for classification

e Training: perform a regression for each class, setting the output to 1
for training instances that belong to class, and 0 for those that don’t

* Prediction: predict class corresponding to model with largest output
value (membership value)

* For linear regression this method is also known as
multi-response linear regression

* Problem: membership values are not in the [0,1] range, so
they cannot be considered proper probability estimates

* In practice, they are often simply clipped into the [0,1]
range and normalized to sumto 1



Linear models: logistic regression

Can we do better than using linear regression for
classification?

Yes, we can, by applying logistic regression:
— Builds a linear model for a transformed target variable

Assume we have two classes (muiti-class aiso possible)

Logistic regression replaces the target Pr[l|ay, ay,. . ., a]

by this target: log[Pr[1|a1, ay,..., ak]/(l — Pr[1|a1, a, ..., ak])

This logit transformation maps [0,1] to (-, +0 ), i.e., the
new target values are no longer restricted to the [0,1] interval
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Logit transformation

| | | |

logits

0 0.2 0.4 0.6 0.8 1

probabilities

hh O =0 =N Wwah W

* Probabilities, between 0 and 1, are corresponded with numbers
anywhere on the real line

* To obtain probabilities from the regression, we reverse this mapping

48



The inverse logit function

1
0.8
0.6
probabilities

0.4
0.2

0

-10 -5 0 5 10

logits

e Aka the logistic function, or the sigmoid function (“S” shaped).
e “Squashes” real numbers to probabilities

1
o(z) = 14+e*

49



Logistic regression model

1
0.8
0.6
probabilities

0.4
0.2

0

-10 -5 0 5 10

logits

p(C — 1|CL1,CL2, X '9a’n) — O'(’wo +wiay + ... T w’na’n)

I /
0-(33) — e / linear model

“squashes” reals to probabilities
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Maximum likelihood estimation

* Aim: maximize probability of observed training data with
respect to final parameters of the logistic regression model

 We can use logarithms of probabilities and maximize
conditional log-likelihood instead of product of probabilities:

Z:;la — xNlog(1 —Pr{11a}’, Y, ..., &) + xDlogPr{1]a}’,ay, .. .,a"])

where the class values x(/ are either 0 or 1

* Weights w; need to be chosen to maximize log-likelihood



Maximum likelihood estimation

* Training Algorithms:
— lteratively re-weighted least squares (IRLS). E.g. Matlab’s mnrfit function

* Until converged
— Approximate objective as a (weighted) least squares linear regression problem, based on current guess
— Solve least squares problem, update parameter estimates

» Converges in few iterations, but each iteration is O(k3), due to a matrix inversion
* Equivalent to Newton’s method

— Quasi-Newton methods.
* Approximate the above, faster per iteration
* BFGS. Approximate O(k3) step with a diagonal matrix. E.g. WEKA’s functions -> Logistic
* Truncated Newton. Iterative procedure to approximate Newton step. E.g. LIBLINEAR

— Stochastic gradient descent (SGD)

* Process 1 data point at a time, so low memory requirements.
* Used for large-scale learning at Google. WEKA’s functions -> SGD

52



Multiple classes

What do we do when have a problem with k classes?

Could perform logistic regression independently for each class
(like in multi-response linear regression)

Problem: the probability estimates for the different classes will
generally not sum to one



Multiple classes

* A better approach: train k-1 coupled linear models by
maximizing likelihood over all classes simultaneously

 The linear models’ outputs are mapped to probabilities over all
k classes, using the softmax function

* This is known as multi-class logistic regression, a.k.a.
multinomial logistic regression
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Linear models are hyperplanes

Decision boundary for two-class logistic regression is
where probability equals 0.5:

Pr[l|ay,ay,...,ar] =1/(1 +exp(—wo —wia; — -+ — wiag)) = 0.5
which occurs when —wo —wia; — -+ —wgar =0

Thus logistic regression can only separate data that can
be separated by a hyperplane

Multi-response linear regression has the same problem.

-
7‘
-
A o
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Logistic Regression

* Representation

— Linear model. Logistic function maps a linear function to
probabilities.

* Objective function for training

— Log probability of class labels under the model,
log Pr(C|A).

e Search algorithm

— |teratively reweighted least squares, or gradient-based
methods



Relationship between naive Bayes and
logistic regression

Both naive Bayes and logistic regression are trained to maximize the
log-likelihoood

Naive Bayes: a generative classifier

— Models the attributes as well as the class
— Maximize log P(C,A) =log P(A|C) + log P(C) = log P(C|A) + log P(A)

Logistic regression: A discriminative classifier

— Models the class given the attributes, but not attributes
Maximize log P(C|A)

Naive Bayes, trained to maximize log P(C|A), is equivalent to logistic regression!
(Both with Gaussian assumption, or discrete data. Proof on bonus slide at end)

Naive Bayes and logistic regression are a “generative-discriminative pair”



Which can be trained more computationally

efficiently on a large dataset?

