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Abstract— Restoration of functional independence in gait and 

vehicle transfer ability is a common goal of inpatient 

rehabilitation. Currently, ambulation changes tend to be 

subjectively assessed by clinicians. To investigate more precise 

objective assessment of progress in inpatient rehabilitation, we 

quantitatively assessed gait and transfer performances over the 

course of rehabilitation with wearable inertial sensors for 20 

patients receiving inpatient rehabilitation services. Participant 

performance was recorded on a sequence of ambulatory tasks that 

closely resemble everyday activities. We developed a custom 

software system to process sensor signals and compute metrics 

that characterize ambulation performance. We quantified 

changes in gait and transfer ability by performing a repeated 

measures comparison of the metrics one week apart. Metrics 

showing the greatest improvement are walking speed, stride 

regularity, acceleration root mean square, walking smoothness, 

shank peak angular velocity, and shank range of motion. 

Wearable sensor-derived metrics can potentially provide 

rehabilitation therapists with additional valuable information to 

aid in treatment decisions. 

 
Key words— Accelerometry; ambulatory monitoring; inertial 

measurement units; signal processing; wearable sensors. 

I. INTRODUCTION 

The fundamental goals of inpatient rehabilitation are to 

restore function, mobility, and independence. Monitoring of 

motor recovery is typically accomplished by clinical 

observation using standard clinical rating scales, such as the 

Functional Independence Measure (FIM), to determine 

independence in activities of daily living at admission and 

discharge [1]. Between the admission and discharge FIM 

assessments, observations by therapists typically characterize 

progress and influence treatment decisions. Because this 

approach relies on intuition and subjective observations, it lacks 

detailed quantifiable information to characterize patient 

movement patterns. To gather more objective measurements of 

patients’ abilities, standardized clinical assessments, such as the 

Timed Up-and-Go (TUG) test [2], are administered by trained 

clinicians. The TUG test measures the time required to rise from 

a seated position in a chair, walk out 3 meters, walk back to the 

chair, and sit down. Assessments like the TUG provide a high 

level overview of patient mobility, but are not sensitive enough  

 
 

to capture individual limb movements or changes in mobility 

and gait features [3]. More precise quantitative measurements 

of patient performance during rehabilitation can be collected 

via pervasive technology, such as wearable inertial 

measurement units (IMUs). Computations based on data 

collected from wearable IMU sensors can provide therapists 

with measures that are not open to the potential for inter-

observer bias possible with subjective clinical judgments. 

These supplementary measurements can identify subtle 

performance changes during rehabilitation that are difficult to 

observe, such as changes in duration of single and double leg 

support. Furthermore, IMUs are an ideal technology for 

tracking changes in movement because of their low cost, 

portability, reliability, and ease of attachment to the body. 

IMUs operate as a self-contained wireless network which can 

enable testing outside the lab and for any sequence of tasks. 

Also, IMUs do not interfere with the wearer’s movement.  

In this paper, we report on a study that utilizes metrics and 

visualizations obtained from IMU data to characterize patient 

performance in an objective fashion. To produce clinically-

meaningful metrics, we developed a standardized ambulation 

performance task, titled the ambulation circuit (AC), which 

involves a range of gait and transfer tasks. We fixed the interval 

of time over which repeated measurements of AC performance 

would be assessed (7 days) in order to quantify changes in 

movement parameters over one week of rehabilitation.  

II. RELATED WORK 

Wearable IMUs have been utilized extensively in healthcare 

applications [4], particularly for gait analysis [5] and 

rehabilitation [6]. To date only a few studies have focused on 

utilizing IMUs to quantify changes in mobility and gait 

parameters of impaired populations. These studies have 

investigated improvement in gait following surgery, such as hip 

arthroplasty surgery [7]; changes in gait after treatment for a 

specific injury or illness, such as Parkinson’s Disease [8], [9]; 

the relationship between changes in longitudinally collected 

gait parameters and changes in falls risk [10]; and changes in 

daily walking time over the course of rehabilitation for stroke 

inpatients [11]. Based on these findings, research quantifying 

fine-grained gait and transfer ability changes exhibited during 
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rehabilitation with wearable inertial sensors represents a new 

direction to investigate. Consequently, the current study 

extends several areas of research, including IMU data 

processing, gait analysis, and rehabilitation research. More 

specifically, our work presents the following contributions: 

 Design and application of an ecological version of the TUG 

test (the ambulation circuit). 

