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ABSTRACT
Skeletal muscles are activated to generate the force needed for
movement in most high motion sports and exercises. How-
ever, incorrect skeletal muscle activation during these sports
and exercises, can lead to sub-optimal performance and in-
jury. Existing techniques are susceptible to motion artifacts,
particularly when used in high motion sports (e.g. jumping,
cycling, etc.). They require limited body movement, or ex-
perts to manually interpret results, making them unsuitable in
sports scenarios.

This paper presents MyoVibe, a wearable system for deter-
mining muscle activation in high motion exercise scenarios.
MyoVibe senses muscle vibration signals obtained from a
wearable network of accelerometers to determine muscle ac-
tivation. By modeling the characteristics of muscles and high
motion noise using extreme value analysis, MyoVibe can re-
duce noise due to high mobility exercises. Our system can
predict muscle activation with greater than 97% accuracy in
isometric low motion exercise cases, up to 90% accuracy in
high motion exercises.
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INTRODUCTION
Optimal human movement is an important goal for coaches,
trainers, therapists and athletes in most sports. This move-
ment is enabled by skeletal muscles which generate the nec-
essary force to aid in locomotion.

To enable favorable skeletal muscle functioning, proper
skeletal muscle activation and timing is key. However, injury
or poor training habits can lead to sub-optimal timing of mus-
cle activation [20, 34]. Poor timing of activation creates unco-
ordinated movement strategies which decrease sports perfor-
mance and increase the risk of injury due to factors such as
muscle compensation resulting from muscle imbalance and
overuse [13, 19, 29, 34].

Sensing muscle activation in a real world exercise environ-
ment is an especially challenging task. This is due to the fact
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that many exercises and sports involve a high amount body
movement due to the high mobility nature of events such as
cycling or high impact activities such as jumping. While prior
works have explored techniques such as Electromyography
(EMG) or Mechanomyography (MMG) [2, 7, 16, 22] in a
clinical setting, these approaches are inherently unreliable in
high-motion, real-world settings. This is due to motion in-
duced noise (such as impact noise, perspiration, rubbing of
sensors and clothing, etc.) common during heavy exercises.

In this paper, we present MyoVibe, our MMG based solu-
tion for sensing and predicting individual muscle activation in
high motion, high mobility, and high impact movement sce-
narios. MyoVibe senses and interprets the muscle vibration
signal obtained from a wearable sensor network. Based on
our modeling of muscle and motion noise, we developed k-
EVA, a motion artifact mitigation algorithm that alleviates the
effect of inertial sensor noise in these high mobility exercises.

In particular, the contributions of our work are threefold:

• We present MyoVibe, a novel vibration-based muscle acti-
vation sensing system for use in real world high mobility/
high impact sports and exercise environments.

• We develop a dynamic motion noise mitigation algorithm
based on modeling the motion noise characteristics of our
vibration signal.

• We design and perform real-world experiments involving
exercises with a wide range of muscle activation patterns
and motion (such as cycling and jumping, to validate our
approach.

To the best of our knowledge, MyoVibe is the first
accelerometer-based MMG sensing system that addresses
muscle activation sensing in high motion exercises. Our sys-
tem is able to predict muscle activation with greater than 97%
accuracy in static cases and up to 90% accuracy in dynamic
exercise environments.

The rest of the paper is organized as follows. Section Sys-
tem Overview gives an overview of muscle activation funda-
mentals and our system. Section Muscle Activation Detection
describes the details of the MyoVibe system including the k-
EVA motion artifact reduction method. Section Experimental
Design presents the experimental setup used to evaluate My-
oVibe, including the exercises used, as well as details of our
system implementation. Section Evaluation presents our re-
sults. We discuss related work in Section Related Work and
finally conclude in Section Conclusion.

SYSTEM OVERVIEW
The MyoVibe system infers muscle activation through sens-
ing small muscle vibrations produced when muscles contract.
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Figure 1. The components involved in the MyoVibe system. The phys-
ical system consists of a wearable sensor node network responsible for
muscle vibration data collection and a back-end computing device for
inferring muscle activation. The sensor node network consists of nodes
with mpu9150 accelerometers that sense muscle and a data aggregator.

Through a network of sensor nodes placed on the human
body, our system can capture these vibrations. The vibra-
tion data are then transmitted to a back-end computing device
for processing, where the muscle activation status is inferred
from the data. Figure 1 shows an overview of our system. Be-
low, we give a brief introduction of muscle activation theory,
the challenges of sensing muscle activation, and the compo-
nents of the system.

Muscle Activation Background
In this section we provide a brief overview of the physiology
of skeletal muscle vibrations that MyoVibe measures.

Skeletal muscles consist of muscle fibers and their associated
neurons. The neurons send electric pulses from the brain
that cause muscles to contract to enable movement. Prior
works using electromyography primarily focuses on measur-
ing these electric signals [2, 16, 22]. However, this approach
is more prone to noise because of electrode placement re-
quirements and the lack of direct sensing of body motion. We
discuss this related approach in more detail in Section Related
Work.

During contraction, individual muscle fibers move and rub
against each other, creating low amplitude, relatively higher
frequency mechanical vibrations [5, 41]. The frequency band
in which these vibrations occur is between 5 to 100 Hz, but
the exact range varies depending on the particular muscle or
type of muscle contraction [3, 4, 7, 41]. This work aims to
measure and identify muscle activity directly through these
vibrations, or mechamomyography (MMG).

