
IS 733 Lesson 7

Supervised Learning (Continued)

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal,
Data Mining: Concepts and Techniques by Han et al., and Vandana Janeja and James Foulds









Learning outcomes

By the end of the lesson, you should be able to:

• Perform the steps of the training algorithms for the 
naïve Bayes classifier, given a small dataset

• Explain the assumptions made by naïve Bayes models

• Discuss how logistic regression and support vector 
machines (SVMs) extend the simple linear regression 
model into powerful techniques for classification
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Simple probabilistic modeling:
Naïve Bayes classifier

• Remember how 1R uses only one attribute?

Naïve Bayes is “opposite” of 1R: use all the attributes

• Two assumptions: Attributes are
• equally important

• statistically independent (given the class value)

• This means knowing the value of one attribute tells us nothing 
about the value of another takes on (if the class is known)



Offer Cheap Buy Sale … Spam?

1 0 0 1 1

Simple probabilistic modeling:
Naïve Bayes classifier

Naïve Bayes assumption:

Knowing, e.g., Offer = 1 does not affect the probability that Sale = 1,
given we know that the class Spam = 1, etc.
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Simple probabilistic modeling:
Naïve Bayes classifier

• The Naïve Bayes independence assumption is almost 
never correct!!!

• But … this scheme often works surprisingly well in practice
(why?)

• Easy to implement in a program and very fast



Probability

• A framework for reasoning with uncertainty

• Boolean logic expresses that statements are 
either necessarily true, or necessarily false

• Probability theory relaxes Boolean logic to 
allow for the expression of uncertainty in such 
statements



Probability

• A variable which is subject to random chance, or is 
uncertain, is called a random variable
– E.g. x = the value of the roll of a die

• Each value that the random variable can take is called 
an outcome
– E.g. for a die roll, the value x = 6

• Probabilities P(x) are values >= 0, assigned to each 
value of the sample space,
which sum to 1



Conditional Probability
Probability of x, given that we know that 
y takes a particular value

P(x) P(y)P(x,y)



Bayes’ rule

• Our goal:

To infer the probability of a hypothesis H, given evidence E.
This probability distribution is called the posterior distribution,

• We have:
Prior beliefs about H, encoded as a probability distribution,
the prior distribution

A model for how the data were generated, given the hypothesis, the 
likelihood
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Bayes’ rule

• Bayes’ rule allows us to combine observed evidence and prior beliefs to 
obtain the posterior,

16
A normalizing constant



Deconstructing Bayes’ rule
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Definition of conditional probability

Product rule

Plug in equation for joint

Sum rule
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Example of Bayes Theorem
• Given: 

– A doctor knows that meningitis causes stiff neck 50% of the time

– Prior probability of any patient having meningitis is 1/50,000

– Prior probability of any patient having stiff neck is 1/20

• If a patient has stiff neck, what’s the probability 
he/she has meningitis?
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Bayesian Classifiers

• Consider each attribute and class label as 
random variables

• Given a record with attributes (A1, A2,…,An) 
– Goal is to predict class C

– Specifically, we want to find the value of C that 
maximizes P(C| A1, A2,…,An )

• Can we estimate P(C| A1, A2,…,An ) directly from 
data?
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Bayesian Classifiers
• Approach:

– compute the posterior probability P(C | A1, A2, …, An) for all 
values of C using the Bayes theorem

– Choose value of C that maximizes 
P(C | A1, A2, …, An)

– Equivalent to choosing value of C that maximizes
P(A1, A2, …, An|C) P(C)

• How to estimate P(A1, A2, …, An | C )?
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Naïve Bayes Classifier

• Naïve assumption: evidence splits into parts (i.e., attributes) 
that are conditionally independent

• Assume independence among attributes Ai when class is 
given:    

– P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj)

– Can estimate P(Ai| Cj) for all Ai and Cj.

