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Abstract—Research has shown that family mealtime plays a
critical role in establishing good relationships among family
members and maintaining their physical and mental health.
In particular, regularly eating dinner as a family significantly
reduces prevalence of obesity. However, American families with
children spend only 1 hour on family meals while three hours
watching TV on an average work day. Fine-grained activity-
logging is proven effective for increasing self-awareness and
motivating people to modify their life styles for improved well-
ness. This paper presents FamilyLog – a practical system to log
family mealtime activities using smartphones and smartwatches.
FamilyLog automatically detects and logs details of activities
during the mealtime, including occurrence and duration of meal,
conversations, participants, TV viewing etc., in an unobtrusive
manner. Based on the sensor data collected from real families,
we carefully design robust yet lightweight signal features from a
set of complex activities during the meal, including clattering
sound, arm gestures of eating, human voice, TV sound, etc.
Moreover, FamilyLog opportunistically fuses data from built-in
sensors of multiple mobile devices available in a family through
an HMM-based classifier. To evaluate the real-world performance
of FamilyLog, we perform extensive experiments that consist
of 77 days of sensor data from 37 subjects in 8 families with
children. Our results show that FamilyLog can detect those
events with high accuracy across different families and home
environments.

I. INTRODUCTION

Research has shown that the family mealtime plays a
critical role in establishing good relationships among family
members and maintaining their physical and mental health
[5][9][7]. In addition to the implications for family health, fine-
grained analysis of family mealtime enables important studies
in sociology and home economy. For instance, research has
showed that the amount of shared time (including conversation
and eating) between spouses and between parents and children
have strong links with family income, mother’s employment
status, ages of children, and geographic location (urban or
rural) [6][13][12]. However, according to a national survey in
2014, American families with children on an average work
day spend almost 3 hours watching TV accounting for more
than half of the leisure and sport time, while only 1 hour for
family meal [24].

It is shown that activity logging is a very effective ap-
proach to improving the self-awareness and motivating people
to modify their behaviors toward a healthy lifestyle [11].
Unfortunately, to date, there has been no unobtrusive and
convenient methods to log family meals and related activities.
Some of the available methods for family activity monitoring

rely on video-taping [8], which not only incurs considerable
installation/analysis costs, but also raises privacy concerns.
There has been a number of studies on activity recognition
using personal wearables and smartphones [19] [33]. However,
as we argue in this paper, detecting the activity of individual
family members separately is insufficient for studying family
communications, e.g., due to the fact that young children are
usually not allowed to carry personal devices.

This paper presents FamilyLog – the first practical sys-
tem to log family mealtime activities using smartphones and
smartwatches. FamilyLog uses the built-in accelerometer and
microphone of the smartphone/smartwatch to detect mealtime
activities that are closely related to family wellness, including
occurrence, duration, and participants of the family meal as
well as conversations and TV viewing during the meal. By
providing a detailed record of the family mealtime activities,
FamilyLog empowers family members to actively engage in
making positive changes to improve family wellness, e.g.,
preventing child obesity.

The design of FamilyLog faces several challenges such as
the significant interference from various noises in the home.
Moreover, uploading sensor data to the cloud is often undesir-
able due to the privacy concerns. To address these challenges,
we carefully design several lightweight acoustic and motion
features based on in-depth analysis of data sets from multiple
families. Furthermore, FamilyLog employs novel HMM-based
sensor fusion techniques to opportunistically leverage multiple
built-in sensor modalities of mobile devices available in a
family, which maximizes the spatiotemporal sensing coverage
and achieves robust sensing accuracy across different homes.
They can also shorten the system training period by incorpo-
rating one-time user input such as the typical time/frequency
of family dinners. We have evaluated FamilyLog with ex-
tensive experiments involving 8 families with children (one
or two week recording in each family) and total 251 hours
of sensor data collected over 77 days. Our results show the
effectiveness of FamilyLog in family activity detection (with
average 88.7% precision and 93.3% recall for meal detection,
and 97.8% precision and 92.8% recall for the participant iden-
tification) across different families and home environments.
The long-term, fine-grained family activity history provided
by FamilyLog makes it possible to analyze communication
patterns/anomalies and improve family life styles.
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II. RELATED WORK

The studies by American Academy of Pediatrics have
shown that, healthy family meals are not only helpful in
establishing good relationships among family members, but
also critical for the proper development of children’s physical
and mental health [5][9][7][14]. In order to monitor family
mealtime activities, several systems are designed to detect the
usage of electrical appliances based on the electromagnetic
interference and ambient sensors [26][15][18]. However, these
systems can only detect the activities that involve substantial
appliance usage. Recently, activity monitoring using mobile
devices has received significant attention. Several systems
are designed to detect food and drink intakes. For example,
[19] presents the design of a fork with sensing abilities to
help track and improve user’s eating behaviors. In [33], the
authors propose an approach of profiling user’s gesture while
eating using motion sensors on smartwatches. However, these
systems are focused on tracking eating behavior of individuals,
and are not suitable for detecting family mealtime activities,
which may involve children without wearing any devices,
and conversations among family members. Moreover, some
mobile health systems are designed based on off-the-shelf
smartphones to monitor human activities, such as sleep quality
[16] or physical activities [28]. Several recent studies are
focused on user experiences with mobile health systems such
as privacy concerns [1] and sharing behaviors [27]. However,
these efforts are not concerned with studying family meals or
group activities.