 Computation of novel sensor-based metrics related to 

ecological gait and transfer ability (e.g. vehicle transfer and 

floor surface metrics). 

 A framework for measuring changes in IMU metrics for 

individual participants and participants as a group. 

 Insight into the recovery process for a multifarious 

population of inpatients (e.g. stroke, brain injury, etc.). 

III. METHODS 

The study followed a single-arm prospective cohort design 

with repeated measures of participant performance on 

standardized gait tasks on two different testing sessions 

separated by 7 days. The first test session (S1) occurred shortly 

after the participant became physically able to walk the distance 

required of the gait task (11.15 ± 4.75 days from admission). 

The second test session (S2) occurred within the final week of 

care (2.65 ± 2.25 days before discharge). During each test 

session, participant performance on the ambulation circuit was 

recorded two times, producing two separate trials at S1 and two 

separate trials at S2. In addition, physical measurements and 

information regarding participants’ rehabilitation impairment 

and other diagnoses were collected. 

A. Participants 

Participants were recruited from the inpatient rehabilitation 

population at a large inpatient rehabilitation facility. The study 

was approved by a regional hospital institutional review board 

and all participants gave written informed consent. Twenty 

participants (Male = 14, Female = 6), between the ages of 52 

and 88 years old (71.55 ± 10.62 years), participated in both 

testing sessions of the study. The majority (70%) of participants 

required a wheeled walker during both testing sessions. Three 

(15%) participants used a cane during both testing sessions. 

One participant transitioned from a walker to a cane between 

the sessions. Medical record review revealed rehabilitation 

diagnoses were varied, with fourteen (70%) participants 

undergoing post-stroke rehabilitation. Hemiparesis was present 

in 11 post-stroke participants. 

B.  Standardized Gait Tasks: The Ambulation Circuit 

We designed a standardized ambulation circuit to assess the 

mobility and physical ability of the participants during the test 

sessions. The AC is a continuous sequence of activities 

performed in a simulated community environment at the 

rehabilitation facility consisting of several indoor and outdoor 

modules. The ecological context provided by a simulated 

environment has been shown to produce a more representative 

assessment of an individual’s functionality than a controlled 

laboratory setting [12].  

Fig. 1 illustrates the AC. The AC begins in a simulated hotel 

lobby area with the participant seated in a chair on a rectangular 

shag rug. The chair faces a linear path that leads to an outdoor 

area with several motor vehicles. On beginning the circuit, the 

participant rises from the seated position, performing a sit-to-

stand transition. Once standing, the participant walks across the 

remaining length of the shag rug. When the edge of the rug is 

reached, the participant performs a surface transition from the 

shag rug to smooth wood flooring. Next, the participant 

approaches the front of a sport utility vehicle and begins a 

curvilinear path around the vehicle to approach an open 

passenger side door. The curvilinear path contains a simulated 

sewer drain lid (manhole cover) over which the participant has 

to maneuver. As the participant approaches the vehicle 

passenger seat, the participant performs a transfer into and then 

out of the vehicle front passenger seat. After transferring out of 

the vehicle, the participant walks the AC route in reverse, 

returning to the chair in the simulated hotel lobby and sits down, 

ending the AC. Time taken to complete the AC officially stops 

once the participant’s back is fully rested against the back of the 

chair. In summary, the AC is an extension of the common 

clinical assessment, the TUG, including a greater range of 

functional tasks (e.g., car transfers) and situational challenges 

(e.g., different flooring surfaces; a curvilinear pathway) than is 

found in more common assessments. This greater range of 

motor challenges enhances the potential usefulness of the 

sensor data as a means to show change across time. The 

majority of the metrics we report can be computed from any 

assessment in any environment involving a chair transfer and 

walking (5 Times Sit-to-Stand, TUG, etc.). 

