
IS 733 Lesson 11

Recommender Systems

Slides based on those from Data Mining by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal,
Data Mining: Concepts and Techniques by Han et al., and Vandana Janeja, James Foulds



Announcements

• Homework 4 is due, do submit it on Blackboard 
by tonight











Learning outcomes

By the end of the lesson, you should be able to:

• Compare and contrast the main content-based filtering and collaborative 
filtering methods

• Explain the intuition behind neighborhood-based collaborative filtering
algorithms

• Outline the steps of the popular training algorithms for matrix factorization 
collaborative filtering methods: stochastic gradient descent, and alternating 
least squares, and discuss their advantages/disadvantages

• Apply these methods in real-world scenarios, making sensible choices of 
methods
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Recommender Systems

• Match users with products/services they may enjoy
• We interact with recommender systems every day

• Recommendations for:
– Movies, tv, and videos
– Music
– News articles
– Physical products
– Restaurants

…



Digital Marketplaces and the Long Tail

• “The main problem, if that’s the word, is that we live in the physical 
world and, until recently, most of our entertainment media did, too. 
But that world puts dramatic limitations on our entertainment.”

– Chris Anderson, 2006

• Unlike in physical stores, in digital marketplaces
– we have unlimited “shelf space”

– Customers not confined to one geographic location

• Products that have niche appeal can be profitable 
– the “long tail”



Figure due to Chris Anderson, Wired Magazine, https://www.wired.com/2004/10/tail/



Personalized Recommendation

• Personalization: target recommendation to a 
specific user’s personal tastes

• Non-personalized methods
– most popular item lists

– editorial hand-curated lists

– most recent

Have some value, but do not address the long tail



Recommendation: Problem Setup

• U = set of users

• S = set of items (e.g., products, movies,…)

• Want to learn a utility function
f:UxS       R

– R referring to as ratings.

– Often 1-5 stars, or binary

• May have observed some ratings,
user behavior, content features,….



Ratings Matrix

Titanic Pulp
Fiction

The 
Notebook

The 
Lion 
King

Bob ? ? 5 4

Alice ? 3 ? 2

Claire 5 ? 4 3

Can view as a bipartite graph

Users

Alice

Claire

Bob

Items

Ratings



Recommendation: Problem Setup

• We want to make useful recommendations to users

• Proxy task: predict the ratings that they will make on 
items that they have not yet rated. We can use these 
ratings for our final system

• Challenges:
– Cold start – When new user or item enters system, we 

have little to no information
– Serendipity – Want users to discover items that they like 

which are different to those they already know
– Scalability to large datasets



https://www.dictionary.com/browse/serendipity

https://www.dictionary.com/browse/serendipity


Content-Based Filtering

• Try to recommend similar items to what the user has liked 
in the past

• Extract features based on
content of the items (item profiles)

• Build feature vectors for
users based on content
features (user profiles)

• Recommend items that are similar
to user profile



Item Profiles

• Set of features extracted for item, e.g. genre, 
actors, directors, year, textual features,…

Horror Comedy … Robin Williams … 1993 …

Mrs Doubtfire 0 1 1 1



Building User Profiles

• Represent users in the same feature space as items

• Typically aggregate content features of 
rated/purchased items, e.g., weighted average

• Implicit feedback can be useful, e.g. items browsed
but not purchased, time spent on the page…

Horror Comedy … Robin Williams … 1993 …

Alice 10 0.1 3 0.1



Recommendation with
Content-Based Filtering

• Compute similarities between users and items’ 
profiles. Cosine similarity is often used

• Recommend items whose vectors are most similar

• Alternatively, classification algorithms could be used





Strengths and Weaknesses of
CB Filtering

• Strengths: No “cold start” problem for items
– Cold start problem = challenge of recommending with 

little data, for users or items

• Weaknesses: 
– Cold start problem for users, may overfit

• Arguably, user cold start is more important than for items

– Content features for items may be financially expensive
– Feature construction is domain specific
– Not good for serendipity – suggestions are similar to items 

the user already likes, so may not help them to stumble 
upon new types of items



Collaborative Filtering

• Makes use of other users, or other items, to predict 
ratings “collaboratively”

• Predictions based on other ratings

• Neighborhood-based methods
– Find similar users or similar items, predict that the target 

rating will be similar

• Matrix factorization / latent factor methods
– Factorize the ratings matrix, find latent vector 

representations for users and items based on the 
factorization



Neighborhood-Based CF Methods

• User-user neighborhood-based CF

NeighborUser(u1,u2)

Rating(u1,i) = 4

Rating(u2,i) = ?



