
IS 733 Lesson 6

Supervised Learning

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal,
Data Mining: Concepts and Techniques by Han et al., and Vandana Janeja, James Foulds

Announcements

• Homework 2 was due last Friday (3/5) on,
Blackboard

• Homework 3 is posted at the course webpage
and due on, Blackboard by 3/30

Learning outcomes

By the end of the lesson, you should be able to:

• Discuss the differences between decision tree and
decision rule learning algorithms

• Calculate the information gain and gain ratio splitting
criteria used by decision tree induction algorithms

• Perform the steps of the training algorithms for the
PRISM rule learner, given a small dataset

7

8

Data Mining

Input Data Data
Mining

Data Pre-
Processing

Post-
Processing

Supervised learning

• Typical applications:

– Credit/loan approval

– Medical diagnosis: if a tumor is cancerous or benign

– Fraud detection: if a transaction is fraudulent

– Web page categorization: which category it is

This Photo by Unknown Author is licensed under CC BY-SA This Photo by Unknown Author is licensed under CC BY-NC-ND This Photo by Unknown Author is licensed under CC BY-SA-NC
This Photo by Unknown Author is licensed under CC BY-SA-NC

http://investmentjuan01.com/2015/06/
https://creativecommons.org/licenses/by-sa/3.0/
http://praxis.blog.hu/2010/12/22/diagnozis_tobb_meteres_tavolsagbol
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.rdmf.es/2015/06/04/informe-de-iosco-sobre-la-prevencion-del-fraude-de-inversiones/
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://revistamagisterioelrecreo.blogspot.com/2013/03/internet-progreso-o-retroceso.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

10

Supervised vs. Unsupervised Learning

• Supervised learning (e.g. classification)

– Supervision: The training data are accompanied by labels,

e.g. the class of the observations

– The goal is to predict the labels for new, unseen data

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

11

Supervised vs. Unsupervised Learning

• Unsupervised learning (e.g. clustering)

– The class labels of training data are unknown

– We aim to find patterns in the data without class labels, e.g.

• clustering the data into groups

• finding associations between the attributes

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

12

• Classification

– predicts categorical class labels (discrete or nominal)

– classifies data (constructs a model) based on the training
set and the values (class labels) in a classifying attribute
and uses it in classifying new data

• Numeric Prediction

– models continuous-valued functions, i.e., predicts unknown
or missing values

Prediction Problems:
Classification vs. Numeric Prediction

13

Classification—A Two-Step Process

• Step 1, Model construction:

– Given the data, build a model of it!

– Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

– The set of tuples used for model construction is training set

– The model is represented as either:
• classification rules, decision trees, linear model, etc.

14

Process (1): Model Construction

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’

Classifier

(Model)

15

Classification—A Two-Step Process

• Step 2, Model usage: for classifying future or unknown objects

– Estimate accuracy of the model

• The known label of test sample is compared with the classified
result from the model

• Accuracy rate is the percentage of test set samples that are
correctly classified by the model

• Test set is independent of training set (otherwise overfitting)

– If the accuracy is acceptable, use the model to classify new data

• Note: If the test set is used to select models, it is called validation set

16

Process (2): Using the Model in Prediction

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Elements of a Classification Algorithm
• Representation

– Rules, trees, linear model, instance-based, probabilistic model,…

• Representation is important for interpretation. Flexibility of representation trades overfitting versus
underfitting (bias-variance trade-off).

• Objective function for training
– E.g. Error rate, accuracy, loss, on training data

– May include regularization, encouraging simpler models to prevent overfitting (e.g. via some
penalty in the objective function)

• Optimization algorithm
– Aims to find “best” classifier according to objective function

– Search algorithm can also avoid overfitting

• Only consider simple classifiers, or search these first and stop early

• The whole game: select the above so that the method generalizes well, is
computationally efficient, and is interpretable (if desired)

Elements of a Classification Algorithm
• Representation

– Rules, trees, linear model, instance-based, probabilistic model,…

• Representation is important for interpretation. Flexibility of representation trades overfitting versus
underfitting (bias-variance trade-off).

