<u>mOral</u>:

An mHealth Model for inferring Oral Hygiene Behaviors in-the-wild Using Wrist-worn Inertial Sensors

Source: md2k.org

Proc. ACM Interact. Mob. Wearable Ubiquitous Tech., March 2019

Presenter: Saydeh Karabatis

WIMBC Introduction

- HealthCare spending projected to draw 20% of the US Economy by 2026 (2018 study)
- Being reactive -> Being proactive and preventive
- 50% of US adults with periodontal diseases
- 53+ mil. American with untreated tooth decay
- Poor OH linked to heart disease, Alzheimer, etc.
- Dental diseases: eliminated by tooth brushing and flossing.

WUMBC Introduction

- ADA: Brushing x 2 and flossing x 1, brushing 2", cover all tooth area using optimal pressure
- 33% of men brush only once/day and 59% of women skip brushing at bedtime
- Smart tooth brushes, track duration, not pressure
- 80% of people use manual toothbrushes and will not benefit from the smart toothbrushes

WUMBC Related Works

 Wrist-worn sensors can detect walking, sleeping, and eating, can also detect tooth brushing. FP rate for tooth brushing is more than 15%

False positive rate	15%	10%	5%	1%	0.1%	0.01%
False positives per day	72	48	24	4	$\frac{1}{2}$	$\frac{1}{20}$

- Different daily behaviors require different models
- Smart toothbrushes, Instrumented Manuals rely on user activating a button to indicate start and end

WUMBC

Oral Health

- <u>Solution</u>: mOral
 - Use wrist worn inertial sensors to detect
 Oral Health Behaviors(OHB)
 - Detects brushing and flossing without the use of instrumented toothbrushes
 - Can be used with manual toothbrushes and regular dental floss string
 - Possible detecting of mouth rinsing

WINBC Contribution - Proposal

Solution to the sensor mounting problem

• Highly accurate method for detecting rare daily activities: brushing, flossing, etc..

 Metrics for reporting error in estimating start/end times of detected events

WINBC mOral Devices

WUMBC Challenges

 Variability in Sensor Mounting

 Reliable Detection of Rare Daily Behaviors: 4 minutes out of 960 minutes awake.

 Labelling the data: precise markings of start brushing -> end brushing Who? How long??

• 25 participants: 12 M, 13F

- Duration: 192 days; 2,797 hours
- Duration of interest: 8" per day (4" each OHB)

WIMBC Participants

What? When?

- Wear 2 sensors, each one a hand, while awake
- Brush at least twice daily
- Floss at least once a day
- Record themselves when performing oral health activities

WIMBC Sensor Wearing

Fig. 3. (a) Lateral (*l*), perpendicular (*p*), and vertical (*v*) axes of wrist coordinate system; (b) Variation in sensor mounting on the wrist-worn devices (c) Four sensor positions on the wrist, referred to as Configuration *c* (for $c \in \{0, 1, 2, 3\}$)

WIMBC mOral – In Action

How?

(a) Brushing video data collection setup

(b) Dental Flossing

WIMBC mOral – Software for Data Collection

How? mCerebrum:

- Open source, provides support for reliable real-time data collection
- Store sensor data
- Initiate video recording by participants
- Handles time synchronization between devices

WIMBC Video Collection

Why?

- Provides ground truth labels for tooth brushing and flossing
- Data stored encrypted on a SD card
- Data uploaded to secure server using Cerebral-Cortex Software

WINBC Annotation from Video Data

- Data annotation for timing of each oral health activity
- Average duration of each video is 3.12"
- Annotated tooth brushing as normal or smart brush, flossing as string or picks, and their begin and end time

WUMBC Data Annotation from Video

Fig. 2. (a) Time of day distribution for brushing and flossing events. Participants usually brushed their teeth with manual toothbrush in the morning and with SmartBrush at night; (b) Duration of oral hygiene events obtained from video annotations.

WODE Model Development

Observations

Fig. 4. Wristband signals during brushing, rinsing and flossing with string. During brushing, the brushing hand moves continuously either up-down or left-right. Therefore, we observe periodicity in accelerometer signals (see the left segment in the top figure). On the other hand, during flossing with string, there is a synchronized motion of both wrists (see the right segment in the bottom figure).

WUMBC Model Development

Candidate Data Identification

 Goal: a detection model that mines the continuous stream of sensor data to identify brushing and flossing events automatically.

Window Based:

- Divide time into equal intervals
- Identify OHB features

<u>Event Based</u>:

- Brushing: wrist above elbow, hand moves continuously
- Flossing: wrists are upward

WUMBC Model Development

Feature Computation and Selection

- Initially: 100 features
- To avoid overfitting, remove non informative features using Correlation-based Feature Selection
- Goal: Subset of features
 - Mutually not correlated
 - Highly correlated to OHB

WUMBC Model Development

Model Selection and Training

- Naïve Bayes Classifier
- Random Forest Classifier
- Ensemble Method (Decision tree, KNN, and NB, Ada-Boosting)

WUMBC Model Implementation

Data Processing Steps

Fig. 7. Data processing stages for training and testing models for brushing and flossing detection.

WUMBC Model Evaluation

Compare Performance of Methods to identify the correct configuration of wrist sensors

(a) Use of different configurations by participants

(a) F1-score and accuracy for virtual orientation

WODE Model Evaluation

- Observe the performance of selected features for detecting OHB events
- Compare Performance of different models for detecting brushing and flossing events
- Analyze the error in duration and start/end times of OHB

WUMBC Model Evaluation

(b) F1-scores for brushing and flossing detection using different feature sets using LOSOCV evaluation

WIMBC Model Evaluation

Brushing

(a) Performance of brushing detection with a (15 seconds) (b) Performance of brushing detection with an event-based window-based approach for candidate identification.

WUMBC Model Evaluation

Flossing

(a) Performance of flossing detection with a (15 seconds) (b) Performance of flossing detection with an event-based window-based approach for candidate identification. approach for candidate identification.

Detecting Duration and Start/End Times

(a) Scatter plot of actual duration vs. detected du-(b) Error in start/end times, $err_{boundary} = 4.1\%$ for brushing and ration, $err_{dur} = 7.2\%$ for brushing and $err_{dur} = err_{boundary} = 3.5\%$ for flossing. 6.2% for flossing.

Fig. 13. Performance for detecting the duration and start/end times for brushing and flossing.

• Model:

Median recall rate 100%
FP 1 event every 9 days

• Flossing:

Median recall rate 75%

 \circ FP 1 event every 25 days

- Improvement:
 - \circ Detect Oral Rinsing
 - Detect pick flossing, through deep learning
 - O Use 1 wristband instead of 2
 - \odot Detecting pressure applied on tooth surface area

mOral

SAYMA AKTHER, University of Memphis NAZIR SALEHEEN, University of Memphis SHAHIN ALAN SAMIEI, University of Memphis VIVEK SHETTY, University of California, Los Angeles EMRE ERTIN, The Ohio State University SANTOSH KUMAR, University of Memphis

- Funded by
 - \circ NIH
 - \circ NSF
 - NIDCR (Dental)

- Material & Technical Support
 - o OralB
 - Procter & Gamble