When a skeletal muscle is activated, the signal obtained from
that muscle will contain energy in the frequency band at
which that muscle vibrates, changing the signal’s frequency
distribution. By contrast, when muscles are not contracting,
the muscle fiber filaments do not rub against each other. Con-
sequently, there are minimal to no ensuing muscle vibrations.
It is this change that makes it possible to identify the presence
of muscle activation/inactivation.

The Challenge of Sensing Muscle Activation
As described above, an active muscle produces low ampli-
tude high frequency muscle vibrations. This makes measur-
ing muscle activation in a high mobility exercise environment
difficult due to the high impact/ high motion noise that activ-
ities such as jumping generate. In particular:

Figure 2. An overview of the flow of information in MyoVibe, our
accelerometer-based muscle activation detection system. The system
transforms raw band-limited accelerometer data to a muscle activation
decision via the muscle activation detection module.

• The sensed signal amplitude that is due to motion is much
higher and overwhelms the part that is due to muscle vibra-
tions.

• Non-smooth or impact movements will generate higher
frequency components in the sensed signal that overlap
with the higher frequency band of the small amplitude
muscle vibrations.

As a result, in order to accurately infer muscle activation sta-
tus, muscle sensing systems need to mitigate this kind of mo-
tion noise.

High-pass (HP) filter removes the bulk of the low frequency
noise due to body motion [27, 31]. However, the higher fre-
quency components due to the impure nature of body move-
ment that may overlap with the higher frequency muscle vi-
bration signal still remain and pollute the muscle vibration
signal. Consequently other techniques are required to limit
the higher frequency noise.

In addition to using a HP filter, we developed a novel mo-
tion noise mitigation algorithm, k-EVA, based on the extreme
value analysis (EVA) modeling of vibration data. The k-EVA
method, is able to reduce such high impact noise and signifi-
cantly boost muscle activation detection accuracy during high
mobility/impact exercises. We describe this motion artifact
mitigation technique in detail in Section, Muscle Activation
Detection.

Vibration Data Collection
MyoVibe relies on a wearable sensor network to collect vi-
bration data and a back-end computing device to process the
data. The wearable sensor node network consists of sensor
nodes and a data aggregator node. Each sensor node is placed
externally on the subjects skin, in the proximity of the muscle
to be monitored. Each of the sensor nodes contains a triple
axis accelerometer that senses the skeletal muscle vibrations
that we described in Section Muscle Activation Background.

The sensor nodes are a 2.0 version of the MARS wearable
sensor nodes [27]. These sensors have significant reduction
in size and weight (36%). This reduction enables the wear-
able system to be more comfortable and thus, not impede the
human subject’s motion. In addition, because muscle vibra-
tions produce a force that accelerates the sensor node, a lower
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Figure 3. A plot showing the distribution of extreme values in data ob-
tained from activated quadriceps during a low motion isometric leg ex-
tension (MotLow phase) and activated quadriceps during a higher mo-
tion squat exercise(MotHi phase).The fitted extreme value distributions
are shown in blue and red lines respectively.

weight mitigates the distortion of the muscle vibration mea-
sured by the sensor node. This makes the system more sensi-
tive to the small muscle vibrations.

Since there are many sensors in close proximity in the sen-
sor node network, the MyoVibe system is connected through
a common data bus to a data aggregator node, to minimize
interference. The aggregator node coordinates the continu-
ous sampling of the accelerometers in each sensor node. In
addition, this node also stores the vibration data locally on
an on-board micro-SD, as well as ensures the transmission of
vibration data to the backend computing device.

Back-end Computing Device
In order to infer the muscle activation status of a skeletal mus-
cle, MyoVibe relies on a back-end computing device that runs
the Muscle Activation Detection Module. This module is re-
sponsible for converting muscle vibration data into a muscle
activation state (inactivated or activated). We further describe
this process in Section Muscle Activation Detection.

MUSCLE ACTIVATION DETECTION
MyoVibe processes acceleration data and infers muscle acti-
vation through the Muscle Activation Detection Module. The
processing steps undertaken by this module for such con-
version are shown in Figure 2. First, raw band-limited ac-
celerometer data are received and high pass (HP) filtered to
reduce noise due to gross motion. Next, the filtered signal
undergoes our k-EVA motion artifact reduction process. This
process identifies and marks high motion noise areas where
muscle vibration is likely to be polluted by high motion noise.
Next, the muscle activation detection module extracts fre-
quency domain features from the unmarked low motion sig-
nals. The features are then used for the initial training of a
decision tree model for muscle activation status estimation
and prediction.

Motion Artifact Reduction
As mentioned in Section The Challenge of Sensing Muscle
Activation, the major source of noise in the muscle vibra-
tion signal is due to relatively higher amplitude motion noise
resulting from both low and high frequency components of
body motion. Therefore, by determining the distribution of
the high amplitude sensor readings and selectively eliminat-
ing them, we can improve the quality of the muscle vibration
signal. This is accomplished in our system through both 1)
HP filtering and 2) our k-EVA Method.
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Figure 4. The trade-off between muscle activation prediction accuracy
and amount of discarded data when selecting k. The dotted line shows
that a value of k≈2.5 provides the highest prediction accuracy (>90%)
while discarding about 35% of data.