• Objective function for training
– E.g. Error rate, accuracy, loss, on training data

– May include regularization, encouraging simpler models to prevent overfitting (e.g. via some
penalty in the objective function)

• Optimization algorithm
– Aims to find “best” classifier according to objective function

– Search algorithm can also avoid overfitting

• Only consider simple classifiers, or search these first and stop early

• The whole game: select the above so that the method generalizes well, is
computationally efficient, and is interpretable (if desired)

Elements of a Classification Algorithm
• Representation

– Rules, trees, linear model, instance-based, probabilistic model,…

• Representation is important for interpretation. Flexibility of representation trades overfitting versus
underfitting (bias-variance trade-off).

• Objective function for training
– E.g. Error rate, accuracy, loss, on training data

– May include regularization, encouraging simpler models to prevent overfitting (e.g. via some
penalty in the objective function)

• Optimization algorithm
– Aims to find “best” classifier according to objective function

– Search algorithm can also avoid overfitting

• Only consider simple classifiers, or search these first and stop early

• The whole game: select the above so that the method generalizes well, is
computationally efficient, and is interpretable (if desired)

Elements of a Classification Algorithm
• Representation

– Rules, trees, linear model, instance-based, probabilistic model,…

• Representation is important for interpretation. Flexibility of representation trades overfitting versus
underfitting (bias-variance trade-off).

• Objective function for training
– E.g. Error rate, accuracy, loss, on training data

– May include regularization, encouraging simpler models to prevent overfitting (e.g. via some
penalty in the objective function)

• Optimization algorithm
– Aims to find “best” classifier according to objective function

– Search algorithm can also avoid overfitting

• Only consider simple classifiers, or search these first and stop early

• The whole game: select the above so that the method generalizes well, is
computationally efficient, and is interpretable (if desired)

Elements of a Classification Algorithm
• Representation

– Rules, trees, linear model, instance-based, probabilistic model,…

• Representation is important for interpretation. Flexibility of representation trades overfitting versus
underfitting (bias-variance trade-off).

• Objective function for training
– E.g. Error rate, accuracy, loss, on training data

– May include regularization, encouraging simpler models to prevent overfitting (e.g. via some
penalty in the objective function)

• Optimization algorithm
– Aims to find “best” classifier according to objective function

– Search algorithm can also avoid overfitting

• Only consider simple classifiers, or search these first and stop early

• The whole game: select the above so that the method generalizes well, is
computationally efficient, and is interpretable (if desired)

24

Simplicity first

• Simple algorithms often work very well!

• There are many kinds of simple structure, e.g.:

• One attribute does all the work

• All attributes contribute equally & independently

• Logical structure with a few attributes suitable for tree

• A weighted linear combination of the attributes

• Strong neighborhood relationships based on distance

• …

• Success of method depends on the domain

Simplest possible classifier: ZeroR

• Ignore the input! Predict the majority class, according
to the training data

• Representation
– One rule with no antecedent: If (true), predict Class=C

• Objective function for training
– Error on training data

• Search algorithm
– Calculate class frequencies.

Select the one with the highest frequency

26

Inferring rudimentary rules: 1R

• 1R rule learner:

• A set of rules that all test one particular attribute - the one
that yields the lowest classification error

• Equivalent to a 1-level decision tree

• Basic version for finding the rule set from a given
training set (assumes nominal attributes):

• For each attribute

• Make one branch for each value of the attribute

• To each branch, assign the most frequent class value of
the instances pertaining to that branch

• Error rate: proportion of instances that do not belong to
the majority class of their corresponding branch

• Choose attribute with lowest error rate

Rainy → Yes

Overcast → Yes

Sunny → No

Outlook

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

27

Inferring rudimentary rules: 1R

• Basic version (assumes nominal attributes):

• For each attribute

• Make one branch for each value of the attribute

• To each branch, assign the most frequent class value of the
instances pertaining to that branch

• Calculate the error rate of the rules

• The Error rate equals the proportion of instances that do not
belong to the majority class of their corresponding branch

• Choose attribute with lowest error rate

1R Rule Learner

• Representation
– Rules (tests on one attribute)

Equivalently – a 1-level decision trees

• Objective function for training
– Error rate on training data

• Search algorithm
– Consider each attribute, create rules predicting class for

each attribute value.
– Pick the attribute that performs best on training data.