Figure due to Koren, Y., Bell, R., &
Volinsky, C. (2009). Matrix factorization
techniques for recommender systems.
Computer, 42(8)



Neighborhood-Based CF Methods

• User-user neighborhood-based CF

– Find K-nearest neighbor users according to ratings
• Represent users by their rows of the ratings matrix
• Only consider users who have rated the item s in question

– Aggregate their ratings for an item to predict rating

– Other aggregation functions possible



Neighborhood-Based CF Methods

• Item-item neighborhood-based CF

NeighborItem(i1,i2)

Rating(u,i1) = 5

Rating(u,i1) = ?



Neighborhood-Based CF Methods

• Item-item neighborhood-based CF

– Find K-nearest neighbor items according to ratings

• represent items by their columns of the ratings matrix

• Only consider items rated by user u in question

– Aggregate their ratings for an item to predict rating



Matrix Factorization CF
(Latent Factor Models)

• Use a low-rank factorization model to impute 
the unobserved ratings

• This represents users and items with vector-
valued representations: “latent factors”

R P

users

items

users

k

k

items

Q



Connection to PCA

• Closely related to singular value 
decomposition (SVD) used for PCA

• Key difference:
Most entries of
R are missing

• Standard factorization
algorithms won’t apply



Figure due to Koren, Y., Bell, R., & Volinsky, C. (2009). 





Matrix Factorization CF

• Objective function: regularized squared error

Squared error Regularization penalty

Controls trade-off between squared error 
and regularization penalty

Generalizes SVD to matrices with missing entries. SVD also minimizes 
squared error, but assumes all entries of matrix are known.



Learning algorithms:
Stochastic Gradient Descent

http://sifter.org/~simon/journal/20061211.html

• This approach was 
popularized for CF 
by a blog post!

• By Simon Funk (a pseudonym)

• This blog post is still 
recommended reading

• Author was 3rd on Netflix
Prize leaderboard.
He made a big impact by
sharing his methods

http://sifter.org/~simon/journal/20061211.html


Learning algorithms:
Stochastic Gradient Descent

• Compute the gradient of the error with respect 
to one rating
– take a step downhill (opposite direction of the 

gradient).

– Loop over all ratings in the training set, and repeat.

• Prediction error:

• SGD updates:  



SGD: Pros and Cons

• Pros:

– Simple to implement

– Fast execution time

• Cons:

– Does not exploit parallelism

– Slower for dense matrices, e.g. implicit feedback
(a randomized strategy could mitigate this)



Learning Algorithms:
Alternating Least-Squares

• Until converged:
– Fix P, solve for Q
– Fix Q, solve for P

• These are least squares problems similar to linear 
regression. Can be solved in closed form (requires 
a matrix inverse for each value)

• Each iteration can be performed in parallel. 
Useful when target matrix is dense,
e.g. with implicit feedback



Think-Pair-Share: Which Algorithm 
Would You Use? SGD or ALS?

1. You are building a recommender system for 
Amazon.com which recommends products 
leveraging not only ratings, but also which 
products were viewed or mouse-overed

2. You aim to recommend high-end jewelery
items based on feedback after purchases.  
You only have one server machine



Including Bias Terms

• Some items are more popular than others

• Some users have more stingy or lenient 
ratings than others

• We can include bias terms in the model, and 
modify the MF objective function:

Obj = 

Predicted ratings:



Including Implicit Feedback

• Ratings are explicit feedback – the user 
explicitly told us their preference.  We may not 
persuade them to give us many of these

• Implicit feedback may be easier to obtain
– User browsed a certain item, spent x minutes there

– Mouse movements, clicked “continue reading”

– Purchases…

– Usually represented as a dense binary matrix



Including Implicit Feedback

• Modify ratings model:

Scaling factor

Items user showed 
preference for Demographic information

Item factors for implicit feedback



Temporal Dynamics

• Item popularity, user biases, user factors 
(taste profiles) change over time

Value at timestep t



Probabilistic Matrix Factorization

• Gaussian probability model on the ratings

– Leads to the familiar squared error terms

• Gaussian prior probabilities on parameters

• Train via statistical inference
(MAP estimation)

• Bayesian probabilistic matrix factorization manages uncertainty due to 
cold start, has excellent performance

Mnih, Andriy, and Ruslan R. Salakhutdinov. "Probabilistic matrix factorization." Advances in neural 
information processing systems. 2008.

Salakhutdinov, Ruslan, and Andriy Mnih. "Bayesian probabilistic matrix factorization using Markov chain 
Monte Carlo." Proceedings of the 25th international conference on Machine learning. ACM, 2008.



Think-Pair-Share: Recommending 
Textbooks on Amazon

• Suppose you work for Amazon, and are designing a recommender system specifically 
for textbooks. You will serve all of their customers who are interested in purchasing 
such books (millions of users and hundreds of thousands of items), and will have 
access to all of their computational resources and data.

– What methods and algorithms will you use?

– How will you scale up to this scenario?

– You have access to ratings, content, temporal information, and many 
kinds of implicit feedback.  How will you leverage these?


