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Abstract—Investigating users’ interruptibility as an indicator
of his/her attention status has been essential in recent pervasive
computing where the users’ attention resources get scarce against
ever increasing amounts of information. In this paper, we address
research problems related to the users’ available interruptibility,
their physical activities, and their current locations and situ-
ations. We propose the “Interruptibility Map”, a geographical
tool for analyzing and visualizing the user’s local interruptibility
status in the context of smart city research. Our map describes
where citizens are expected to feel more or less interruptive
against notifications produced by computing devices, which are
known to have negative effects on work productivity, emotion,
and psychological state. We conducted a continuous analysis from
our previous research and a new additional in-the-wild user study
for 2 weeks with 29 participants to investigate the relationship
between one’s interruptibility and their locations and situations.
As a highlight of our findings, we found certain pairs of user
activity change and a location that showed better interruptibility
to users, such as an activity change of “when user’s riding
car(bus) stops” in the bus commute situation.

I. INTRODUCTION

As versatile types of mobile and wearable devices (such as
smartphones, tablets, smartwatches) have been penetrating the
global share, and the number of web services and applications
invented are drastically increasing, thus an ever amount of
information has been provided to us. We are getting numerous
amounts of notifications informing of new text messages,
schedule reminders, updates on the social networks, or adver-
tisements. Meanwhile, since the human attention is a limited
resource [1], [2], users are not able to handle all “interruptive”
notifications coming from the background of their primary
tasks, experiencing “divided attention” [3]. Previous literature
has found that there are various types of negative effects on
divided attention caused by the interruptive notifications, such
as for work productivity [4]–[9], emotion [8], and psycho-
physiological states [5].

To avoid this information and interruption overload, one
of the considered approaches is to deliver a notification at a
certain timing called the “breakpoint” [10], the boundary of
the user’s activities that has been found to reduce the user’s
cognitive load and mental burden against interruptions. In our
previous research [11], we proposed a system for improving
the answer rate against interruptive push notification delivered
into the users’ smartphones, by detecting the user’s physical
activity breakpoints [12], such as when a user stops walking
(from “walk” to “stationary”) or starts running (from “station-

Fig. 2. The screenshot of “Interruptibility Map”

ary” to “running”). We utilized activity recognition API which
was recently provided by the major mobile operating systems,
such as iOS and Android, and investigated the interruptibility
of each activity transition types (e.g. “from stationary to
walking”) extracted from the API. In comparison with the
“deliver immediately” style conventional notification delivery
scheme, our evaluation result revealed the effectiveness of
breakpoint-based notification delivery with a higher response
rate and faster response time.

However, in the continuum of our research after the previous
experiment, we came to observe a significant new research
opportunity in the investigation of user’s affective statuses
including interruptibility in the physical space. Firstly, it is not
clear which types of physical activity breakpoints occur
in different locations. If we can detect particular locations
with a trend of specific breakpoint occurrence that increases
the user’s interruptibility, we can utilize such knowledge
for further user support. Furthermore, it is also not clear
if users’ interruptibility, even when it is based on the
same type of breakpoint timing, can result in different
values in different locations and situations. In this paper,
we particularly focus on investigating on these questions in
the context of smart city research [13]–[15], proposing and
using the “Interruptibility Map” (Figure 2), our novel affective
visualization and analytics tool on the geographical map.

Our interruptibility analysis with Interruptibility Map
showed that (a)the occurrence rate of breakpoint types are
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Fig. 1. Interruptibility Map

relevant to the geographical locations, and (b)the interrupt-
ibility of particular breakpoints can be affected by locations
and situations. As a result, we successfully found some good
pairs of breakpoint types and the location that considered to be
a good timing to interrupt the users, such as “from automotive
to {stationary,automotive}” in the bus area.

The contribution of this paper is three-fold. Firstly, we show
our deeper analysis of the previous experiment by separating
into 3 situations. Secondly, we propose the concept, designing
and implementation of the Interruptibility Map. Lastly, we
investigate how the interruptibility of breakpoint types differ
by location.

In the remainder of this paper, we describe the interruption
overload problem caused by notifications from computing
systems in Section I. Then we will describe our previous
research and the next research challenges we are interested
to tackle in Section II. Section III explains about our concept
of the “Interruptibility Map”, and the continuous analysis
and additional experiments we have conducted to solve our
problems in Section IV. Finally, we conclude this paper in
Section V.