Acoustic event recognition algorithms have been widely
adopted in smartphone-based activity monitoring systems.
Auditeur [23] is designed as a mobile-cloud service platform
to allow client’s smartphone to recognize various sound events
such as car honks or dog barking. SoundNet associates
environmental sounds with words or concepts in natural lan-
guages to infer activities [22]. Recent work shows that the
eating activity can also be detected by the acoustic features
[34]. However, this work does not pinpoint main features for
detecting family meals. It requires a large amount of data,
and employs complex signal processing and machine learning
methods, which raise burden of the implementation on mobile
devices.

In order to detect the participants in the conversation,
Crowd++ [35] counts the number of speakers using MFCC
(Mel-frequency cepstral coefficient) [29] features. Row mean
vector of spectrogram [20] is a simple but effective method for
speaker recognition by comparing the Euclidean distance of
the energy distributional features. However, voice recognition
during a family meal is more challenging due to the presence
of significant noise and requires new techniques.

III. MOTIVATION AND REQUIREMENTS

A national survey shows that American families with chil-
dren spend only 1 hour on family meal on a typical work
day [24]. Moreover, it is shown that TV viewing during the
meal significantly increases the energy intake [2]. Based on the
datasets we collected from 8 families, over 60% of the family

meals are accompanied by concurrent TV viewing. In addition
to the occurrence, duration, and frequency of family meals, the
conversations during a family meal are also important as they
constitute a significant portion of communications between
family members during a day. Analyzing the conversation
during a family meal is also important for culture studies
[4]. Moreover, it is shown that, by reviewing detailed activity
logs, people are motivated to modify their behaviors toward a
healthy lifestyle [11][6][13][12].

There has been a number of studies on personal activity
recognition using wearables and smartphones [19] [33]. How-
ever, we argue that detecting the activity of individual family
members separately is insufficient. First, the existing solutions
typically require the mobile device (smartphone or wearable)
to be carried by the user. As a result, they cannot be applied to
detect many activities of young children who are usually not
allowed to carry personal devices. Second, many people do not
carry smartphone or wear watch constantly at home, making
it difficult to monitor one’s activity continuously. Moreover,
detecting each individual’s behavior is often unnecessary or
significantly more challenging when she/he is participating in
a group activity. For instance, detecting whether a particular
family member is eating based on sound is more difficult when
the family is having dinner together due to the higher level of
ambient noise.

FamilyLog is designed to be an unobtrusive system that
helps users keep track of their family mealtime activities.
It employs the built-in accelerometer and microphone of
smartphones and smartwatches to detect various information
and activities related to a family meal. Specifically, FamilyLog
is designed to meet the following requirements: 1) Since
FamilyLog needs to operate in parallel with family mealtime
activities. It must to be unobtrusive to use. It should minimize
the burden on the user, e.g., without requiring the users to
carry extra devices, and should not interfere with the users’
daily activities by any means. 2) FamilyLog needs to monitor
the details of family meals, including their start/end time,
participants, and possible TV viewing, in a robust fashion,
i.e., across different users, smartphones, smartwatches and
households. 3) Since family meals involve privacy sensitive
activities such as family conversation, the privacy of the family
needs to be strictly protected. For example, the system should
process the collected sensor samples on the fly and only keep
the results, instead of storing or transmitting any raw data,
which may contain sensitive information such as contents of
the conversations. The sensing algorithms we develop can
accurately classify a number of important contextual features
of activities such as arm gestures from wearables, eating
sounds, environmental noise, conversations, etc. As a result,
in the future, these algorithms can be adapted and used as
building blocks to detect a wide range of family activities
such as parties, family meetings, gaming etc.

IV. SYSTEM DESIGN

FamilyLog detects family meals by using the built-in
sensors of mobile devices, namely microphone on smart-
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Fig. 1. System overview

phone/tablet and both microphone and accelerometer on smart-
watch1. However, FamilyLog is designed to leverage these
sensing modalities in an opportunistic manner depending on
the availability of mobile devices in a home. In particular,
FamilyLog may achieve satisfactory sensing performance even
with a single smartphone when it is placed in the proximity of
family activities (see Section V). When multiple devices are
available, FamilyLog runs separately on each individual device
and fuses the detection results to achieve better performance
and extended coverage.