C.  Instrumentation 

Using three Shimmer3 [13] wireless IMUs, we recorded 

participant motion as they ambulated through the AC. The 

Shimmer3 platform contains a tri-axial accelerometer and a tri- 

axial gyroscope. The accelerometers and gyroscopes of all three 

sensor platforms were calibrated using the software provided 

by the manufacturer. One IMU was placed centrally on the 

 
Fig. 1. The ambulation circuit. The solid line represents the way out and the 
dashed line represents the mirrored return portion. Key circuit subtasks are 

labeled with distances in meters. 

 
Fig. 2. Sensor placement and axes orientation. Sensor units were mounted 
on the center of mass (COM), left shank (LS), and right shank (RS). 

 

Second IEEE PerCom Workshop on Pervasive Health Technologies 2017



 

lumbar spine at the level of the third vertebrae, near the 

individual’s center of mass (COM) [14]. Additionally, one 

sensor was placed on each shank, above the ankle and in line 

with the tibia. Positioning the sensor along the tibia reduced 

mounting error as the sensors were always positioned at 

approximately the same angle relative to the sagittal plane. 

The flatness of the tibia bone also prevented the sensor from 

moving during the activities. The sensor modules were 

securely attached to the body with elastic straps. Shank sensor 

mounting locations were measured at S1 and S2 for 

consistency. Fig. 2 illustrates the shank mounting locations 

and axes of the sensors. The accelerometer range was set to ± 

2g for the COM sensor and ± 4g for the shanks. The gyroscope 

ranges for the shank and COM sensors were set at 500 ⁰/s and 

250 ⁰/s, respectively. The data were collected at a sampling 

frequency of 51.2 Hz for all sensor platforms. The inertial 

movement data and segment times are processed with a 

custom Python program designed for the AC data. First, the 

timestamps are aligned from the three different sensor 

platforms. Next, to correct for the orientation of the shank 

sensors along the tibia, the sensor local coordinate system is 

transformed to the body coordinate system [15]; a right handed 

system with the X-axis along the anterior-posterior body axis, 

the Y-axis along the vertical body axis, and the Z-axis along the 

medial-lateral body axis. Acceleration data are filtered with a 

4th order zero-phase band pass Butterworth filter using cutoff 

frequencies of 0.1 Hz and 3 Hz for the COM accelerometer and 

0.1 Hz and 10 Hz for the shanks. The gyroscope signals for all 

sensors are low passed filtered at 4 Hz.  

From the processed data we compute metrics representing 

participants’ performance on the AC. AC task durations were 

recorded by a researcher using a stopwatch. The times are used 

to segment the data into the different tasks for computing 

metrics for each of the AC sections. Fig. 3 illustrates the tri-

axial COM acceleration and left and right shank gyroscope data 

from a participant partitioned into the key sections of the AC. 

D. Computed Metrics 

For a unique analysis of sensor-based gait information in a 

rehabilitation setting, we compute metrics from three main 

components of the AC: the chair sit-to-stand and stand-to-sit 

movements at the beginning and ending of the AC, the vehicle 

transfer, and the ambulation occurring between the chair and 

the vehicle. This ambulation section includes the linear path on 

the smooth floor that is used to compute the majority of the gait 

cycle metrics. For the ambulation section, an algorithm was 

developed to detect the gait cycle events of initial contact, 

terminal contact, and mid swing. Initial contact is the moment 

the heel strikes the ground and terminal contact is the moment 

TABLE I 

METRIC DESCRIPTIONS 

Category Metric Units Qualitative Description 
Refer
-ence 

CAP 

Duration 𝑠 Total time to complete the ambulation circuit or a subtask of the ambulation circuit.  

Floor surface speed ratio  Measures the effect of walking velocity on two different floor surfaces.  

Walking speed 𝑚 𝑠⁄  The walking velocity as determined by distance divided by time.  

WBM 

COM peak angular 
velocity 

° 𝑠⁄  
Maximum rotational velocity of the COM around the Z-axis while rising from a seated 
position in the chair to a standing position. 