High Pass Filtering: HP filtering is the first step in mo-
tion artifact mitigation. This step entails passing all the ac-
celerometer data through a 5Hz HP filter. We use a 5Hz HP
filter because applying a cutoff at this point has been shown
by previous works to eliminate most of the low frequency
noise in accelerometer signal due to gross body motion [7,
31].

k-EVA Method: To mitigate the effect of the relatively higher
amplitude and high frequency noise in the sensor data stream,
not removed by the HP filter, we developed our k-EVA algo-
rithm.

The k-EVA algorithm uses extreme value analysis (EVA) to
model and separate extreme sensor values (due to motion
noise) from lower amplitude muscle vibration sensor values.
We use extreme value analysis because body motion will re-
sult in higher amplitude “outlier” sensor values than muscle
vibrations. By modeling the distribution of the “outliers”
and eventually selectively eliminating a majority of these
higher/extreme values due to motion noise, MyoVibe can re-
duce the effect of high motion noise in the accelerometer sig-
nal. Specifically, we use the extreme value type I Gumbel
distribution to model these values [28]. We used this distri-
bution due to its simplicity and good fit with our data. The
parameters of the distribution are obtained using maximum
likelihood estimation. Figure 3 shows an example of how ac-
tual data fits the distribution.

We model the outlier distribution of muscle vibration during
a 20 second low-motion calibration period before each exer-
cises. During this period we collect accelerometer data ob-
tained from a MyoVibe sensor placed on an activated muscle
during a low motion (MotLow) exercise where there is lit-
tle to no body motion (i.e., isometric exercises). We explain
more about these exercises in Section Experimental Design.

Once obtained, we divide the data set into successive non-
overlapping windows of 500 ms each and record the max-
imum/extreme values encountered in each window. Using
these extreme values, we estimate the scale parameter, σ, of
the empirical extreme value distribution underlying the data
set. The scale parameter is directly proportional to standard
deviation of the distribution. This results in a distribution with
a parameter σMot−Low that describes the extreme values in
the low motion phase data. We note here that we did not see
a significant change in the EVA distribution when more that
20 seconds worth of calibration data was collected.
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Figure 5. Examples of frequency domain features extracted from the x-axis signal of an accelerometer placed on the quadriceps. Figures (a) and (d)
show the percentile frequencies. Figures (b) and (e) show the CDF, and Figures (c) and (f) show the area under the CDF. Figures (a), (b), and (c) show
the features for the relaxed case. Figures (d), (e), and (f) show the features for the activated case.

Figure 3 shows a histogram plot of the extreme value distri-
bution obtained from the quadriceps during an isometric leg
extension, i.e., the low motion phase, MotLow. For com-
parison we also show data collected during a higher motion
squat exercise, i.e., a high motion, MotHi phase. The fig-
ure shows that the extreme values obtained from the MotLow

phase tend to show lower values than those obtained from the
MotHi phase. Consequently, defining a threshold that sepa-
rates these two distributions allows our system to identify mo-
tion noise from muscle vibration data. This is the threshold
that k-EVA determines in the form of a multiplicative constant
k multiplied by the σMot−Low scale parameter.

After the threshold is obtained, the calibration phase is com-
plete. To mitigate motion noise, MyoVibe simply discards
any windows of data in the HP filtered data stream that have
data points exceeding the k-EVA threshold value.

Caution must be exercised when selecting the value of k to
use. k determines the number of ‘standard deviations’ of the
low motion noise EVA distribution to include as muscle ac-
tivation data. Therefore, if the value of k is too large, more
muscle activation data is included, but so is some data from
the lower end of the motion noise data. This results in a
higher false alarm rate, resulting from muscle activation mis-
classification errors due motion noise pollution. On the other
hand, if the value of k is set too low, whereas the false alarm
rate might be low, because the system is too conservative,
multiple windows of data and eventually all windows, will be
discarded. This trade-off is shown for the squat exercise in
Figure 4. In this system, we found k of 2.5 provides a good
balance for general motion and the exercises presented in this
paper.

We also note here that the k-EVA threshold is determined by
the MotLow phase data. By contrast, any high mobility/high
motion exercise will have the higher extreme values, dis-
tributed even farther rightward of the MotLow extreme value

distribution. This means that as long as the k value is set
using the above-mentioned guidelines, the type of exercise
will not require a change in the threshold value. We show in
Section Evaluation that using a single well selected k-EVA
threshold is effective in removing noise, especially across a
variety of high-motion exercises.

Feature Extraction
After motion artifact reduction, the Muscle Activation De-
tection Module obtains a set of frequency domain features
from the accelerometer vibration signal. These features are
what our system uses to discern the muscle activation status
by quantifying the frequency shifts in the muscle vibration
signal, described in the Muscle Activation Background sec-
tion, that occur when a muscle is activated. We describe these
features and the rationale behind them next.

We extract a set of five frequency domain features from each
axis of the accelerometer instrumenting every muscle, for a
feature vector of dimension 15, xi =< xi,1, xi,2, ..., xi,15 >,
per accelerometer, placed per muscle. We extract features
from each axis so as to capture muscle vibrations regard-
less of the direction in which they occur. Since the sensor
nodes are linked from one node to the other by braided phys-
ical wires and woven cloth tape, the axes orientations do not
change.