As shown in Fig.1, FamilyLog consists of four components:
pre-processing, acoustic feature extraction, motion feature
extraction, and HMM-based activity classification.

In pre-processing, sensors are sampled at certain rate and
the samples are framed. A frame is discarded if it only contains
noise which is indicated by low variance. Otherwise, each
acoustic frame is processed to extract energy features using
filters based on Mel-frequency cepstrum coefficients (MFCC).
In the acoustic and motion feature extraction components,
FamilyLog groups data frames (50ms by default) into a
detection window (3min by default), and extracts a set of
distinct features for each window. Specifically, FamilyLog
extracts gesture-related motion features such as the average
X-axis acceleration and changing rate, and acoustic features
to detect the clattering sounds and the human voice.

To detect activities from extracted features, FamilyLog
adopts a HMM-based (Hidden Markov Model) classifier. Com-
pared with several commonly used classifiers like Support
Vector Machine (SVM) that are only applicable to discrete
event detection, HMM can naturally capture the temporal
pattern of family activities by incorporating continuous sensor
input. The HMM classifier is trained by a combination of short
period of sensor data, e.g., a one-day family activities labeled
by users, and some general knowledge of family meals which
can be obtained from a one-time user input or a brief survey

1Most off-the-shelf smartwatches ship with microphone for voice control
and making calls.

with simple questions such as “how much time does your
weekday dinner usually take?”.

A. Pre-processing

The primary objective of pre-processing is to reduce un-
necessary computation and prepare data for feature extraction.
Specifically, it consists of the following three components.

First, FamilyLog reduces the unnecessary computation by
discarding detection windows that likely contain only envi-
ronmental noises (e.g., noise of appliances). Specifically, the
noise detection is achieved by first calculating the root mean
square (RMS) (i.e., the volume of signal) for each frame,
and then computing the variance of RMS of all the frames
within each window. A key observation is that a window with
low RMS variance only contains ambient noise. Similarly,
FamilyLog discards the motion data with low RMS variance,
which typically indicates a stationary smartwatch not worn by
the user.

Second, to increase computational efficiency, FamilyLog
represents acoustic data with MFCC-based features, which will
be used in later feature extraction. For each frame, FamilyLog
first calculates its energy spectrum from 80Hz to 8kHz with
the Fast Fourier Transform (FFT) [32]. Then the resulting
spectrum is transformed into 21 energy channels by applying
Mel Filters [21][25][30]. The energy of channel i will be
represented as ei hereafter.

Third, to preserve power, FamilyLog turns on sensor sam-
pling only when the device is home, which can be determined
by the system location. Moreover, as an optional feature,
FamilyLog can start the the sensor sampling of a new detection
window probabilistically based on the percentage of historical
noise frames in a predefined time window. We note that this
strategy may turn off sampling falsely when noise appears in
a burst within an event of interest. In the future, we will take
into account the feedback from event detection component and
reduce the sensor sampling when no activity is detected.

2017 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5090-4327-9/17/$31.00 ©2017 IEEE



B. Feature Extraction

FamilyLog identifies the occurrence of the family meals
by several key characteristics, based on sounds and gestures
associated with dining and whether the family members are
currently in close proximity to one another. Specifically, we
use the following features to characterize the family meals.
The first feature is the clattering sound caused by clashes
between tableware. This is because the clattering sound is
the most distinctive acoustic characteristic of family dining
activity, regardless of other dynamics, such as the type of food
and variation of tableware. The second feature is the gesture of
the users captured by smartwatches. When the user is holding
food or using tableware, the arm of the user often exhibits a
certain pattern of movements. The third feature is the human
voice, i.e. the conversation between family members, which
implies that the family members are near each other.
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Fig. 2. An example of clattering sound detection in a typical family meal
scenario. (a) shows the energy on 21 channels over time, where clattering
sound and human voice are marked with rectangles. (b) shows the comparison
between e12−16 and eall for the same sound clip.