II. INTERRUPTIBILITY AT ACTIVITY BREAKPOINTS

This section firstly describes the results from our previous
experiment and specifies research challenges which are to be
addressed in this paper.

A. Results from The Previous Experiment

In our previous research, we investigated the correlation
between the breakpoint types and the interruptibility against
interruptive notifications, by conducting an in-the-wild user
study with 28 participants for four days collecting 20660
breakpoints. Each participant experienced “immediate deliv-
ery” style notification (which emulates the conventional noti-
fication style) for two days and “breakpoint detection”-based
notification delivery for two days. As a result, the breakpoint-
based notification delivery resulted in higher user response rate

Fig. 3. Occurrence rate of each breakpoint type

(58%) compared with the conventional immediate-delivery
scheduling (50%).

Moreover, we found some breakpoint types that particularly
contribute to higher user interruptibility while some other
types showed a negative impact. (Figure 4). For example,
“from walking to stationary” breakpoint type improved the
response time while “from stationary to walking” breakpoint
type required more time to open the notification. We hy-
pothesize that, when people start walking, their attention will
become less available since they need to face forward, causing
difficulty in interruption.

Also, in the paper we discussed the occurrence rate of each
breakpoint type (shown in Figure 3) and found that the top
2 breakpoint types, related to “automotive”, filled 60% of
the total number of detected breakpoints. Figure 2 is a map
with plotted markers which indicate the breakpoint type “from
{stationary,automotive} to automotive”. We figured out that
most of markers of these 2 types tend to appear intermittently
on the roads and railroads.

B. Next Research Challenges

From the discussion above, here we specify two next
research challenges to be addressed in this paper. The first
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Fig. 4. Boxplot of response time for each breakpoint types

challenge is the investigation of what types of physical
activity breakpoints occurs in different locations. Some
existing literature showed that the user’s “interruptibility” is
different in different locations [16]. (e.g., the bus stops, subway
stations and the parking lots are more interruptive than the
movie theater or the library.) This result brought us to the
hypothesis that the type of physical activity breakpoint may
have a correlation with the venue location.

The second challenge is the investigation of users’ inter-
ruptibility in various types of breakpoints over different
locations and situations. Even on the same type of physical
activity breakpoint, resulting user interruptibility value may
differ depending on the locations and situations. For example,
the same “from walking to stationary” breakpoint type may
result in different interruptibility in different locations, such
as in the train station and the office. For another example, the
same “from automotive to stationary” type breakpoint may
reveal different interruptibility in different situations, such as
user commute in the train or that in the bus. (Currently the
activity recognition API in smartphone platforms [17] does not
distinguish the differences between trains and cars. It returns
“automotive” in both situations.)

III. INTERRUPTIBILITY MAP

Considering the research problems outlined, we propose
“Interruptibility Map” as a new analysis and visualization
infrastructure of users’ interruptibility. The concept of Inter-
ruptibility Map is actually our first step towards the realization
of conceptual “Affective Map” particularly in the context of
smart city research [13]–[15] where the local city people’s
affective status, including interruptibility, will be safely shared,
analyzed, visualized, and used for various types of smart city
applications.

Figure 5 illustrates the concept and the architecture of the
Affective Map. On the local citizens’ mobile devices, various
types of affective data (including interruptibility [12], [18])
are sensed, followed by edge computation for privacy protec-
tion [19]. The sensor data with user’s export permission will be
uploaded to the distributed heterogeneous sensor network [20]
of the area and stored in storage. Affective Map (1) analyzes

Fig. 5. Concept of Affective Map

the collected data and generates the results in the geographical
space basis, and (2) visualizes/exports the results for various
types of applications.

Key expected use cases of Affective Map are to evaluate
what the government, businesses, or private organizations have
devoted to the cities. For example, they can use the map
to evaluate if the park brings people better quality of life
(QoL) as planned, if the new expressway has relieved citizen’s
frustration, or if the new office is in a good location to prevent
depression. Affective Map is the tool that allows us to visualize
the city’s mental state.

On visualization, we currently use the markers and the heat-
map meshes on the geographical map, which is one of the
most common data analysis methods. Showing the data in
the form of a map gives us an intuitive understanding of the
characteristics of the data, rather than the report making use
of various technical terms, or lingo. Specifically in case of
our current “Interruptibility Map” prototype, the map describes
the locations that resulted lower frustration and cognitive load
against the notification. The map indicates where the users are
expected to feel more or less interruptive against notification
produced by computing devices.