 

Root mean square 

(RMS) 
𝑚 𝑠2⁄ /𝑠 

Square root of the mean of the squares of each axes of the acceleration signal on the COM. 

Represents the magnitude of the signal (normalized by time). 
[3] 

Smoothness index  
Ratio of even to odd harmonics of the vertical Y-axis COM acceleration signal. A higher 
harmonic ratio represents a smoother walking pattern. 

[17] 

Smoothness of RMS 𝑚 𝑠3⁄ /𝑠 
Root mean square of the derivatives of each X, Y, and Z signal. Synonymous with RMS of 

jerk (normalized by time). 
[3] 

GF 

Cadence  𝑠𝑡𝑒𝑝𝑠 𝑚𝑖𝑛⁄  Step rate as expressed by the number of steps per minute.  

Double support percent % 
Percentage of the gait cycle that both feet are on the ground. Computed as the sum of the 

initial double support time and the terminal double support time. 

[5], 

[16] 

Gait cycle time 𝑠 
Duration to complete one stride (time between two consecutive initial contacts of the same 
foot). 

[5], 
[16] 

Number of gait cycles  The number of complete gait cycles (strides) that occurred.  

Shank peak angular 

velocity 
° 𝑠⁄  

Maximum rotational velocity of the shank around the Z-axis during the gait cycle. This 

occurs during the swing phase. 
 

Shank range of motion ° 
Integrated angular velocity for each gait cycle. Provides an estimate of the degrees of shank 

movement. 

[5], 

[16] 

Step length 𝑚 Distance between initial contacts of opposite feet. [14] 

Step regularity % 
Expression of the regularity of the acceleration of sequential steps. Computed using the 

autocorrelation of the vertical Y-axis of the COM acceleration. 
[14] 

Stride regularity % Expression of the regularity of the acceleration of sequential strides (see step regularity). [14] 

Step symmetry % Ratio of step regularity to stride regularity. [14] 

CAP = clinical assessments of progress, COM = center of mass, GF = gait features, 𝑚 = meters, 𝑠 = seconds, WBM = whole body movement, ° = degrees. 
 

 
Fig. 3. Sensor signals recorded during the first half of the AC. The center of 

mass (top plot: accelerometer) and shank (bottom plot: gyroscope) sensor 

signals were analyzed to quantify the rehabilitation process. 
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the toes leave contact with the ground. The algorithm operates 

on the left and right shank medial-lateral (Z-axis) gyroscope 

data. The algorithm utilizes peak detection and thresholding 

techniques that were implemented with high accuracy by 

previous studies [15], [16]. By locating these key gait events, 

the gait cycle is defined (the time interval between two 

successive initial contacts of the same leg) and several metrics 

related to walking are computed. Table I presents the metrics 

we compute and groups the metrics into three categories: 

1. Clinical assessments of progress (CAP). CAP metrics are 

commonly used approaches for assessing mobility in a 

clinical setting by recording the duration of a standardized 

activity, such as walking a fixed distance, rising from a 

chair, or the TUG assessment. 

2. Whole body movement (WBM). WBM metrics are 

computed from data collected from the COM sensor. An 

example WBM metric is COM peak angular velocity. 

3.  Gait features (GF). GF are computed from data collected 

from the shank sensors. Examples of GF include cadence 

and shank range of motion, which are based on the 

aforementioned gait cycle event detection algorithm. 

E.  Data Analysis 

Sensor-based metrics are statistically analyzed to identify 

clinically significant changes in the repeated measures data. 

Detected changes in patient performance offer additional 

insights to clinicians, as well as demonstrate the benefit of 

sensor-based analysis of rehabilitation. The statistical analyses 

we apply to the wearable sensor data at the group and individual 

levels are summarized below. 