29

Evaluating the weather attributes

3/6True → No*

5/142/8False → YesWindy

1/7Normal → Yes

4/143/7High → NoHumidity

5/14

4/14

Total
errors

1/4Cool → Yes

2/6Mild → Yes

2/4Hot → No*Temp

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

* indicates a tie

?

32

Evaluating the weather attributes

3/6True → No*

5/142/8False → YesWindy

1/7Normal → Yes

4/143/7High → NoHumidity

5/14

4/14

Total
errors

1/4Cool → Yes

2/6Mild → Yes

2/4Hot → No*Temp

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

* indicates a tie

33

Dealing with numeric attributes

• Idea: discretize numeric attributes into sub ranges (intervals)

• How to divide each attribute’s overall range into intervals?

• Sort instances according to attribute’s values

• Place breakpoints where (majority) class changes

• This minimizes the total classification error

• Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

34

The problem of overfitting

• Discretization procedure is very sensitive to noise
• A single instance with an incorrect class label will probably produce a

separate interval

• Simple solution:
enforce minimum number of instances in majority class per interval

• Example: temperature attribute with required minimum number of
instances in majority class set to three:

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

35

Results with overfitting avoidance

• Resulting rule sets for the four attributes in the weather
data, with only two rules for the temperature attribute:

0/1> 95.5 → Yes

3/6True → No*

5/142/8False → YesWindy

2/6> 82.5 and  95.5 → No

3/141/7 82.5 → YesHumidity

5/14

4/14

Total errors

2/4> 77.5 → No*

3/10 77.5 → YesTemperature

2/5Rainy → Yes

0/4Overcast → Yes

2/5Sunny → NoOutlook

ErrorsRulesAttribute

36

Discussion of 1R

• 1R was described in a paper by Holte (1993):

• Contains an experimental evaluation on 16 datasets (using cross-
validation to estimate classification accuracy on fresh data)

• 1R’s simple rules performed not much worse than much more complex
decision trees

• Lesson: simplicity first can pay off on practical datasets

• Note that 1R does not perform as well on more recent, more
sophisticated benchmark datasets

Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

37

Constructing decision trees

• Strategy: top down learning using recursive divide-and-
conquer process

• First: select attribute for root node
Create branch for each possible attribute value

• Then: split instances into subsets
One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that
reach the branch

• Stop if all instances have the same class

(For numeric attributes, compare to a constant value, e.g. xi > c ?)

42

Which attribute to select?

43

Criterion for attribute selection

• Which is the best attribute?

• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain

• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose
attribute that gives greatest information gain

• Information gain requires measure of impurity

• Impurity measure that it uses is the entropy of the class
distribution, which is a measure from information theory

44

Wishlist for an impurity measure

• Properties we would like to see in an impurity measure:
• When node is pure, measure should be zero

• When impurity is maximal (i.e., all classes equally likely), measure
should be maximal

• Measure should ideally obey multistage property
(i.e., decisions can be made in several stages, without affecting the
overall impurity score):

• It can be shown that entropy is the only function that
satisfies all three properties!

Brief Review of Entropy

45

Entropy of a coin flip

Brief Review of Entropy

46

m = 2

Brief Review of Entropy

47

m = 2

48

◼ Select the attribute with the highest information gain

◼ Let pi be the probability that an arbitrary tuple in D belongs to

class Ci, estimated by |Ci, D|/|D|

◼ Expected information (entropy) needed to classify a tuple in D:

◼ Information needed (after using A to split D into v partitions) to

classify D:

◼ Information gained by branching on attribute A

)(
||

||
)(

1

j

v

j

j

A DInfo
D

D
DInfo =

=

(D)InfoInfo(D)Gain(A) A−=

Information Gain

)(log)(2

1

i

m

i

i ppDInfo 
=

−=

49

◼ Select the attribute with the highest information gain

◼ Let pi be the probability that an arbitrary tuple in D belongs to

class Ci, estimated by |Ci, D|/|D|

◼ Expected information (entropy) needed to classify a tuple in D:

◼ Information needed (after using A to split D into v partitions) to

classify D:

◼ Information gained by branching on attribute A

)(
||

||
)(

1

j

v

j

j

A DInfo
D

D
DInfo =

=

(D)InfoInfo(D)Gain(A) A−=

Information Gain

)(log)(2

1

i

m

i

i ppDInfo 
=

−=

50

◼ Select the attribute with the highest information gain

◼ Let pi be the probability that an arbitrary tuple in D belongs to

class Ci, estimated by |Ci, D|/|D|

◼ Expected information (entropy) needed to classify a tuple in D:

◼ Information needed (after using A to split D into v partitions) to

classify D:

◼ Information gained by branching on attribute A

)(
||

||
)(

1

j

v

j

j

A DInfo
D

D
DInfo =

=

(D)InfoInfo(D)Gain(A) A−=

Information Gain

)(log)(2

1

i

m

i

i ppDInfo 
=

−=

51

Example: attribute Outlook

• Outlook = Sunny :

• Outlook = Overcast :

• Outlook = Rainy :

• Expected information for attribute:

52

Computing information gain

• Information gain: information before splitting –
information after splitting

• Information gain for attributes from weather data:

Gain(Outlook) = 0.247 bits

Gain(Temperature) = 0.029 bits

Gain(Humidity) = 0.152 bits

Gain(Windy) = 0.048 bits

Gain(Outlook) = Info([9,5]) – info([2,3],[4,0],[3,2])

= 0.940 – 0.693
= 0.247 bits

53

Continuing to split

Gain(Temperature) = 0.571 bits

Gain(Humidity) = 0.971 bits

Gain(Windy) = 0.020 bits

54

Final decision tree

• Note: not all leaves need to be pure; sometimes identical
instances have different classes
• Splitting stops when data cannot be split any further

55

Highly-branching attributes

• Problematic: attributes with a large number of values
(extreme case: ID code)

• Subsets are more likely to be pure if there is a large
number of values

• Information gain is biased towards choosing attributes with a
large number of values

• This may result in overfitting

• – the chosen attribute is very good at splitting the training
data, but the model won’t generalize well to new data

56

Weather data with ID code

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTemp.Outlook

57

Tree stump for ID code attribute

• All (single-instance) subsets have entropy zero!

• This means the information gain is maximal for this ID
code attribute (namely 0.940 bits)

58

Gain ratio

• Gain ratio is a modification of the information gain that
reduces its bias towards attributes with many values

• Gain ratio takes number and size of branches into account
when choosing an attribute
• It corrects the information gain by taking the intrinsic information

of a split into account

59

Gain ratio

• Intrinsic information (split info): entropy of the
distribution of instances into branches

• Measures how much info do we need to tell which branch
a randomly chosen instance belongs to

60

Computing the gain ratio

• Example: intrinsic information of ID code

• Value of attribute should decrease as intrinsic
information gets larger

• The gain ratio is defined as the information gain of the
attribute, divided by its intrinsic information

• Example (outlook at root node):

61

All gain ratios for the weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577 Split info: info([5,4,5])

0.029Gain: 0.940-0.9110.247Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000 Split info: info([7,7])

0.048Gain: 0.940-0.8920.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity

“Outlook” is still the chosen attribute to split on

62

Heuristics for the Gain Ratio

• However, “ID code” has a greater gain ratio!
• Standard fix: ad hoc test to prevent splitting on that type

of identifier attribute

• Problem with gain ratio: it may overcompensate
• May choose an attribute just because its intrinsic

information is very low

• Standard fix: only consider attributes with greater than
average information gain

• Both fixes implemented in C4.5 decision tree learner
(J48 in Weka)

ID3 Decision Tree Classifier

• Representation
– Decision tree

• Objective function for training
– Information gain of each split

• Search algorithm
– Recursively construct tree, greedily selecting

attributes to split on via information gain

64

Covering algorithms

• We’ve seen how to learn decision trees.
What about decision rules?

• As we saw last week, we can always convert a decision tree into
a rule set
• However, the rule set will be overly complex

• How do we learn a smaller, more interpretable set of rules?