IV. ANALYSIS

In this section, we will detail our continuous analysis from
previous research on breakpoint occurrence in different loca-
tions, followed by the second investigation on interruptibility
in different locations and situations
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Fig. 6. Map of bus area

Fig. 7. Map of university campus Fig. 8. Map of railroad area

A. Breakpoint Occurrence in Different Locations

1) Approach: One of our research goals is to study the
breakpoint occurrence tendency in different locations. As
previously mentioned, we found that some types of physical
activity breakpoint significantly increase user’s interruptibility.
However, if those breakpoint types rarely occur in the users’
real environment, that means that there is very little opportu-
nity to deliver notifications to users in such ideal timings. To
analyze how the occurrence of various types of breakpoints
vary over different locations, we decided to separate the data
from our previous experiment into three locations as follows.

• University Campus (Figure 7)
• Commuting (Bus) (Figure 6)
• Commuting (Train) (Figure 8)
Our university campus is located approximately 20 minutes

away from the nearest train station by bus. Most of the students
take trains (about an hour) and a bus to commute to the
university campus. We distinguished the university campus
and bus route area (an area between the campus and the bus
terminal at the train station) by picking the data points in
a specific geographical area on the map. Moreover, we did
the same geographical-area based data scoping for 4 major
railroad routes in the local area to distinguish the breakpoints
in the train commute situation (geographically plot on the
railroad area).

2) Results: Figure 9, 10, 11 are the resulting pie charts
indicating the occurrence rates of different breakpoint types in
the university campus, the bus area, and train railroad area. For
all, top two breakpoint types that occurred the most frequently
were (1) “from {stationary,automotive} to automotive” and
(2) “from automotive to {stationary,automotive}”. The total
occurrence rates of these two breakpoint types were 50.3% in
the campus, 77.1% in the bus area, and 49.0% on the railroad.
Moreover, the total occurrence rates of all breakpoint types
containing “automotive” were 59.5% in the campus, 84.6% in
the bus area, and 73.5% on the railroad.

Fig. 9. Occurrence rate of breakpoint in the campus

Fig. 10. Occurrence rate of breakpoint in the bus area

Fig. 11. Occurrence rate of breakpoint on the railroad

Fig. 12. Occurrence rate of breakpoint in the campus excluding bus stop area

We observe that the ratio of these two types of breakpoints
fills approximately three quarters of the bus area, which is
much higher than the ratio on the railroad. This means that
the users would face more “stopping” and “moving” in the bus
more frequently (possibly due to the traffic signals or traffic
congestion) than on the railroads (temporarily stopping at the
stations).

Figure 13 is a boxplot illustrating, on each breakpoint type,
the distance to the nearest traffic signal in the bus area. We can
see that the both “from {stationary,automotive} to automotive”
and “from automotive to {stationary,automotive}” have shorter
boxes (ranging from the 25 percentile to 75 percentile) than
others. We believe this illustrates the fact that these breakpoint
types are observed in very limited locations in certain degree
of short distance from the traffic signals while other types are
observed in much wider areas in terms of the distance from
the signal.

Also, we are surprised that the breakpoint breakdown in the
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Fig. 13. Boxplot of distance to the nearest signal

university campus contains lots of “{stationary,automotive}”
and “automotive” labels, too. In addition to Figure 9 that
counted the data in the whole campus area, we calculated
the breakpoint breakdown for the university campus excluding
the bus stop in the campus (Figure 12). Even in this case,
we see that the top two breakpoint types are the same.
While it is natural to observe “{stationary,automotive}” and
“automotive”-related breakpoints in the bus, railroad, and the
bus stop areas, the cause of observing them in the middle of
the university campus (such as near the classroom, laboratory
buildings and cafeteria) is not clear. Although we need further
investigation on this, it could be a limitation for this research
since we are relying on the product activity recognition API
provided by the the smartphone platform to detect users’
activities.

B. Investigation of the Interruptibility in Locations

Our second study is to investigate users’ interruptibility in
various types of breakpoints over different places. Having this
objective, we conducted another in-the-wild user study specif-
ically to validate if different locations and situations influence
the resulting user interruptibility value even in cases with the
same types of underlying physical activity breakpoints.