1) Clattering Sound: To infer family meal events, Fami-
lyLog calculates the occurrences and frequency of clattering
sound within a detection window. It looks for an energy peak
from channel 12 to 16 (associated with frequency ranging
from 1 − 4kHz) for each 50ms frame. Specifically, for each
frame, it computes eall, the average energy over all channels,
and e12−16, the average energy across channel 12 to 16.
The feature associated with clattering sound is calculated as
r = e12−16/eall. For example, Fig.2 shows an example of
clattering sound detection in a typical family meal scenario.
Fig.2(a) shows the energy on 21 channels over time, and
Fig.2(b) shows the corresponding e12−16 and eall. We can see
that one occurrence of clattering sound may result in several
continuous clattering frames with higher e12−16, even when
the clattering sound and human voice overlapped around 1
second. Therefore, comparing e12−16 and eall is a simple
and effective way of detecting clattering sound in typical
family meal scenarios. After obtaining r for each acoustic
frame, FamilyLog calculates E[Nclattering] which represents
the expectation of amount of clattering sound contained in
a detection window. Specifically, E[Nclattering] is calculated
as the sum of P (clattering|r) which is preset in the system
and generated using the data collected from 5 families. Fig.3
shows an example of clattering sound detection based on the
real data set collected in a home. We can see that all family
meal windows contain large numbers of clattering frames. The
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Fig. 3. An example of family meal detection. Each bar represents the expected
number of frames containing clattering sound in a detection window.

clash of other objects such as keys and coins can also produce
a similar sound. Different from clattering frames of dining
activity, such false alarms are usually isolated and not likely
to occur in a burst.

2) Arm Gesture: When smartwatch is available, FamilyLog
also extracts motion-based features that characterizes dining
behavior, which include the acceleration on the X-axis (Accx)
and the changing rate of the acceleration (Rc). The X-axis
acceleration is sensitive to various arm movements, as its
direction is always parallel to the user’s arm. Therefore, it
can be used as a simple and effective feature for inferring
arm gesture while avoiding the overhead of data processing
on the other two dimensions. Specifically, FamilyLog samples
the built-in motion sensor on smartwatch and calculates two
features for each frame. The X-axis acceleration is directly
read from the accelerometer. The changing rate between two
frames can be computed as the angle between two accel-
eration vectors from them. Since the acceleration is mostly
corresponded to the gravity, the angle describes how much
the orientation of the watch face is turned along with the
user’s action. For a detection window, Accx is calculated as
the average acceleration on X-axis for all frames, and Rc is
calculated by the average changing rate of all neighboring
frames. Fig.4 shows three typical activities and the motion
features. We can see that the arm gesture and the movements
of wrist during meal show distinct distributions.

C. Conversation and TV Viewing Detection

1) Human Voice Identification: An important acoustic fea-
ture for the detection is the conversation, which identifies
human speech, as well as the family members who participate
in it. Among all the family communications, the family meal
is typically accompanied by a considerable amount of conver-
sations. The speaker recognition technique presented in [10]
shows that pronunciation of vowels is a identical characteristic
of human. However, maintaining a database for voice of each
family member is costly for mobile devices. Here, row mean
vector of spectrogram [20] provides an effective and efficient
approach to recognize speakers by measuring Euclidean dis-
tance of energy distribution on frequency domain. Specifically,
the family members are required to register their voice to
FamilyLog by reading a short sentence. For each frame,
FamilyLog compares the vector from MFCC-based processing
with the ones obtained during training, and calculates the

2017 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5090-4327-9/17/$31.00 ©2017 IEEE



0 5 10 15 20 25 30
Tim e (s)

0

30

60

90

0 5 10 15 20 25 30
Tim e (s)

0

30

60

90

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

5

10

Accx = 4.22 Accx = 1.57 Accx = 1.23 Accx = 9.41 Accx = -8.82Accx = -7.81
(holding tableware) (dining with hand on table) (putting hand on sofa) (leaning on elbow) (walking) (standing)

0 5 10 15 20 25 30
Tim e (s)

0

30

60

90

C
ha

ng
in

g
R

at
e

(d
eg

re
e)

A
cc

el
er

at
io

n
(m

/s
2 )

Fig. 4. Examples of typical activities and related motion features. The left column shows a dining scenario (Accx = 2.69m/s2, Rc = 10.41◦). The center
column shows a TV viewing scenario (Accx = 4.25m/s2, Rc = 0.85◦). The right column shows a walking/standing scenario (Accx = −6.98m/s2,
Rc = 3.19◦). The upper row shows the ground truth at some moments during these activities, and the arrows in these photos indicate the direction of X-axis.
The acceleration on X-axis is shown for each photo. The center row shows the acceleration on X-axis in each frame. The lower row shows the changing rate
of acceleration in each frame.

(c)
Mother
Father

Child
Clattering

0.9

0.94

1

C
o

si
n

e
 S

im
ila

ri
ty Mother

Father
Child

(a)

(b)

C
ha

nn
e

ls

10

20

0

15

Fig. 5. An example of conversation detection during a typical dining scenario.

probability that the frame contains voice of at least one family
member by cosine similarity, represented as P (voice|E),
where E is the energy distribution in the frame, as shown
in Fig.5. In a detection window, FamilyLog sums P (voice|E)
for each frame to extract E[Nvoice], representing the expection
of number of frames that contains family members’ voice.