• This means, given n attributes, we can write Bayes’ rule using 
a product of per-attribute probabilities
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Probabilities for weather data
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Probabilities for weather data
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?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook• A new day:

P(yes | E) = P(Outlook = Sunny | yes)

P(Temperature =Cool | yes)

P(Humidity = High | yes)

P(Windy = True | yes)

P(yes) / P(E)
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Probabilities for weather data
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?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook• A new day:

Likelihood of the two classes

For “yes” = 2/9  3/9  3/9  3/9  9/14 = 0.0053

For “no” = 3/5  1/5  4/5  3/5  5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”|E) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”|E) = 0.0206 / (0.0053 + 0.0206) = 0.795

P(C)

P(Outlook=sunny|C)
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Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook
Evidence E

Probability of
class “yes”

P(yes | E) = P(Outlook = Sunny | yes)

P(Temperature =Cool | yes)

P(Humidity = High | yes)

P(Windy = True | yes)

P(yes) / P(E)

=
2 / 9´3 / 9´3 / 9´3 / 9´9 /14

P(E)
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?FalseNormalCoolRainy

PlayWindyHumidityTemp.Outlook
Evidence E

Probability of
class “yes” given E
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?FalseNormalCoolRainy

PlayWindyHumidityTemp.Outlook
Evidence E

Probability of
class “no”
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?FalseNormalCoolRainy

PlayWindyHumidityTemp.Outlook
Evidence E
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The “zero-frequency problem”

• What if an attribute value does not occur with every 
class value?
(e.g., “Humidity = high” for class “yes”)

• Probability will be zero:

• A posteriori probability will also be zero:
(Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-
class combination (Laplace estimator)

• Result: probabilities will never be zero

• Additional advantage: stabilizes probability estimates
computed from small samples of data

P(Humidity =High | yes) = 0

P(yes |E) = 0

Intuition: these extra counts encode “previous observations,” representing prior knowledge
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Laplace estimator example
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Missing values

• Training: instance is not included in frequency count for 
attribute value-class combination

• Classification: attribute will be omitted from calculation

• Example:

?TrueHighCool?

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 3/9  3/9  3/9  9/14 = 0.0238

Likelihood of “no” = 1/5  4/5  3/5  5/14 = 0.0343

P(“yes”|E) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”|E) = 0.0343 / (0.0238 + 0.0343) = 59%
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Numeric attributes

• Usual assumption: attributes have a normal or Gaussian
probability distribution (given the class)

• The probability density function for the normal 
distribution is defined by two parameters:

• Sample mean 

• Standard deviation 

• Then the density function f(x) is
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Statistics for weather data

• Example density value:
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Classifying a new day

• A new day:

• Missing values during training are not included 
in calculation of mean and standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/9  0.0340  0.0221  3/9  9/14 = 0.000036

Likelihood of “no”  = 3/5  0.0221  0.0381  3/5  5/14 = 0.000108

P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%

P(“no”)  = 0.000108 / (0.000036 + 0. 000108) = 75%
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Naïve Bayes: discussion

• Naïve Bayes works surprisingly well even if independence 
assumption is clearly violated

• Why? Because classification does not require accurate 
probability estimates as long as maximum probability is 
assigned to the correct class

• However: adding too many redundant attributes will cause 
problems (e.g., identical attributes)



Naïve Bayes

• Representation
– Probabilistic model, with naïve Bayes conditional 

independence assumption

• Objective function for training
– Log probability of training data under the model, log Pr(C,A).

• Search algorithm
– Estimate all probabilities required for Bayes rule, under naïve 

Bayes assumption, according to frequencies on training data



Linear functions

• Remember the equation for a line?

slope intercept term

x

y

c



Linear functions

• Remember the equation for a line?

slope intercept term

Different notation for
machine learning:

a1

x

w0



Linear functions

• Remember the equation for a line?

slope intercept term

Different notation for
machine learning:

Generalize to
multiple attributes:

a

x

w0
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Linear models: linear regression

• Work most naturally with numeric attributes

• Standard technique for numeric prediction

• Outcome is linear combination of attributes

• Weights are calculated from the training data
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Linear models: linear regression

• We can simplify and get rid of the intercept term w0 by 
assuming each instance is extended with a constant attribute 
with value 1.