1) Quantifying Group Changes 

An effect size (ES) based on Cohen’s 𝑑 for repeated 

measures (RM) data is used to quantify the strength of changes 

in each of the computed metrics [18]: 

𝑑𝑅𝑀 =  
𝑋̅𝑆2−𝑋̅𝑆1

𝑆𝐷
      (1) 

Where 𝑋̅𝑆1 is the mean group score from data collected at S1, 

𝑋̅𝑆2 is the mean group score from data collected at S2, and 𝑆𝐷 

represents the standard error of difference between S1 and S2 

scores [18]. The resulting effect sizes, 𝑑𝑅𝑀, are used to evaluate 

group changes in gait parameters over the course of one week 

of inpatient rehabilitation. Additionally, the confidence 

intervals for each ES are computed using a small sample size 

approximation with alpha set at 95% [19]. 

2) Quantifying Individual Changes 

At the individual level, changes in gait metrics one week 

apart are characterized with the reliable change index (RCI) 

[20]: 

RCI =  
𝑥𝑆2−𝑥𝑆1

𝑆𝐷
       (2) 

Where 𝑥𝑆1 is an individual participant’s score from data 

collected at S1 and 𝑥𝑆2 is the same participant’s score from data 

collected at S2. In addition to numeric RCI statistics, 

comparison of individuals to the group for change between S1 

and S2 are accomplished graphically with RCI plots. Fig. 4 

shows an example RCI plot of the walking smoothness index 

metric (see Fig. 5 for additional RCI plots). The values 

measured for the smoothness index at S1 (X-axis) are plotted 

against S2 (Y-axis). The red diagonal line intersecting the plot 

represents an absence of change from S1 to S2. The shaded gray 

diagonal areas represent confidence intervals based on standard 

error of measurement and criteria suggested by Wise [21]. The 

green bands represent the mean value for S1, plus one and two 

standard deviations respectively. 

IV.  RESULTS 

 Tables II-IV contain results for CAP, WBM, and GF 

metrics, respectively. Reported statistics for each metric 

include the mean and standard deviation for S1 and S2 (μ𝑆1, 

𝑆𝐷𝑆1, μ𝑆2, and 𝑆𝐷𝑆2) and the standardized mean difference 

effect size. To facilitate analysis and insights at the individual 

patient level, smoothness index (see Fig. 4), walking speed (see 

Fig. 5a), and step regularity (see Fig. 5b) are displayed as RCI 

plots. 

V.  DISCUSSION 

In this paper we investigate the insights that sensor-based 

quantifiable measures can supply in addition to observations by 

clinicians. While analyzing changes at the group level provides 

information about the effects of therapy from a research 

perspective, the effects of rehabilitation on an individual basis 

can be established with wearable sensors and applied directly 

to patient care. 

 
Fig. 4. The smoothness index metric as an example reliable change index plot. 

Participant session 1 (S1) scores are plotted against session 2 (S2) scores. Also 

plotted are confidence intervals (CI) and S1 standard deviations (SD). Select 

individuals are labeled with their participant identification number. 

  
a) Walking speed b) Step regularity 

Fig. 5. Walking speed (a) and step regularity (b) reliable change index plots. 

Individuals are labeled with their participant identification number. 
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A.  Group Responsiveness to Therapy 

1) Clinical Assessments of Progress 

As a group, AC metrics related to CAP demonstrate 

moderate improvements based on the magnitude of effect sizes 

(see Table II). For total AC duration, there is a 22.77% decrease 

in the total time required to complete the AC. Improved 

functionality is confirmed by increased ambulatory capabilities, 

completing the curvilinear section of the AC 20.26% faster. 

Responsiveness on the vehicle load/unload challenge is 

moderate with 27.32% decrease in duration observed on 

average. Walking speed is a typical metric for comparison 

among populations and for indication of ambulatory 

improvements. Group average performance during both 

sessions (walking speed S1 0.47 ± 0.22 𝑚/𝑠; walking speed S2 

0.57 ± 0.28 𝑚/𝑠) as well as the large responsiveness across 

time (see Fig. 5a for an RCI plot) are in agreement with 

previous published studies analyzing walking speed in post-

stroke populations [22]. 

2) Whole Body Movement Metrics 

Large levels of responsiveness are observed for RMS during 

linear path gait (see Table III). While there is a relationship 

between COM RMS and walking speed [17], the large 

responsiveness across time is due in part to the participant-

dictated speed of movement. During the vehicle transfer, the ES 

for COM RMS during the load and unload tasks suggest 

substantial progress from one week of rehabilitation therapy. 