2) Localization-based TV Viewing Detection: TV is a sound
source with fixed location, whose volume usually stays within
a limited range. However, the clattering sound and the con-
versation during the mealtime come from multiple sound
sources. We can focus on detecting the number of sound
sources to find the existence of the TV, and seperate TV sound
from the clattering sound or the human voice. FamilyLog
employs a novel approach based on Interaural Level Difference
(ILD) [3] that fuses acoustic features captured by different
devices (features are exchanged on cloud servers, local wi-
fi or bluetooth connections) to determine the sound sources.
In this section we only focus on the fusion algorithm for two
devices although it can be extended to more generic scenarios.
Specifically, the process of feature fusion consists of two steps:
similarity check and sound source detection. In the first step,
it figures out whether two devices are at home and near each
other by examining the similarity between sound captured by

two devices. We define the detection windows that cover the
same period of time on two different devices as the binaural
detection windows. The similarity between binaural detection
windows A and B can be calculated as follows:

C(A,B) =

l∑
i=1

cos(E(A, i),E(B, i))

l

(1)

where vector E(X, i) is the energy distribution for frame i in
detection window X . FamilyLog only proceeds to conduct
sound source detection if C(A,B) is above a threshold,
indicating the two devices are in proximity to one another.
The sound source detection aims to detect the number of sound
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Fig. 6. An example of TV viewing with conversation. (a) shows captured vol-
ume by two smartphones. (b) shows the volume ratio between corresponding
frames.
sources in binaural detection windows. A key observation is
that if all the acoustic signal originates from a single sound
source, it is more likely caused by TV. In contrast, if the
acoustic signal originates from multiple sound sources, it is
more likely to be caused by human activities other than TV.
The method we use to detect sound sources is based on
acoustic localization by ILD . Specifically, if the acoustic
signal is from a single source and captured by two receivers,
it satisfies V1/V2 = d21/d

2
2 = ∆V , where V1 and V2 are
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volumes received by receivers and d1 and d2 are distances
between receivers and sound source, calculated by the RMS.
This equation can be applied to compute the relative distances
between the sound source and the devices. In indoor scenarios,
∆V may be impacted by various factors (e.g., echoes and
obstacles), but its coefficient of variation is limited when d1
and d2 are fixed. To detect whether the acoustic signals come
from the same source, we define Coefficient of Variation of
Volume Ratio per Frame (CV (A,B)) in binaural detection
windows A and B as:

CV (A,B) =
σ(∆V (A,B))

µ(∆V (A,B))

∆V (A,B) =

{
VA,i

VB,i
, i ∈ [1, l]

} (2)

Here, the volume of frame i in detection window X is
represented by VX,i, µ(∆V (A,B)) is the mean of volume
ratios between A and B, and σ(∆V (A,B)) is the standard
deviation of volume ratios. CV (A,B) thus is the ratio of the
standard deviation to the mean. The lower CV (A,B) is, the
more likely the acoustic signals come from a single source.
Fig.6 shows an example of how to detect sound sources by
volume ratio. In the first 20 seconds, phone B is carried by
user from the dining table to the sofa. TV is turned on at
the 30th second. During the 70th-75th second and the 140th-
150th second, the subjects talk to each other. We can see
that when the frames only contain TV sound, volume ratio is
relatively stable. In contrast, as conversation involves multiple
sound sources, the variance of the volume ratio is significantly
increased.

By detecting the sound source with multiple devices, the
accuracy of the detection of family meals can be improved
in several challenging scenarios. Although TV programs that
contain similar sound as family meal or conversation may
be misclassified, the frames contain clattering sound and
conversation still come from a single source, and they will
be more likely from TV than family activities.

TV sound during the family meal can be separated from
“foreground” sounds (clattering, conversation, etc.) by ex-
tracting low-energy frames, i.e. the frames that have a RMS
less than the average RMS in a detection window. To detect
whether TV is on during the family meal, we can check the
volume of sound from all low-energy frames, and whether the
acoustic signal is probably from a single sound source. If the
TV is on, the continous sound from TV will rise the volume of
low-energy frames, and CV (A,B) of all low-energy frames
will have a relatively low value, indicating the sound comes
from a single sound source with fixed location.

D. HMM-based Classification

Similar to speech and gesture recognition, the family meal
detection involves identifying a temporal pattern rather than
detecting discrete events. We design the classifier of Fami-
lyLog based on HMM, where we treat extracted features as
observations, and the family event contained in each detection
window as hidden state. Therefore, the primary goal of the

our HMM-based classification is to recover the family events
overtime using the features extracted from a sequence of
detection windows.