To obtain these frequency domain feature vectors, the mus-
cle activity recognition module calculates a discrete Fourier
transform (DFT) of the motion artifact mitigated accelerom-
eter data stream. Next, using a sliding window with a fixed
width of 500 ms, our system calculates each respective fea-
ture for each accelerometer axis. The result is N observations
of the feature vector xi, where N = duration of signal

window size .
The features obtained from quadriceps data collected during
an isometric (no motion) exercises are shown in Figure 5. The
top row Figures 5 (a), (b), and (c) were computed from an in-
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active quadriceps muscle. The bottom row Figures 5 (d), (e),
and (f) were obtained from an active quadriceps muscle.

The first four features are the 25th, 50th, 75th and 90th per-
centile frequency values. They are shown in Figures 5 (a) and
(d) for relaxed and activated cases, respectively. There is a
clear downward shift in observed percentile frequencies be-
tween the case of relaxed muscle, Figure 5 (a), and activated
muscles (during a no motion exercise), Figure 5 (d). We in-
clude four percentiles in the feature matrix so as to localize
the changes into specific percentile bands. This way, even
small local changes in frequency (shifts) are more apparent
since they are compared to a local percentile bin as opposed
to the entire spectrum.

The fifth feature is the area under the cumulative distribu-
tion function (CDF) curve of the frequencies contained in
the muscle vibration signal sensed by our accelerometers.
The CDF probabilistically defines how all the frequencies
contained in the band-limited accelerometer signal are dis-
tributed, within a given window. Figures 5 (b) shows the
CDF of the frequencies in the signal obtained from inacti-
vated quadriceps muscle. Figure 5 (e) shows the CDF of the
frequencies when the quadriceps muscle is activated.

At rest, when the muscle is not actively contracting and/or
relaxing, there are minimal to no muscle vibrations sensed
by the accelerometer. Consequently, the energy in the ac-
celerometer signal is due to ambient sensor noise and is
spread across the entire signal bandwidth, in our case 0-
250Hz. As a result, the CDF curve appears closer to the cen-
ter 1:1 line as in the plot in Figure 5 (b). However, as a muscle
becomes activated (no motion exercise case), the sensed sig-
nal now contains energy due to muscle vibration and the fre-
quency distribution changes. Since muscle vibrations occur
in the 5 to 100Hz frequency range, the signal energy appears
to shift to lower frequencies. This means that the CDF curve
shifts leftward as shown in Figure 5 (e). This shift also means
that the area under the CDF curve increases as shown in Fig-
ure 5(f) as compared to the area under the CDF curve when
the muscle was relaxed, shown in Figure 5 (c).

These 15 frequency domain feature vectors (5 from each sens-
ing axis) are combined into a single matrix X , shown below
of dimension N by M , M = 15 on a per muscle basis. This
matrix X is the digital representation of the vibration signal
that will be used to infer the muscle activation status of an
instrumented muscle group.

V ibration
feature
matrix

⇒ XN×15 =

⎛
⎜⎜⎝

x1,1 x1,2 · · · x1,15

x2,1 x2,2 · · · x2,15
...

...
. . .

...
xN,1 xN,2 · · · xN,15

⎞
⎟⎟⎠

Learning & Predicting Muscle Activation
Once the system has obtained the muscle vibration feature
matrix for each of the instrumented muscles, the next step is
to build a muscle activation status classifier. The classifier
will be trained on labeled vibration feature matrices to pro-
vide muscle activation status predictions for future incoming
muscle vibration data.

Our system uses supervised machine learning techniques to
build the classifier that will infer whether a muscle is activated

or not. In order for the system to match new feature instances
to a particular muscle activation status, it must first be trained
using a labeled muscle vibration feature matrix, obtained over
a specific training period. Therefore, the system requires that
each feature instance in the training muscle vibration matrix
be labeled as either an inactivated or activated muscle. We
accomplish this through an initial training set of exercises in
which the ground truth muscle activation status is obtained
from a sEMG system.

sEMG is the state-of-the art in muscle activation detection,
even though it suffers from motion noise/artifacts from high
motion exercises. Therefore, in order to use it, we man-
ually, and with the supervision of a qualified physiothera-
pist (sEMG expert), process the sEMG data feed to remove
these artifacts and get clean ground truth activation data. We
describe this process in detail in Section Obtaining sEMG
Ground Truth Labels.

With this information, the muscle activity recognition mod-
ule builds a decision tree (DT) classifier which assign la-
bels or muscle identities to new incoming vibration feature
data points. We use decision trees because they are sufficient
for binary classification, simple and less computationally in-
tensive compered to other more complicated learning algo-
rithms. The DT algorithm learns a hypothesis h ∈ H , (where
H = {h : h|X → Y } is the space of all functions that can
approximate the target function f : X → Y ), to match the
muscle vibration feature matrix instances to muscle activa-
tion statuses. X in this case is the N by M vibration fea-
ture matrix. Y is the vector of muscle activation status, Y =
{yin−activated, yactivated}. The function/hypothesis (classi-

fier) h that our system learns will predict a class yin−activated

or yactivated for a new kth incoming set of feature instances
< xk,1, ...xk,M >, (M =15), calculated from the accelerom-
eter signal of a muscle of interest. The learned classifier is
stored locally on the back-end computing device that hosts
the muscle activation detection module in the form of a clas-
sifier object.

EXPERIMENTAL DESIGN
In this section, we describe the details of our experiments,
including the human subject selection process and the data
collection procedures.