• Predicted value for first training instance a(1):
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Minimizing the squared error

• Choose k +1 coefficients to minimize the squared error on the 
training data

• Squared error:

• Coefficients can be derived using standard matrix operations

• Can be done if there are more instances than attributes
(roughly speaking)

• Minimizing absolute error is more difficult, but can be done
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Classification

• Any regression technique can be used for classification

• Training: perform a regression for each class, setting the output to 1 
for training instances that belong to class, and 0 for those that don’t

• Prediction: predict class corresponding to model with largest output 
value (membership value)

• For linear regression this method is also known as
multi-response linear regression
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Classification

• Any regression technique can be used for classification

• Training: perform a regression for each class, setting the output to 1 
for training instances that belong to class, and 0 for those that don’t

• Prediction: predict class corresponding to model with largest output 
value (membership value)

• For linear regression this method is also known as
multi-response linear regression

• Problem: membership values are not in the [0,1] range, so 
they cannot be considered proper probability estimates

• In practice, they are often simply clipped into the [0,1] 
range and normalized to sum to 1
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Linear models: logistic regression

• Can we do better than using linear regression for 
classification?

• Yes, we can, by applying logistic regression:
– Builds a linear model for a transformed target variable

• Assume we have two classes (multi-class also possible)

• Logistic regression replaces the target

by this target:

• This logit transformation maps [0,1] to (- , + ), i.e., the 
new target values are no longer restricted to the [0,1] interval
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Logit transformation

• Probabilities, between 0 and 1, are corresponded with numbers 
anywhere on the real line

• To obtain probabilities from the regression, we reverse this mapping

probabilities

logits
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The inverse logit function

• Aka the logistic function, or the sigmoid function (“S” shaped).

• “Squashes” real numbers to probabilities

logits

probabilities
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Logistic regression model

logits

probabilities

linear model

“squashes” reals to probabilities
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Maximum likelihood estimation

• Aim: maximize probability of observed training data with 
respect to final parameters of the logistic regression model

• We can use logarithms of probabilities and maximize 
conditional log-likelihood instead of product of probabilities:

where the class values x(i) are either 0 or 1

• Weights wi need to be chosen to maximize log-likelihood
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Maximum likelihood estimation

• Training Algorithms:
– Iteratively re-weighted least squares (IRLS). E.g. Matlab’s mnrfit function

• Until converged
– Approximate objective as a (weighted) least squares linear regression problem, based on current guess

– Solve least squares problem, update parameter estimates

• Converges in few iterations, but each iteration is O(k3), due to a matrix inversion

• Equivalent to Newton’s method

– Quasi-Newton methods.
• Approximate the above, faster per iteration

• BFGS.  Approximate O(k3) step with a diagonal matrix. E.g. WEKA’s functions -> Logistic

• Truncated Newton. Iterative procedure to approximate Newton step. E.g. LIBLINEAR

– Stochastic gradient descent (SGD)
• Process 1 data point at a time, so low memory requirements.

• Used for large-scale learning at Google. WEKA’s functions -> SGD
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Multiple classes

• What do we do when have a problem with k classes?

• Could perform logistic regression independently for each class 
(like in multi-response linear regression)

• Problem: the probability estimates for the different classes will 
generally not sum to one
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Multiple classes

• A better approach: train k-1 coupled linear models by 
maximizing likelihood over all classes simultaneously

• The linear models’ outputs are mapped to probabilities over all 
k classes, using the softmax function

• This is known as multi-class logistic regression, a.k.a.
multinomial logistic regression
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Linear models are hyperplanes

• Decision boundary for two-class logistic regression is 
where probability equals 0.5:

which occurs when

• Thus logistic regression can only separate data that can 
be separated by a hyperplane

• Multi-response linear regression has the same problem. 



Logistic Regression

• Representation
– Linear model. Logistic function maps a linear function to 

probabilities.

• Objective function for training
– Log probability of class labels under the model,

log Pr(C|A).