S1: Having Meal S2: Not Having Meal

o2: Acceleration
     on X-axis

o3: Changing Rate
     of Acceleration

o1: Clattering 
     Sound

θ(1,1) θ(2,1) θ(1,2) θ(2,2) θ(1,3) θ(2,3)

ϕ(1,1)

ϕ(2,1)

ϕ(1,2)

ϕ(2,2)

...

Fig. 7. The Hidden Markov Model of one family communication activity

Fig.7 shows the HMM-based classifier for family meal as an
example. We can see that in this case, the state is either “having
meal” or “not having meal”, and the observations includes four
features extracted from each detection window. The transition
probabilities between two states are simply generated based
on a simple survey conduced before using the system. The
emission parameters associating states with observations are
calculated using the one-day training data. Therefore, we
formally define the our HMM-based classification as follows:

arg max
X

P (X|λ,O) (3)

where X is a sequence of states; λ represents the transition
probabilities Φ and emission parameters Θ of the HMM; O
is a sequence of observations. The output of the classifier is
a sequence of states that maximize the likelihood, which can
be calculated by using the Viterbi algorithm.

1) Transition Probabilities: The set of transition proba-
bilities Φ contains four entries {φ(1,1), φ(1,2), φ(2,1), φ(2,2)}.
According to the definition of our HMM, when the activity
is not occurring, we only need to know the probability of
its occurrence in next detection window. On the other side,
while the activity is currently occurring, we only need to know
the probability of whether it continues in the next detection
window. Therefore, two models are enough to describe all the
transition probabilities, which are the probability distribution
of one activity’s occurrence related to time/date, and the
probability distribution of its duration.

The probability distributions can be estimated based on one-
time user answers to questions like “What’s the typical fre-
quency and duration of your weekday family meals?”. Alter-
natively, they can be derived from historical detection results.
To improve the accuracy of such an approach, FamilyLog
presents intuitive system UIs that allow users to rate previous
detection results. The characteristics of family meal, including
time, duration, and frequency are often highly dependent on
the day of the week. Therefore, FamilyLog generates different
models for the weekdays and weekends.

The transition probabilities of our HMM can be read directly
on generated models. When applying the Viterbi algorithm, the
transition probability from S2 to S1 is equal to the probability
of the activity’s occurrence; the transition probability from S1

to S1 is equal to the probability of the activity’s continuance
to the next 3 minutes. Because the transition probabilities are
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dependent on previous states (due to the influence of activity’s
duration), we need to adjust the structure of our HMM to
ensure Viterbi algorithm runs properly. As shown in Fig.8,
all transition probabilities are independent of previous states,
at the price of increased memory usage. In practice, we run
Viterbi algorithm for 40 states in this HMM (i.e. 40 detection
windows) to ensure that any activities within 2 hours can be
captured.

2: No Activity

S1,1

S

Activity S1,2
S1,3

...

S1,4

...

...

Fig. 8. The adjusted HMM structure. An activity is divided into multiple states
as S1,k , indicating that the activity already lasts for k detection windows. Here
S1,k can only transit to S1,k+1 or S2, corresponding to the cases where the
activity continues to the next detection window or stops, respectively.

2) Emission Parameters: The set of emission parameters Θ
contains entries as θ(S,o), which describes the probability to
observe the observation o in state S. The observation o within
a detection window is represented as a vector of features,
i.e. o =< o1, o2, o3, ... >, where oi corresponds to a feature
related to the activity. For the detection of the family meals,
the features are shown in Table.I.

TABLE I
FEATURES FOR THE FAMILY MEAL DETECTION

Term Description
E[Nclattering] The expectation of number of

frames containing clattering sound
E[Nvoice] The expectation of number of

frames containing the family members’ voice
Accx The average acceleration on X-axis
Rc The changing rate of acceleration

The coefficient of variation of volume ratio
CV (A,B) per frame in binaural detection windows

A and B

The HMM classifier is trained by a period of sensor data.
Typically, at least a whole day is required to fully cover the
communication of family. After training, we apply Gaussian
KDE to calculate the PDF, which is represented as p(o|S),
corresponding to the observations associated to each state.
Therefore, the emission parameter is defined as θ(S,o) =
p(o|S) for the HMM with multiple continuous observations
[17].

V. PERFORMANCE EVALUATION

In order to evaluate the performance of FamilyLog, we have
collected 77 days of data from 37 subjects in 8 families (details
shown in Table II). The procedure of the data collection has
been approved by the Institutional Review Boards (IRB) at
the Michigan State University. The period of data collection
was one or two weeks for each family. We intentionally chose
families with young children for this study because family rou-
tine analysis has important implications for children’s health.

Our results also showed that small children often sometimes
presented challenges to event detection due to the excessive
noise they make at home.