Human Subject Selection
In order to test our system, we obtained real world data from
six participants who fulfilled the below fitness criteria, three
male and three female. The participants were aged between
18 and 45 years of age, exercised regularly, had a maximum
blood pressure of 140/80 and a maximum waist size of 100
cm. These criteria were general enough to ensure a wide par-
ticipant pool but also specific enough to ensure a“fit” testing
population, capable of regular physical activity. Participants
also had no recent history of lower extremity injuries. This
was important for performing lower body exercises. All sub-
ject recruitment and participation procedures adhered to and
were approved by our institutional review board (IRB).

Sensor Placement
To gather both experimental and ground truth data we used
two types of sensors on the participant’s legs. The first
set were the MyoVibe (accelerometer) sensors, which pro-
vided the experimental MMG data. The second set included
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Figure 6. Figures (a) and (b) show the sensor placement for our experi-
ments. Figure (c) shows a close up view of the sensor placement. Figure
(d) shows the MyoVibe sensors in wearable form with a close up on the
MyoVibe sensor. A total of 10 MyoVibe sensors (yellow triangles) and
4 sEMG sensors were used. Two MyoVibe sensors were placed on each
leg’s quadriceps. On each foot, and each calf and hamstrings muscle,
we placed one MyoVibe sensor. One sEMG electrode was placed on the
quadriceps, and calf muscles of each leg. For hygiene reasons, we se-
cured sensors to participants using woven cloth tape instead of using the
wearable MyoVibe system.

sEMG sensors, whose data was manually pre-processed by
our sEMG expert to produce reliable ground truth muscle ac-
tivation labels. The sEMG system we used was a 4 channel
NeXus-10 Mk I biofeedback system from Mind Media Incor-
porated [25]. We now describe the sensor setup.

MyoVibe Sensor Setup: We placed a set of five of MyoVibe
sensors on the skin, near the center of muscles, on each leg
of each participant. As shown in Figure 6, we chose cloth
tape to attach MyoVibe sensors to participants rather than use
the fitted wearable form shown in Figure 6d, which can also
equivalently sense muscle activity [27]. By using cloth tape,
we could perform our experiments efficiently and hygieni-
cally as the sensors would be easy to remove and clean for
use on multiple people. In addition, this way, much like in
the fitted clothing case of Figure 6d, neither the sensor ori-
entations nor placement changed during exercise, reducing
sensing inconsistencies.

On the quadriceps of each leg we placed two MyoVibe sen-
sors. The hamstrings and calf muscles on each leg, each got
one sensor per muscle. We also placed one sensor on each
foot of the participant. The foot sensors were used as a ref-
erence to automatically detect the active leg during the exer-
cises. This helped to reduce the chances of falsely assigning
an ‘activated’ label to the muscles of an inactive leg and vice-
versa.

Each of the MyoVibe sensor nodes contained an Invensense
MPU9150 inertial measurement Unit with a triple axis ac-
celerometer, for sensing the muscle vibrations. The ac-
celerometers were sampled at a continuous rate of 500Hz. To
band-limit the accelerometer signal, we used the MPU9150’s
in-built 1st order 98 Hz anti-aliasing low pass filter. MyoVibe
sensor nodes are also encased in epoxy, making them sweat
and water resistant.

sEMG Sensor Setup: To obtain a ground truth measure of
muscle activation, we additionally instrumented each partici-
pant’s leg muscles with sEMG electrodes. Since we only had
a 4 channel sEMG system, we were able to place the elec-
trodes on either the quadriceps or calf of each leg. The sEMG
electrodes were placed as close as possible alongside the My-
oVibe sensors so as to allow both systems to sense the same

Figure 7. All the exercises investigated in this paper. Figure (a) shows the
isometric leg extension. Figures (b) and (c) show the squat. Figure (d)
shows the cycling exercise. Figures (e) and (f) show the jumping exercise.
Figure (g) shows the muscles worked by these exercises. Table 1 provides
more insights and details about these exercises.

muscle. A diagram showing the placement is shown in Fig-
ure 6.

To ensure the optimal performance for the sEMG system, our
physiotherapist prepared the participants’ skin by shaving any
hairs and then cleaning the application site with an alcohol
prep pad. Once ready, we set the sampling rate of the sEMG
machine to the maximum rate of 2048Hz. As a first defense
for mitigating noise due to body motion and other sEMG arti-
facts, all sEMG data was passed through a manufacturer rec-
ommended fourth order Butterworth 20Hz - 500Hz bandpass
filter. Next we present the exercises which we performed in
order to evaluate our system.

Exercise Selection
Since most sport related/exercise muscle injuries occur in
lower extremity muscles [9, 11], we centered the evaluation
of our system around lower body/leg exercises. Specifically,
the exercises that we considered broadly fall into these three
categories:

1. Isometric (low motion) exercises

2. Repetitive motion exercises

3. High mobility/high impact exercises

Each exercises was performed for two minutes. We describe
each specific exercises in the following sections.

Isometric (low motion) exercise
Isometric exercises are workouts that activate a given muscle
in place, consistently for a period of time without resting, and
with little to no motion. Thus, they are good muscle isolation
exercises. We considered an isometric leg extension exercise
for this category.

Isometric leg extension: This exercise is shown in Fig-
ure 7(a) and works the quadriceps. We selected this exercise
so as to test our system in an ideal scenario where the quadri-
ceps muscle activity is isolated from overall body motion.

The exercise involves continuously sustaining a weight with
the exercising leg while tensing the quadriceps. So as not to
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Figure 7 # Exercise name Muscles worked Details
a Isometric Leg Extension Quadriceps This exercise minimizes motion noise while isolating the quadriceps muscle.

