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W UMBC Introduction

* HealthCare spending projected to draw 20% of
the US Economy by 2026 (2018 study)

* Being reactive -> Being proactive and preventive
* 50% of US adults with periodontal diseases
* 53+ mil. American with untreated tooth decay

 Poor OH linked to heart disease, Alzheimer, etc.

* Dental diseases: eliminated by tooth brushing
and flossing.



W UMBC Introduction

* ADA: Brushing x 2 and flossing x 1, brushing 27,
cover all tooth area using optimal pressure

* 33% of men brush only once/day and 59% of
women skip brushing at bedtime

* Smart tooth brushes, track duration, not pressure

* 80% of people use manual toothbrushes and will
not benefit from the smart toothbrushes



W UMBC Related Works

* Wrist-worn sensors can detect walking, sleeping, and
eating, can also detect tooth brushing. FP rate for

tooth brushing is more than 15%
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* Different daily behaviors require different models

* Smart toothbrushes, Instrumented Manuals rely on
user activating a button to indicate start and end



¥ UMBC

Oral Health

* Solution: mOral

o Use wrist worn inertial sensors to detect
Oral Health Behaviors(OHB)

o Detects brushing and flossing without the
use of instrumented toothbrushes

o Can be used with manual toothbrushes and
regular dental floss string

o Possible detecting of mouth rinsing




S UMBC Contribution - Proposal

* Solution to the sensor mounting problem

* Highly accurate method for detecting rare
daily activities: brushing, flossing, etc..

* Metrics for reporting error in estimating
start/end times of detected events



UMBC mOral Devices

What? How? - =
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S UMBC Challenges

* Variability in Sensor * Reliable Detection of
Mounting Rare Daily Behaviors: 4
minutes out of 960
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¥ UMBC

Who? How long??

25 participants: 12 M, 13F

* Avg. Age: 28.5

 Duration: 192 days; 2,797 hours

* Duration of interest: 8” per day
(4” each OHB)




W UMBC Participants

What? When?

 Wear 2 sensors, each one a hand, while awake

* Brush at least twice daily
* Floss at least once a day

* Record themselves when performing oral
health activities
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Sensor Wearing
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Fig. 3. (a) Lateral (), perpendicular (p), and vertical (v) axes of wrist coordinate system; (b) Variation in sensor mounting on
the wrist-worn devices (c) Four sensor positions on the wrist, referred to as Configuration ¢ (for c € {0, 1, 2,3})
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W UMBC mOral—In Action

(a) Brushing video data collection setup

(b) Dental Flossing
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& [JMB(C '~ mOral = Software for Data Collection

How? mCerebrum:

* Open source, provides support for
reliable real-time data collection

e Store sensor data
* |nitiate video recording by participants

* Handles time synchronization between
devices
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Video Collection

Why?

* Provides ground truth labels for tooth
brushing and flossing

e Data stored encrypted on a SD card

* Data uploaded to secure server using
Cerebral-Cortex Software
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WUMBC = Annotation from Video Data

* Data annotation for timing of each oral health
activity

* Average duration of each video is 3.12”

* Annotated tooth brushing as normal or smart
brush, flossing as string or picks, and their
begin and end time
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Data Annotation from Video
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Fig. 2. {a) Time of day distribution for brushing and flossing events. Participants usually brushed their teeth with manual
toothbrush in the morning and with SmartBrush at night; (b) Duration of oral hygiene events obtained from video annotations.
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S UMBC Model Development

Observations

Accelerometer signal from dominant wrist in wrist coordinate system
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Wristband signals during brushing, rinsing and flossing with string. During brushing, the brushing hand moves

continuously either up-down or left-right. Therefore, we observe periodicity in accelerometer signals (see the left segment in
the top figure). On the other hand, during flossing with string, there is a synchronized motion of both wrists (see the right
segment in the bottom figure).
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S UMBC Model Development

Candidate Data Identification

* Goal: a detection model that mines the
continuous stream of sensor data to identify
brushing and flossing events automatically.

Window Based: Event Based:
* Divide time into equal * Brushing: wrist above elbow,
intervals hand moves continuously

* |dentify OHB features * Flossing: wrists are upward
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S UMBC Model Development

Feature Computation and Selection

* |nitially: 100 features

* To avoid overfitting, remove non informative
features using Correlation-based Feature
Selection

* Goal: Subset of features

— Mutually not correlated
— Highly correlated to OHB
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S UMBC Model Development

Model Selection and Training

* Naive Bayes Classifier
e Random Forest Classifier

* Ensemble Method (Decision tree, KNN, and
NB, Ada-Boosting)
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SUMBC = Model Implementation

Data Processing Steps
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Fig. 7. Data processing stages for training and testing models for brushing and flossing detection.
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W UMBC Model Evaluation

Compare Performance of Methods to identify
the correct configuration of wrist sensors
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W UMBC Model Evaluation

* Observe the performance of selected
features for detecting OHB events

 Compare Performance of different
models for detecting brushing and
flossing events

* Analyze the error in duration and
start/end times of OHB



Model Evaluation

Median Fl-scores

Feature sets

(b) F1-scores for brushing and flossing detection using
different feature sets using LOSOCV evaluation
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W UMBC Model Evaluation
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(a) Performance of brushing detection with a (15 seconds) (b) Performance of brushing detection with an event-based
window-based approach for candidate identification. approach for candidate identification.
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W UMBC Model Evaluation

Flossing
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(a) Performance of flossing detection with a (15 seconds) (b) Performance of flossing detection with an event-based
window-based approach for candidate identification. approach for candidate identification.
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@ UMBC Detecting Duration and Start/End Times
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Fig. 13. Performance for detecting the duration and start/end times for brushing and flossing.
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@UMBC mOral Limitations

 Model:
o Median recall rate 100%
o FP 1 event every 9 days
* Flossing:
o Median recall rate 75%
o FP 1 event every 25 days
* Improvement:
o Detect Oral Rinsing
o Detect pick flossing, through deep learning
o Use 1 wristband instead of 2
o Detecting pressure applied on tooth surface area
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