We provided each family one or multiple devices. An app
pre-installed on the devices continuously records audio and
motion unless the device is taken out of home. The app
runs automatically, but the subjects can manually start/end
the recording on any device. The devices can be carried with
the subjects or left somewhere in the house, depending on
their habits. We also offer them the opportunity to review the
recording and delete the part of recording that raises privacy
concerns. We adopted two methods to obtain the ground
truth, which include an interview with the family members
immediately after data collection is finished, and listening to
the recordings to manually label family activities.

A. Micro-scale Routine Analysis

To evaluate the performance of our HMM-based classifier,
we compare our classification result with the result classified
by the Support Vector Machine (SVM), which recognizes the
family meals only based on features in individual detection
windows rather than considering their temporal nature. The
overall performance of FamilyLog and its comparison with
SVM will be discussed later in SectionV-B.

Fig.9 shows the detection results along with the ground truth
of the data from 5 days in Family 4. We can see that the
family usually has dinner around 7-8 pm for about an hour,
except for day 5, which is Friday, when they started dinner at
around 8 pm for about 20 minutes. Compared with the ground
truth, we can see that FamilyLog is accurate in detecting most
of the meals. In day 3 and 5, the SVM classifier yields a
few misclassifications due to the interferences caused by TV
viewing. However, FamilyLog’s HMM-based classifier is able
to avoid such false negative errors. Furthermore, by taking into
account the temporal nature of family routine activities, HMM
is able to minimize the short false negative and false positive
classification results.

B. Evaluation of Meal Detection

In this section, we investigate the overall performance of
FamilyLog in detecting family meals. For each individual fam-
ily, the HMM-based classifier is trained using the information
from the survey and data labeled by the subjects collected in
the first day. We use the precision and recall as the metrics for
this evaluation. Specifically, the precision is defined as the ratio
of the number of true-positive windows to the total number of
windows. The recall is defined as the number of true-positive
windows divided by the total number of windows detected as
family meals. The true negatives are not considered, because
most of the windows containing no activities are able to be
detected, and they have been discarded. In addition, we also
present the evaluation result after making certain relaxation
(e.g., ±3min) on the start/end time. Note that our design
objective will not be affected by minor errors in start/end time,
as long as the the system is able to accurately identify the
occurrences of the family meals.
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TABLE II
FAMILIES THAT PARTICIPATED IN THE EXPERIMENT

Family Children Phone Smartwatch Data Family Meals
(Ages in Years) (Weeks) (Number of Times)

1 1 daughter(5) Nexus 4 N/A 1 4
2 1 daughter(4) Nexus 4 N/A 1 6
3 2 daughters(5, 8),2 sons(1, 3) Nexus 4 Sony Smartwatch 3 2 9
4 3 sons (1, 3, 5) Nexus 3 Sony Smartwatch 3 2 16
5 2 sons (3, 5) Moto G N/A 1 5
6 2 daughters(1,3),1 son(7) Moto G2 × 2 Sony Smartwatch 3 × 2 2 22
7 2 daughters(3,11),2 sons(7,13) Moto G2 × 2 N/A 1 10
8 3 daughters(7,10,18) Moto G2 × 2 Sony Smartwatch 3 1 6

Family Meal{ SVM Detection

Ground Truth
HMM Detection

Day 1

7:00pm 8:00pm 7:00pm

Day 2

8:00pm

Day 3

7:00pm

Day 4

8:00pm 9:00pm

Day 5

Fig. 9. Detected family meals based on data collected from family 4 during 5 days.

50%

60%

70%

80%

90%

100%

Family 1 Family 2 Family 3 Family 4 Family 5 Family 6 Family 7 Family 8

Precision (HMM) Precision (SVM) Recall (HMM) Recall (SVM)

Fig. 10. Overall accuracy of family meal detection in detection windows. The
average precision and recall of FamilyLog are 80.7% and 89.5%, respectively.

80%

100%

Precision Recall

60%

40%

20%

0% Family 3 Family 4 Family 6

Motion Only Acoustic Only Combined Motion Only Acoustic Only Combined

Fig. 11. Accuracy of family meal detection using only motion or acoustic
data.

50%

60%

70%

80%

90%

100%

Family 3 Family 4 Family 6 Family 7 Family 8

Precision Recall
Single Phone

Precision Recall
Multiple Devices

Fig. 12. Accuracy of family meal detection by a single phone or all the
available devices.

Fig. 13. Accuracy of detection for each occurrence of family meal by relaxing
the start/end time by ±3min and ±9min.

The evaluation result of family meal detection is shown
in Fig.10. Our HMM-based classifier outperforms SVM by
6.82% on average in recall. This is primarily because HMM
is more effective in correcting isolated false negatives. We can
also observe that FamilyLog achieves an overall precision of
81.1%, with the highest being 91.1% for family 1 and lowest
being 62% for family 4. We found that the two major causes of
the relatively low precision in family 4 and 5 are the high pitch
voice from children and music, which have similar acoustic
features as clattering sound during meal. However, since these
sounds usually have a short duration, FamilyLog is able to
correct a considerable amount of the resulting false positives.