Logistic
regression

Naive
Bayes

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Which is typically more accurate at

predicting held-out data, when trained on a
very large dataset?

Logistic
regression

Naive
Bayes

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Which is typically more accurate at

predicting held-out data, when trained on a
small dataset?

Logistic
regression

Naive
Bayes

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Intuition

Naive Bayes needs to model the instances P(A|C)
— This requires strong assumptions

— These assumptions make the estimates stable for
small data, but limit the achievable performance with
a lot of data



Intuition

* The reverse is true for logistic regression, which only needs to
model the classes given the instances, P(C|A)

 This is called the bias-variance trade-off
— more next lesson!

— These intuitions hold more generally for
generative and discriminative models.



Support vector machines

* Support vector machines are algorithms for learning linear
classifiers

Resilient to overfitting because they learn a particular linear
decision boundary:

— The maximum margin hyperplane

* They can also learn non-linear classifiers, using a certain “trick”

— Use a mathematical trick to avoid creating “pseudo-attributes”
— The nonlinear space is created implicitly
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The maximum margin hyperplane

maximum margin hyperplane \

support vectors

* The instances closest to the maximum margin
hyperplane are called support vectors



Support vectors

* The support vectors define the maximum margin hyperplane

* All other instances can be deleted without changing its position

and orientation . .
maximum margin hyperplane \

* The hyperplane

X=w,twa, tw,a,

can be written as

x=b+ Yy  ayd()a

[ 1S a supp. vector

support vectors



Finding support vectors

x=b+ E o ya(i) a

i 1S a supp. vector

* Support vector: training instance for whicha; >0
* Determininga; and b?

A constrained quadratic optimization problem
— Off-the-shelf tools for solving these problems
— However, special-purpose algorithms are faster
— Example: Platt’s sequential minimal optimization (SMQO) algorithm



Which of the following would allow you to

create classifier with a non-linear decision
boundary?

Apply the logit transformation to map
real-valued predictions from a linear
regression model into class probabilities

Train a modified version of naive Bayes for numeric data, which optimizes log P{C|A) instead of log P{A, C)

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



Nonlinear SVMs

We can create a nonlinear classifier by creating new
“pseudo” attributes from the original attributes in the data

— “Pseudo” attributes represent attribute combinations

— E.g.: all polynomials of degree 2 that can be formed from the original
attributes

The linear SVM in the extended space is a non-linear
classifier in the original attribute space

Overfitting often not a significant problem with this
approach because the maximum margin hyperplane is stable

— There are often comparatively few support vectors relative to the
size of the training set

Computation time still an issue



A mathematical trick

Avoid computing the “pseudo attributes”

Compute the dot product before doing the nonlinear
mapping L
e, 0t S @i

I 1S a supp. vector

Corresponds to a map into the instance space spanned
by all products of n attributes



Other kernel functions

Mapping is called a “kernel function”

Polynomial kernel  x=p+ E o, y.(a(i) a)"

I 1S a supp. vector

We can use others: X=Db+ E Ofi}’iK(ﬁ(i) ‘a)

i 1S a supp. vector

Only requirement: K('i’:i"%j) = P(x,) ¢(55j)

y,

K() can be written as a dot product in a
feature space create by the implicit feature
mapping @)



Noise

Have assumed that the data is separable (in original or
transformed space)

Can apply SVMs to noisy data by introducing a “noise”
parameter C

— Also known as regularization parameter

C bounds the influence of any one training instance on
the decision boundary

— Based on the following constraint: 0 <o, <C

A “soft” margin is maximized based on this constraint



Support Vector Machines (SVMs)

* Representation

— Linear model. The “kernel trick” implicitly maps instances to
higher-dimensional spaces, leading to non-linear decision
boundaries

* Objective function for training

— The margin (distance from hyperplane to closest instances for
each class)

e Search algorithm

— Quadratic optimization, often solved by special-purpose
algorithms



Think-pair-share:
Naive Bayes Assumption

* The Naive Bayes classifier assumes that the attributes are
independent, given the class: knowing the value of one attribute
will not inform you of the others (if you know the class). Is this
assumption valid for the following?

— Class: acceptance to UMBC IS graduate program (yes/no).
Attributes: GRE verbal, quantitative, and writing scores

— Class: the number of coins coming up heads is even, from two coin tosses

(yes/no).
Attributes: Coin 1 (heads/tails), Coin 2 (heads/tails)

— Class: play sports game today? (yes/no).
Attributes: Outlook, temperature, humidity, wind (all nominal)

Can you think of another scenario where the assumption is valid, and
another where it isn’t?



Bonus slide: Naive Bayes is a linear model,

Generative version of logistic regression
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Linear if discrete, or Gaussian.
So naive Bayes is equivalent to logistic regression, trained generatively!