1) Experiment: We conducted an in-the-wild user study
with 29 participants. They are undergraduate and graduate
students (20 male and 9 female) of ages 18–26. The study
duration was 14 days.

In this experiment, we particularly chose two breakpoint
types, “from {stationary,automotive} to automotive” (type
1) and “from automotive to {stationary,automotive}” (type
2), the top 2 most frequently observed breakpoint types in the
previous experiment.

We installed our iOS application into the participants’
personal iPhones. During the experiment, the participants
were required to annotate the ESM questionnaires when they
received a notification on their smartphones. When the user
clicked the notification, the ESM screen was presented. The
users were asked to answer on his/her interruptibility with 5-
point Likert scale.

During 14 days, each participant experienced the following
two notification delivery modes for 7 days each.

• Random-timing delivery: Notifications delivered at a
random timings, emulating the conventional notification
delivery.

• Breakpoint delivery: Notifications delivered when the
targeted breakpoint was detected.

The notifications were issued during 8:00am to 10:00pm
daily, with the daily maximum number of notifications of 10
(5 times for each delivery mode). The minimum notification
interval was 20 minutes.

2) Results: Table I shows the average score of ESM
questionnaire in different locations. The annotation scores
answered in type 2 breakpoints were much higher than those
in type 1 breakpoints, in the university campus, bus area, and
railroad. In other words, we can observe that type 2 is better
timing to interrupt rather than type 1.

Comparing the interruptibility between locations, the bus
area is the best place to interrupt and the university campus
is the worst for both type 1 and type 2. Especially, type 2’s
score in the bus area was 4.5. This is considered to be very
opportune timing to deliver a notification, considering that the
number is on a 5-point scale.

Figure 14, 15 are boxplots representing the response time of
each breakpoint types in different locations. First of all, we can
see that the bar width of the bus and train are quite different
between breakpoint type 1 and 2. The response time for type
2 in bus area is quite fast and looks like very opportune
timing to interrupt. As mentioned, this particular situation (and
breakpoint type) also scored the highest interruptibility score
in our experiment.

The railroad was the location in which different results are
observed between 2 breakpoint types. We can see that the box
is narrow on type 1, but is quite wide for type 2 (Actually
the maximum value reaches up to about 400 seconds, but we
decided to narrow the figure up there for the sake of visibility.)

3) Discussion: From these two observations, we can con-
firm the differences in the users’ attention in different situ-
ations (bus and train). In the train, users’ attention will be
scarce when the train stops at the station, but soon will be
able to be interrupted after the train departs. Possible reasons
for this is that, when the train stops at the station, people’s
attention tend to be consumed more in the physical space,
checking if the station is his/her destination, or looking for
seats available. Once the train leaves the station, users are
considered to become interruptible since they do not need
to worry about next stop for a while, in certain degree of
stabilized running speed of the train.

On the other hand, situation in buses are considered to be
quite different. When a bus stops frequently at a signal or in the
middle of traffic, passengers do not need to concern themselves
with things such as the destination or seats since the bus has
not reached to the next bus stop. Thus, we consider those facts
resulted better interruptibility in type 2 breakpoint. When the
bus starts, we have another different situation from the train
case. Since the bus is in the middle of road traffic, passengers
are not really sure when it physically speeds up, down, or
stops next. This kind of situational difference is considered to
result in lower interruptibility in breakpoint type 1.
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TABLE I
AVERAGE VALUES OF ESM SCORE FOR LOCATIONS

Total University Bus Train Others
Avg. of ESM score (type1) 3.0 2.3 3.6 2.5 3.4
Avg. of ESM score (type2) 3.1 2.8 4.5 3.0 2.9

Fig. 14. Boxplot of the response time of type 1

V. CONCLUSION

As the results of continuous analysis from our previous
research and additional 2 week experiment with 29 partic-
ipants, we showed that the occurrence rate of breakpoint
types depends on the geographical locations. Furthermore, we
confirmed that the interruptibility of particular breakpoints
can be changed in the different locations. We found some
pairs of breakpoint types and locations , such as “from
automotive to {stationary,automotive}” in the bus area, are
really good timings to interrupt the users. For our future work,
collection of more extensive amounts of interruptibility data
clearly would be our major future challenge. Beyond our first
prototype, currently we are building the next prototype of the
“Affective Map”, combining our infrastructure on interruptibil-
ity sensing [12], [18], edge privacy protection [19] and sensor
network [20].
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