65

Covering algorithms

• Instead, we can generate rule set directly
• One approach: for each class in turn, find rule set that covers all

instances in it
(excluding instances not in the class)

• Called a covering approach:
• At each stage of the algorithm, a rule is identified that “covers” some

of the instances

66

Example: generating a rule

If x > 1.2

then class = a

If x > 1.2 and y > 2.6

then class = a

If true

then class = a

• Possible rule set for class “b”:

• Could add more rules, get “perfect” rule set

If x  1.2 then class = b

If x > 1.2 and y  2.6 then class = b

67

Rules vs. trees

• Corresponding decision tree:

(produces exactly the same

predictions)

• But: rule sets can be more perspicuous when decision
trees suffer from replicated subtrees

• Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas decision
tree learner takes all classes into account

68

Simple covering algorithm

• Basic idea: generate a rule by adding tests that maximize the
rule’s accuracy

• Similar to situation in decision trees: problem of selecting an
attribute to split on

• But: decision tree inducer maximizes overall purity

• Each new test reduces
rule’s coverage:

69

Example: contact lens data

• Rule we seek:

• Possible tests:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?

then recommendation = hard

72

Selecting a test

• Goal: maximize accuracy

• t total number of instances covered by rule

• p positive examples of the class covered by rule

• t – p number of errors made by rule

• Select test that maximizes the ratio p/t

• We are finished when p/t = 1 or the set of instances
cannot be split any further

73

Modified rule and resulting data

• Rule with best test added:

• Instances covered by modified rule:

NoneReducedYesHypermetropePre-presbyopic

NoneNormalYesHypermetropePre-presbyopic

NoneReducedYesMyopePresbyopic

HardNormalYesMyopePresbyopic

NoneReducedYesHypermetropePresbyopic

NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic

NoneReducedYesMyopePre-presbyopic

hardNormalYesHypermetropeYoung

NoneReducedYesHypermetropeYoung

HardNormalYesMyopeYoung

NoneReducedYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes

then recommendation = hard

74

Further refinement

• Current state:

• Possible tests:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes

and ?

then recommendation = hard

75

Modified rule and resulting data

• Rule with best test added:

• Instances covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes

and tear production rate = normal

then recommendation = hard

76

Further refinement

• Current state:

• Possible tests:

• Tie between the first and the fourth test
• We break ties by choosing the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes

and tear production rate = normal

and ?

then recommendation = hard

77

The final rule

• Final rule:

• Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

• These two rules cover all “hard lenses”:
• Process is repeated with other two classes

If astigmatism = yes

and tear production rate = normal

and spectacle prescription = myope

then recommendation = hard

If age = young and astigmatism = yes

and tear production rate = normal

then recommendation = hard

78

Pseudo-code for PRISM

For each class C

Initialize E to the instance set

While E contains instances in class C

Create a rule R with an empty left-hand side that predicts class C

Until R is perfect (or there are no more attributes to use) do

For each attribute A not mentioned in R, and each value v,

Consider adding the condition A = v to the left-hand side of R

Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the largest p)

Add A = v to R

Remove the instances covered by R from E

79

Rules vs. decision lists

• PRISM with outer loop removed generates a decision list
for one class

• Subsequent rules are designed for rules that are not covered by
previous rules

• But: order does not matter because all rules predict the same
class so outcome does not change if rules are shuffled

• Outer loop considers all classes separately

• No order dependence implied

• Problems: overlapping rules, default rule required

80

Separate and conquer rule learning

• Rule learning methods like the one PRISM employs (for
each class) are called separate-and-conquer algorithms:

• First, identify a useful rule

• Then, separate out all the instances it covers

• Finally, “conquer” the remaining instances

• Difference to divide-and-conquer methods:

• Subset covered by a rule does not need to be explored any
further

PRISM

• Representation
– Rule set (order independent)

• Objective function for training
– Accuracy (or error) on training data

• Search algorithm
– Covering algorithm, applied to each class

independently

Think-pair-share:
ID3 vs PRISM

• Please compare and contrast ID3 and PRISM
by identifying at least three (3) differences
between the methods

Think-pair-share:
ID3 vs PRISM

• Please compare and contrast ID3 and PRISM by
identifying at least three (3) differences between
the methods

– ID3- divide and conquer, PRISM- separate and conquer

– decision tree (dependent order) vs rule set
(independent)

– PRISM uses default rules while ID3 does not

– id3 gain information on each split, PRISM accuracy