• Search algorithm
– Iteratively reweighted least squares, or gradient-based 

methods



Relationship between naïve Bayes and 
logistic regression

• Both naïve Bayes and logistic regression are trained to maximize the
log-likelihoood

• Naïve Bayes: a generative classifier
– Models the attributes as well as the class
– Maximize log P(C,A) = log P(A|C) + log P(C) = log P(C|A) + log P(A)

• Logistic regression: A discriminative classifier
– Models the class given the attributes, but not attributes

Maximize log P(C|A)

• Naïve Bayes, trained to maximize log P(C|A), is equivalent to logistic regression! 
(Both with Gaussian assumption, or discrete data. Proof on bonus slide at end)

• Naïve Bayes and logistic regression are a “generative-discriminative pair”









Intuition

• Naïve Bayes needs to model the instances P(A|C)

– This requires strong assumptions

– These assumptions make the estimates stable for 
small data, but limit the achievable performance with 
a lot of data



Intuition

• The reverse is true for logistic regression, which only needs to 
model the classes given the instances, P(C|A)

• This is called the bias-variance trade-off

– more next lesson!

– These intuitions hold more generally for 
generative and discriminative models.



Support vector machines

• Support vector machines are algorithms for learning linear 
classifiers 

• Resilient to overfitting because they learn a particular linear 
decision boundary:

– The maximum margin hyperplane

• They can also learn non-linear classifiers, using a certain “trick”

– Use a mathematical trick to avoid creating “pseudo-attributes”

– The nonlinear space is created implicitly

66



The maximum margin hyperplane

• The instances closest to the maximum margin 
hyperplane are called support vectors

67



Support vectors

• The hyperplane

can be written as

• The support vectors define the maximum margin hyperplane

• All other instances can be deleted without changing its position 
and orientation

68

x =w0 +w1a1 +w2a2



Finding support vectors

• Support vector: training instance for which   i > 0

• Determining    i and b ?

A constrained quadratic optimization problem
– Off-the-shelf tools for solving these problems

– However, special-purpose algorithms are faster

– Example: Platt’s sequential minimal optimization (SMO) algorithm 

69
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Nonlinear SVMs

• We can create a nonlinear classifier by creating new 
“pseudo” attributes from the original attributes in the data

– “Pseudo” attributes represent attribute combinations

– E.g.: all polynomials of degree 2 that can be formed from the original 
attributes

• The linear SVM in the extended space is a non-linear 
classifier in the original attribute space

• Overfitting often not a significant problem with this 
approach because the maximum margin hyperplane is stable

– There are often comparatively few support vectors relative to the 
size of the training set

• Computation time still an issue
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A mathematical trick

• Avoid computing the “pseudo attributes”

• Compute the dot product before doing the nonlinear 
mapping

• Example:

• Corresponds to a map into the instance space spanned 
by all products of n attributes
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Other kernel functions

• Mapping is called a “kernel function”

• Polynomial kernel

• We can use others:

• Only requirement:

74

K() can be written as a dot product in a 
feature space create by the implicit feature
mapping Φ()



Noise

• Have assumed that the data is separable (in original or 
transformed space)

• Can apply SVMs to noisy data by introducing a “noise” 
parameter C

– Also known as regularization parameter

• C  bounds the influence of any one training instance on 
the decision boundary

– Based on the following constraint: 0  i  C

• A “soft” margin is maximized based on this constraint

75



Support Vector Machines (SVMs)

• Representation
– Linear model. The “kernel trick” implicitly maps instances to 

higher-dimensional spaces, leading to non-linear decision 
boundaries

• Objective function for training
– The margin (distance from hyperplane to closest instances for 

each class)

• Search algorithm
– Quadratic optimization, often solved by special-purpose 

algorithms



Think-pair-share:
Naïve Bayes Assumption

• The Naïve Bayes classifier assumes that the attributes are 
independent, given the class: knowing the value of one attribute 
will not inform you of the others (if you know the class).  Is this 
assumption valid for the following?
– Class: acceptance to UMBC IS graduate program (yes/no).

Attributes: GRE verbal, quantitative, and writing scores

– Class: the number of coins coming up heads is even, from two coin tosses 
(yes/no). 
Attributes: Coin 1 (heads/tails), Coin 2 (heads/tails)

– Class: play sports game today? (yes/no). 
Attributes: Outlook, temperature, humidity, wind (all nominal)

Can you think of another scenario where the assumption is valid, and 
another where it isn’t?
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Bonus slide: Naïve Bayes is a linear model, 
Generative version of logistic regression

Linear if discrete, or Gaussian.
So naïve Bayes is equivalent to logistic regression, trained generatively!