Similar changes in COM RMS are also present on the chair 

task. 

Another WBM metric, the smoothness index of walking (see 

Fig. 5), characterizes gait harmonics to quantify cyclical 

movements independent of speed [17]. The calculated ES for 

change in smoothness index emphasizes the influence 

rehabilitation has on developing a more stable pattern of 

locomotion. As a group, the participants demonstrate a 25.63% 

improvement in the smoothness index. 

3) Gait Features 

 Changes in metrics describing gait quality in terms of 

symmetry, regularity, and consistency are observed during the 

straight path portion of the AC (see Table IV). During one week 

of rehabilitation, the increased walking speed is accompanied 

by an average increase of 8.72% in cadence. Another important 

outcome is the 4.74% decrease in the amount of double limb 

support in the gait cycle. In addition, improvement is observed 

in gait consistency, measured with stride and step regularity 

(see Fig. 5b for an RCI plot). These metrics indicate that 

patients are beginning to produce more consistent walking 

patterns over one week, increasing the load carried by the 

affected limb. 

Changes are also observed in individual leg movements. 

Large levels of responsiveness are detected in peak angular 

velocity, measured at each shank. Along with faster leg 

movements during the swing phase, there is a strong indication 

of increased limb range of motion during gait. To perform sub-

group analyses of stroke patients with hemiparesis, each limb is 

re-classified as affected (paretic) or unaffected (non-paretic), 

instead of left or right. The re-categorization produces a slightly 

different ES for shank peak angular velocity and range of 

motion. Tracking changes in the affected side of the body offers 

additional insight for clinicians treating stroke patients and 

injuries affecting one side of the body more than the other side. 

TABLE II 
CLINICAL ASSESSMENTS OF PROGRESS (CAP) METRIC RESULTS 

Metric μ𝑆1 𝑆𝐷𝑆1 μ𝑆2 𝑆𝐷𝑆2 
Effect 

Size 

Curvilinear walking 

duration 
24.43 18.14 19.48 12.23 -1.03* 

Duration 177.85 129.53 137.36 88.56 -1.08* 

Floor surface speed 

ratio 
0.75 0.13 0.80 0.14 0.48* 

Sit-to-stand duration 6.84 6.10 4.79 3.03 -0.49* 

Stand-to-sit duration 12.94 12.05 11.13 7.13 -0.34* 

Vehicle challenge 
duration 

47.81 36.36 34.75 28.10 -0.55* 

Walking speed 0.47 0.22 0.57 0.28 1.58* 

S1 = session 1, S2 = session 2, SD = standard deviation, 𝜇 = mean, * = 
significant at the 95% confidence level. 

TABLE III 

WHOLE BODY MOVEMENT (WBM) METRIC RESULTS 

Metric μ𝑆1 𝑆𝐷𝑆1 μ𝑆2 𝑆𝐷𝑆2 
Effect 

Size 

COM RMS 0.08 0.06 0.11 0.10 1.87* 

COM Smoothness of 

RMS 
0.75 0.59 1.10 1.04 1.90* 

Sit-to-stand RMS 0.65 0.64 0.85 0.67 0.71* 

Sit-to-stand peak 
angular velocity 

84.02 37.96 72.46 44.47 -0.37 

Smoothness index 1.60 0.65 2.01 0.97 1.82* 

Stand-to-sit RMS 0.38 0.45 0.36 0.30 -0.07 

Stand-to-sit peak 
angular velocity 

126.87 36.75 118.45 42.08 -0.26 

Vehicle load RMS 0.10 0.11 0.16 0.16 1.37* 

Vehicle load peak 

angular velocity 
81.94 36.62 78.27 26.32 -0.10 

Vehicle unload RMS 0.16 0.12 0.29 0.37 2.71* 

Vehicle unload peak 

angular velocity 
74.45 47.85 68.45 35.89 -0.15 

COM = center of mass, RMS = root mean square, S1 = session 1, S2 = 

session 2, SD = standard deviation, 𝜇 = mean, * = significant at the 95% 
confidence level. 