For the detection that is only based on the motion data from
the smartwatch or the acoustic data, the accuracy is shown
in Fig.11 for Family 3, 4, and 6. For the Family 3 and 4,
the precision is very low when only motion data is used. The
reason is that the motion data for the eating action can be very
similar to some activities like reading or writing, especially
when the smartwatch is wear on the non-dominant hand. On
the other side, the recall is relatively high, because most of the
family meals are able to be correctly detected by the motion
data. Moreover, the smartwatch in Family 6 is rarely worn
when they are at home, and the detection based on the motion
data is not always reliable. Generally, the features from the
acoustic data contribute the major part of the detection, and
the motion data can assist the detection in some special cases.
For example, depending on the food, the clattering sound may
be weak for a family meal, but the detection result can still be
correct due to the conversation between the family members
and the eating action.

Fig.12 shows a comparison of the accuracy of the detec-
tion by a single smartphone or all the available devices in
a family. If FamilyLog only runs on a single device, the
sound source detection will be unavailable. This happens in
Family 6, where the sound from a TV program about cooking
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Fig. 14. Evaluation of participant detection. (a) shows accuracy of speaker recognition. (b) shows each member’s overall proportion in family conversation.
(c) shows accuracy of overall participant detection for each family. The average precision and recall are 97.8% and 92.8%, respectively.

is wrongly detected as a meal without knowing the sound
sources. Furthermore, during a family meal, if one device
is left far away from the dining table but another device is
near, it is possible that the meal can only be detected by
one device. By combining the results from all the available
devices, FamilyLog is less likely to miss a family meal than
only relying on one of them.

Fig.13 shows the detection accuracy of the occurrence of
each family meal. We can see that FamilyLog rarely fails to
detect an occurrence of family meals with the 9min-relaxation
on the starting/ending time, achieving 88.7% precision and
93.3% recall on average. The detection error in each family
meal’s duration is about 4 minutes on average.

C. Participant and TV Detection

The human voice serves as a clue for family meals, and is
also unique feature of a participant. With the permissions from
the Family 1-5, we listened to the raw acoustic data provided
by them, and manually labeled the family members who have
talked during each family meal. For each family, we only focus
on the mother, the father, and one selected child aged between
5-12. We count the number of detection windows that Family-
Log can correctly detect all the participants, and calculate the
precision and recall. Fig.14(c) shows that, FamilyLog achieves
high accuracy in participant detection across different families,
with the average precision and recall being 97.8% and 92.8%,
respectively. This means most of the detection windows yields
correct results for participant detection. This also ensures a
high accuracy for detecting all participants for each occurrence
of the family meal.

Fig.14(a) shows the participant identification result for each
family member. One key observation is that the overall recog-
nition accuracy of other family members are better than that
of fathers. This is mainly due to the fact that father usually
speaks with short sentences or only phases, which are more
difficult to detect. Fig.14(b) shows the proportion for each
family member in overall conversation. We can see that father
speaks less frequently that other family members, which is
also consistent with the findings from social behavior studies
[31]. Another observation is that the child from family 5 has
a relatively low recall. This is mainly because he often speaks
with different tones, thus the voice is difficult to identify using
the signature extracted from his training data.

Table III shows the result of detection of TV viewing during
the family meals. Some of the detections are unavailable,

TABLE III
TV VIEWING DURING FAMILY MEALS

Total: 78 Detected Not availableTV is on TV is off

True TV is on 34 4 15TV is off 3 22

because only one device is used for the experiment, while
the sound source detection requires at least two different
devices.The accuracy is 91.8% precision and 89.5% recall.
The errors are mainly caused by the noise, or the long distance
between the TV and the devices. It can be seen that the TV
is turned on during over 60% of the family meals in our
experiment.

VI. CONCLUSION

In this paper we present the design and implementation
of FamilyLog – a practical system to log family mealtime
activities using off-the-shelf smartwatches and smartphones. It
uses the built-in accelerometers on the smartwatches and mi-
crophones of all mobile devices to detect family mealtime ac-
tivities that are closely related to the family wellness, including
occurrence and duration of meal, conversations, participants,
and TV viewing. The design of FamilyLog addresses several
challenges such as the significant interferences from various
noises in the home. We carefully analyze the sensor data
collected from real families and design the signal features for
HMM-based activity classification, which are robust against
various noises and can be computed efficiently on mobile
devices. We have evaluated FamilyLog with extensive exper-
iments involving 8 families with children (at least one-week
recording in each family). Our results show that FamilyLog
is effective in logging details of family meals across different
families and home environments.
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