Consequently, we could accurately determine MyoVibe’s ability to detect mus-
cle activation in the quadriceps.

b,c Squat Quadriceps, Ham-
strings, Gluteus

The squat allowed us to evaluate our system in a complex, full body free-form
exercise that involves slightly more aggressive up and down movement than
the isometric exercise.

d Cycling Quadriceps, Calf Cycling provided us with a way to test how well MyoVibe could determine
muscle activation in a common, repetitive, yet motion intensive exercise.

e,f Jumping Quadriceps Through this exercise we could test MyoVibe’s resilience when used during an
ubiquitous exercise that generates an extremely high amount of inertial noise
due to intense ground impact.

Table 1. A table containing details about the exercises shown in Figure 7.

over-strain participants but provide adequate resistance, we
set the weight to 40% of the maximal voluntary contraction
force that the individual could sustain. In order to get suffi-
cient data for analysis, we set the total exercise time to one
minute; 30 seconds rest in the beginning, followed by thirty
seconds of contraction time.

Repetitive motion exercises
To realistically evaluate our system, we needed to include less
ideal and more complex motion exercises than the isometric
ones. Consequently, we included repetitive motion exercises
such as a squat and cycling in our evaluation.

Squat: The squat exercise is shown in Figure 7(b,c). The
squat works mainly the quadriceps, the gluteus and the ham-
strings muscles. We selected the squat because it allowed us
to evaluate our system in a complex, full body, free-form ex-
ercise that involves more aggressive up and down movement
than the isometric exercise. To perform the squat, partici-
pants sustained a barbell weight (20% of body mass for men
and 12% for women) on their body while repeatedly squat-
ting up and down in a smooth, controlled motion for about
two minutes. To ensure consistency among participants, we
used an audible metronome set at 30 beats per minute to pace
each up/down repetition of the exercise. At rates faster than
30 bpm we found that participants rushed, and broke exer-
cise form. At lower rates, the squat seemed too strenuous for
participants, dissuading them from the exercise.

Cycling: The setup for the cycling exercise is shown in Fig-
ure 7(d). Cycling works the quadriceps and calf muscles. We
selected cycling as a test exercise because we wanted to test
how well MyoVibe could determine muscle activation in a
common, cyclic and repetitive, yet motion intensive exercise.
To perform the exercise, participants got on a stationary bike
with adjustable ‘exercise resistance’. As the participants be-
gan to cycle, we gradually increased the bikes resistance set-
ting (so as to provide adequate exercise intensity), until that
participant’s pedaling rhythm was stable. This simulated ped-
aling on a flat road and allowed subjects to pedal with each
leg, roughly, every second, ensuring consistency among test
participants.

High mobility/impact exercises
To evaluate our system during high mobility/impact exer-
cises, we included a jumping exercise. Compared to the repet-
itive and isometric exercises, jumping has much higher mo-
tion noise characteristics due to jump landing impact.

Jumping: The setup of the exercise is shown in Figure 7(f,g).
Jumping as an exercise works the quadriceps muscle. We se-
lected this exercise for two main reasons: 1) It generates an

extremely high amount of inertial noise from the ground im-
pact of a jump landing. 2) A majority of active sports and ex-
ercises involve some form of jumping [14, 30]. Consequently,
the ubiquity and robustness of our system depends greatly on
the system’s ability to detect muscle activation during jump-
ing.

To perform this exercise, participants wore a chest weight vest
(to increase resistance and impact noise), got on top of a set
of stacked steps (one foot high), and jumped to the ground.
To ensure that the quadriceps muscle would be activated, we
asked participants to land on the ground in a squatting fashion
and hold that position for about one second.

With the selected exercises and muscles worked in mind, we
will now evaluate our system’s muscle activation detection
results during these exercises.

EVALUATION
In this section we present our system evaluation metrics and
the results showing the performance of our muscle activation
detection system.

A muscle activation result for a participants was determined
for each 500 ms window, resulting in roughly 1500 results
across all six participants, per exercise. The evaluation met-
rics we use are precision, recall and accuracy. Precision is
the ratio of true positives to that of the sum of true and false
positives, or the positive predictive value. Recall is the ra-
tio of true positives to that of the sum of true positives and
false negatives or sensitivity. Accuracy is defined as the ratio
of the sum of true positives and true negatives to that of the
sum of true positives, true negatives, false positives and false
negatives. Higher precision, recall and accuracy are better.

In order to calculate these metrics, the muscle activation pre-
diction (activated or not activated) provided by our system
needs to be compared to a trusted ground truth label. We use
data from a state of the art sEMG machine, as well as involve
a trained physiotherapist (sEMG expert), so as to provide ac-
curate ground truth muscle activation labels for a given mus-
cle. We show why a sEMG expert is necessary in the Jump-
ing exercise results, subsection. We now briefly describe the
method used to obtain the muscle activation labels next.

Obtaining sEMG Ground Truth Labels
The muscle activation ground truth is obtained from the
sEMG sensors that instrumented the muscle groups we stud-
ied. To get accurate ground truth, we ensured that the sEMG
and MyoVibe MMG systems were time synchronised. This
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Figure 8. The process of obtaining ground truth labels for calf activa-
tion from sEMG data obtained during a stair climb. Step 1 shows the
segmentation of raw sEMG signal into variance based ‘muscle activity
regions’. Step 2 shows the variance profile estimated from these regions.
Using this variance profile, an expert selects a muscle activation thresh-
old (green dotted line). Finally in Step3 the threshold is used to assign
labels to sEMG data as active(2) or inactive(1).

way, both sensing systems captured the activation state of a
muscle at the same point in time.