TABLE IV 
GAIT FEATURES (GF) METRIC RESULTS 

Metric μ𝑆1 𝑆𝐷𝑆1 μ𝑆2 𝑆𝐷𝑆2 
Effect 
Size 

Cadence 64.88 17.67 70.54 20.32 1.38* 

Double support percent 33.79 11.97 32.19 13.72 -0.49* 

Gait cycle time 1.96 0.66 1.87 0.68 -0.64* 

Affected side peak angular 
velocity 

190.09 67.88 208.79 72.50 1.52* 

Affected side shank range of 

motion 
47.34 13.22 50.02 11.44 1.20* 

Left side peak angular velocity 195.98 61.01 213.09 68.84 1.30* 

Left side shank range of 

motion 
47.24 12.66 50.93 12.59 1.73* 

Number of gait cycles 18.95 9.32 16.38 5.59 -0.90* 

Right side peak angular 
velocity 

217.65 43.80 244.53 51.02 2.02* 

Right side shank range of 

motion 
50.41 10.91 54.70 9.43 1.45* 

Step length 0.21 0.07 0.23 0.06 0.64* 

Step regularity 37.29 22.36 46.91 28.11 1.31* 

Stride regularity 40.88 22.73 51.53 24.45 0.55* 

Step symmetry 63.57 27.50 70.80 26.31 0.35 

Unaffected side peak angular 

velocity 
231.38 39.33 255.20 40.62 1.91* 

Unaffected side shank range of 
motion 

51.91 11.96 55.69 8.40 1.56* 

S1 = session 1, S2 = session 2, SD = standard deviation, 𝜇 = mean, * = 
significant at the 95% confidence level. 
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B. Individual Responsiveness to Therapy 

RCI analyses suggest that recovery is not consistent for all 

patients over one week of inpatient rehabilitation (see Fig. 4 and 

5). For example, participant #014 experienced a substantial 

amount of recovery compared to the rest of the participants as 

assessed through RCI plots. This finding is corroborated by the 

conventional method of using the FIM to characterize 

functioning at admission. By contrast, participant #015 did not 

demonstrate significant change in smoothness of walking or 

step regularity. At admission to the inpatient facility the 

functional capabilities for this participant were close to 

independent, rendering a small window for improvement.  

The RCI visualization of performance at the individual level 

can track progress by assessing performance on multiple 

metrics. For example, a few participants with moderate 

responsiveness for walking speed (#007, #015, and #020) did 

not show change in the smoothness index metric and vice versa 

(#004). Therefore, analysis of multiple metrics, such as 

smoothness index along with walking speed, highlights the 

differences in individual recovery. 

A limitation of this study is the metric computations have not 

been laboratory validated; however, all of the algorithms are 

derived from previously-published and validated sources. 

Another limitation includes the use of human-operated 

stopwatch times to segment the AC into its subtasks. The times 

recorded by the researchers could impose non-systematic error. 

Future work includes recruiting healthy individuals to perform 

the AC to provide reference data for comparison to patient data. 

VI. CONCLUSION 

Inpatient rehabilitation contains a wide spectrum of 

challenges that are tackled uniquely by different patients, 

depending on their pre-morbid state, injury, drive to improve, 

and compensatory strategies. Changes measured in movement 

profiles over the course of one week of therapy indicate 

wearable IMUs provide a viable platform for gaining insight 

into these complex recovery processes. The ambulation circuit 

presented in this study allowed data collection to capture 

performance of real-world challenges in ecological 

environments. Several gait and transfer features exhibit 

statistically significant differences in value from session one to 

session two, which indicates wearable sensor-derived metrics 

may be practical for clinicians to use in addition to observation 

to quantify gait and vehicle transfer improvement. Of the 

significant metrics, only walking speed does not make use of 

wearable inertial sensor data, indicating that wearable sensors 

can capture details about changes in movement patterns that 

cannot be acquired from standardized subjective clinical 

assessments. 
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