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Problem statement

e Physiological information from Video

e HR HRV 67ms
o Number of Heart Beats per minute (Hz)

o Less care about heart beat exact locations
e Heart Rate Variability

o Variation in time between each heartbeats (ms)
o Need exact peak locations (in ms)

m Video frame restriction
o Measured by time and frequency features

e Peak occurs in between video frame!
e Vital signal monitoring

Figure: HRV [*]

*https://www.whoop.com/the-locker/heart-rate-variability-hrv/
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Assumptions

e Human face contain multiple
Cardiovascular pulse with phase
difference

e Use both spatial-temporal features

e Correlation between PPG and ECG

o Interpolation using phase information
e Encoded in Phase!
e Different tasks

o Two networks
o Dependent but not loss sharing

Figure: Facial Artery [1]
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Contributions

Use of Mobile Phone Camera

Going higher granularities than Video frame
CNN structure to extract HR

HRYV with high accuracy
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Prior Arts
e PPG

o Contact sensors

o Low cost
o Problem with ubiquitous

e HRV methods
o ECG (Most accurate)
o Expensive and contact
e Remote PPG
o Video based PPG
o Use for Heart rate
o HRYV limited by video frames
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VitaMon Design
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Preprocessing:

e Resize 224x224

e Select Green channel only
o Highest Absorption
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Normalizing and Sliding Window:

Stack n = 25 frames (1.67s video) in one image
of n-channel
o Both spatial-temporal info in single image
o Reduce complexity
Normalization
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Figure: Architecture Phase 1 [1]
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Phase 2: Peak Detection

Choose 25 channels where CNN output O
Choose m = 7 channel from center.
~100K parameters
Learn phase differences to learn actual R-wave
Peak location
Frame label to millisecond label

o Interpolation
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Phase 2: Peak Detection
HRYV features Extraction

Time domain and frequency domain analysis
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Data Collection

e Sensors

o Video-Lenovo Phab Pro2, Galaxy S8, Huawei P20 smartphone (Data)
m Front Camera
m 1920x1080, 8- MP, 15fps
m Face video from 25-50 cm

o ECG (Ground Truth)
m Zephyr Bioharness 3 ECG strap
m 250Hz

e Controlled Group
o 30 Participants with different age, skin, race
o Eight tasks; each for 5 minutes (No physical works)
m Speaking, Counting, Head Motion, Manual phone holding
o 5 light intensities (150 lux to 1000 lux)
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Data Collection

e Real-world experiments
o Passenger in driving Car
m 5 Mins, handheld phone
o Coffee shop
m  Dim light (40 lux)

e Stress data (Application - Test only)
o 12 participants
o Under Physiological stress
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Results (HR)- Phase 1

Light Condition Motion Artifact Condition

Metric Model LI | L2 | L3 | L4 | LS Metric Model MO | Ml | M2 | M3
HR MAE General | 0.82 | 1.06 | 0.82 | 0.94 | .88 HR MAE General | 0.82 | 1.77 | 1.69 | 1.31
(bpm) Personalized | 0.67 | 0.72 | 0.61 | 0.61 | 0.56 (bpm) Personalized | 0.61 | 1.23 | 1.38 | 1.08
Peak Position General 0.78 { 0.98 | 0.76 | 0.80 | 0.84 Peak Position General 0.76 | 1.33 | 145 | 1.32
MAE (frame) | Personalized | 0.63 | 0.72 | 0.65 | 0.72 | 0.62 MAE (frame) | Personalized | 0.65 | 1.02 [ 1.19 | 1.18

Table 1: HR performance of Phase-1 network under light and
motion artifact condition using General and Personalized Model [1]



Result (H

RV)-

Phase 2

HRYV features

Statistic Source RMSSD | SDNN MRRI NN50 PNN5S0O SDI1 SD2 LFnu | HFnu
Mean ECG 111.65 87.32 | 751.92 9.90 13.50 80.39 96.01 25.67 | 74.40
Mean VitaMon 114.61 89.30 | 749.10 } 33.54 46.10 79.62 95.70 | 33.74 | 65.74
Standard Deviation ECG 70.58 45.07 68.52 0.27 12.38 50.12 42.84 | 30.45 | 30.45
Standard Deviation | VitaMon 54.43 38.58 68.37 10.19 12.05 39.09 3942 | 21.92 | 21.70
Correlation Coefficient 0.9817 0.9776 | 0.9943 § 0.4697 | 04317 | 09717 | 0.9710 | 0.72 0.72
Statistic Source RMSSD | SDNN | MRRI | NNS0O | PNNSO SD1 SD2 LFnu HFnu
Mean ECG 112.20 88.51 751.00 | 988 13.46 80.36 95.39 25.97 74.10
Mean VitaMon 114.51 89.47 750.15 16.46 23.30 80.55 95.77 30.60 68.81
Standard Deviation ECG 69.94 44.82 68.52 9.33 12.46 49.66 42.79 30.54 30.54
Standard Deviation | VitaMon 61.29 41.49 68.38 9.55 13.02 43.97 4.90 24.71 24.50
Correlation Coefficient 0.9879 0.9836 | 0.9855 . 0.79438 0.7394 0.9861 0.9830 | 0.8134 | 0.8139

Table 2: HRV monitoring performance of the General Model (Top)
and Personal (Bottom) on different HRV features [1]
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Metrics and Analysis

e Mean absolute error (MAE)
o Any other metrics!

e Statistics of 9 HRV features and MAE
e Analysis of Light condition

e Analysis of Motion artifact
o Small motion like speaking, head shaking



UMBC

Paper Strength

Considering frames to make a big image and apply CNN
Peak Point frame detection

Going Beyond Video Frame constraints by phase information
2 Stages Learning and Setup

o Second stage used input refined from 1st stage
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Potential Weakness

Multiple peaks in 25 frames

No Leave one out validation - Train and test

No Physical Exercise Data

Inception model and CNN - Different network, Hyperparameters
Description of Loss function and training curve!

Single person only- Whole face

Experimental variables - MP, Person orientation, Faster movement
Any face detections? Background effect

Making sure that phase in contributing for interpolation!
Benchmark with other methods!
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Conclusion

Idea of using phase difference in face PPG

Data input construction

Extraction of HR and HRV

ECG reconstruction using Spatio-temporal features.



Thank You

Questions!