To obtain muscle activation, we manually processed the
sEMG data since sEMG is heavily affected by motion arti-
facts in high mobility exercises. This meant going through
the sEMG data, with the help of a physiotherapist (sEMG
expert), and the knowledge of the exercises in question, man-
ually removing areas affected by motion artifact. Once we
obtained the processed sEMG data, the next step was to de-
termine whether a muscle is activated or not. For this, we
required a muscle activation event detector algorithm to be
applied to the expert approved sEMG data.

A common muscle activation event detector algorithm that is
in use today and which we apply to our sEMG data, is the
‘Moving Average Whitening Filter with Approximate Gener-
alized Likelihood Ratio test decision rule’ (AGLR) algorithm
by Staude et al. [37, 38, 39]. It determines muscle activation
by modeling the digitized sEMG signal as white Gaussian
noise with dynamic variance. The sEMG labeling process is
shown in Figure 8.

As the muscle moves from an inactive to an active state, the
variance in the sEMG signal changes. By windowing the
sEMG data and selectively grouping similar variance sEMG
windows, we obtain ‘muscle activity regions’ that demarcate
the sEMG data into regions of varying muscle activity. Re-
gions with higher variance, reflect areas of high muscle activ-
ity. Low variances mean that little to no activity was detected
by the sEMG signal. By extracting a representative measure
of the signal variance in each region, a variance profile of the
sEMG signal can be obtained.
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Figure 9. The precision, recall, and accuracy of predicting the activation
status (inactive vs. active) of the quadriceps muscle during the no motion
isometric leg extension exercise. The results using a high pass (HP) filter
only are shown to the left. MyoVibe results are on the right.

Once the variance profile has been obtained, the sEMG expert
then manually selects a threshold value based on the exercise.
Data points above the threshold are assigned as active (2),
while those that are equal to or below the threshold are as-
signed as inactive (1). This threshold value is based on the
sEMG expert’s knowledge of the exercise performed and the
phase of the exercise during which a muscle of interest was
likely activated.

We stress that using a sEMG expert here is paramount. This
is so as to have an expert watch out for motion artifacts due
to exercise motion, that might result in a high variance sig-
nal even when the selected muscle is not activated [32, 33,
43]. Without the human expert intervention, blindly selecting
a threshold may lead to mis-labelled data causing erroneous
ground truth and system evaluation. We will show results
supporting this observation in the high mobility/impact exer-
cise results section.

After the sEMG data has been labeled, denoting whether the
muscle was inactive(1) or active(2), the accelerometer sen-
sor data ground truth labels are obtained. Since the sEMG
and MyoVibe data were time synchronized, the muscle activ-
ity labels transfer directly in time to the accelerometer sensor
data. With the ground truth labels now available, we can use
our system to infer muscle activation status and determine the
accuracy, precision and recall of our entire MyoVibe muscle
activation system.

We will now present the muscle activation results obtained
using MyoVibe, beginning with the isometric leg extension
exercise.

Isometric Leg Extension Evaluation
The muscle activation status prediction results for the isomet-
ric leg extension exercise are shown in Figure 9. The results
using a high pass (HP) filter only for motion artifact reduction
are shown to the left. The results obtained by MyoVibe, when
we augment the HP filter with our k-EVA motion artifact mit-
igation method are shown to the right.

The results show that the muscle activation status prediction
results using only the standard HP filter approach, show high
precision, recall and accuracy >97%. This result does not
change when our MyoVibe system k-EVA motion artifact
mitigation is introduced.

This result is expected as isometric exercises involve very lit-
tle motion. Therefore a HP filter for reducing signal noise is
sufficient to enable accurate muscle activation detection us-
ing inertial MMG. Consequently, we can conclude that when
there is minimal motion associated with muscle activation,
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Figure 10. The precision, recall, and accuracy of predicting the acti-
vation status (inactive vs. active) of the quadriceps muscle during the
squat. High pass (HP) filter only results are on the left. MyoVibe results
are on the right. MyoVibe, shows a >20% increase in precision, recall
& accuracy. Muscle activation detection error also decreases by 50%.

using a HP filter is sufficient for motion noise mitigation. We
can also surmise that for the restricted motion exercises, My-
oVibe can rival the state-of-the-art sEMG muscle activation
system.

Repetitive Motion Exercise Evaluation
In this section we present muscle activation detection predic-
tion results for our MyoVibe system when it is used in the
repetitive motion exercises.

Squat Results: The muscle activation determination results
for the squat exercise are shown in Figure 10. The results
using a standard HP filter are shown to the left. The results
obtained using MyoVibe’s k-EVA are shown to the right. The
results differ greatly depending on the motion artifact miti-
gation method used to process the muscle vibration signal.
When using only a HP filter, the precision, recall and ac-
curacy of predicting the inactive/ active state of the muscle
lie in the 65-78% range. However, with k-EVA, the accuracy
of muscle activation detection rises to 93%. This signifies a
>20% increase in accuracy and > 50% decrease in muscle
activation detection error.

The squat exercise, involves motion inherent to the exercise
itself as well as due to swaying of the barbell or shaking as
participants steady themselves during the exercise. This kind
of movement is neither regular nor smooth, and results in both
low and higher frequency components in the accelerometer
signal. Consequently a HP filter alone is an insufficient mo-
tion mitigation method. MyoVibe’s k-EVA method however,
significantly improve muscle activation detection. The result
is a >50% reduction in prediction accuracy error.

Consequently, we might conclude that during dynamic exer-
cise muscle activation, high pass filtering the accelerometer
signal alone is insufficient. By augmenting the HP filter with
our k-EVA motion artifact reduction algorithm, the accuracy
of an inertial muscle activation detection system can be sig-
nificantly improved.

Cycling Results: The results for predicting the activation sta-
tus of the muscles used when cycling are shown in Figure 11.
Cycling is a high intensity high body motion exercise that we
selected to test the ability of MyoVibe to detect muscle acti-
vation in simultaneously activated muscle groups, namely the
quadriceps and the calf.

Figure 11 shows that for both the calf and quadriceps, the pre-
cision and overall accuracy of determining muscle activation
status improves by as much as 20% when k-EVA is used, as
compared to using only the standard HP filter.

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Figure 11. The precision, recall and accuracy of predicting the muscle
activation status of the calf (a) and quadriceps muscle (b) during cycling.
The (HP) filter only results are shown to the left of either (a) or (b). The
MyoVibe k-EVA results are shown to the right of (a) and (b). k-EVA
increases precision by up to 20% and overall accuracy by >10%.

Cycling is a noisy exercise in terms of inertial sensor noise
because it entails a great deal of motion. Most of this motion
is regular, repetitive and cyclical and may be mitigated by a
HP-type filter [7]. However, the dynamic nature of cycling in-
troduces other inertial noise due to rubbing of skin or clothing
during cycling. This kind of noise may contain broad spec-
trum high frequency components, not sufficiently eliminated
by using a high pass filter. However by using MyoVibe’s mo-
tion artifact mitigation method, we are able to boost the pre-
cision of our system by 10-20% to reach 80-90%.

High Mobility/Impact Motion Exercise Evaluation
In this section we present the results of our system’s predic-
tion of the muscle activation status during exercises that in-
volved a high amount of impact noise and movement related
experiment noise.

Jumping Exercise Results: The results for predicting the ac-
tivation status of the muscles (quadriceps) used during the
high mobility jumping exercise are shown in Figure 12. We
included this exercise to test MyoVibe’s ability to function in
a high impact/high mobility noise environment.

The leftmost graph in Figure 12, shows the results obtained
using sEMG data in which motion artifacts were not removed
by a sEMG expert, compared to the ground truth sEMG data
that has been manually pre-screened by the expert. The preci-
sion of determining if the quadriceps are in-activated is high
but the the recall and overall accuracy are low. The precision
for the active case is also low but the recall for this case high.
The overall accuracy in both active and inactive cases is low
(<65%). Note that this result is actually worse than what is
observed when accelerometer based MMG data is processed
using only a HP filter (middle graph) and using MyoVibe’s
(rightmost graph) motion artifact reduction algorithm.

These results arise from the presence of the motion artifact
due to the motion noise associated with the initial phase of a
jump landing contact, before the quadriceps are activated to
stabilize the subject. This initial impact generates high sEMG
amplitudes, simulating the result that would be expected if
the quadriceps actually activated. Therefore, the threshold se-
lected using the AGLR algorithm is misleadingly high, caus-
ing the state of the muscle to be erroneously assigned as ac-
tivated when it actually isn’t activated, leading to the lower
accuracy.

The middle and rightmost graphs in Figure 12, show the re-
sults from the HP and MyoVibe systems respectively. As the
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Figure 12. The muscle activation precision, recall and accuracy of the
quadriceps muscle during the jumping exercise. The results obtained
when using sEMG whose muscle activation thresholds have NOT been
pre-screened by a sEMG expert ar shown to the right. The (HP) fil-
ter only results are shown in the middle. Finally, the k-EVA results are
shown to the right. The degradation in unprocessed sEMG due to mo-
tion artifact heavily affects muscle activation prediction (<65%) overall
accuracy. With k-EVA, all the metrics show at least 15% improvement.

results show, when only the HP filter is used, the precision,
recall and accuracy of predicting whether the quadriceps are
inactive are in the 47% to 82% range. The recall for the ac-
tive class is especially low at 48%. However, employing the
k-EVA motion artifact mitigation technique to supplement the
HP filter, the precision, recall and accuracy of muscle status
prediction are all much higher, ranging from 75% to 88%.
This signifies a greater than 50% reduction in error. This
result is especially promising for MyoVibe, given the amount
of impact noise that goes along with the jumping exercise
and which MyoVibe was able to mitigate to yield the fore-
mentioned results.

Having presented our results, we will now discuss related
work in the field of muscle activity sensing and muscle ac-
tivation detection.

RELATED WORK
Whereas MyoVibe is designed for sensing muscle activation
in high mobility scenarios, there have been a number of ap-
proaches including vision and model based approaches that
have been explored [35, 36, 40]. Most model based ap-
proaches estimate activity based on motion alone, and thus
are not accurate or suitable for fine-grained measurement of
muscle activation. Vision based approaches require line of
sight to the muscle and are difficult for modern sports where
participants are clothed.

For muscle activation sensing, the state-of-the-art is elec-
tromyography (EMG) [12, 24]. EMG involves using nee-
dle electrodes (fine-wire, EMG) or surface electrodes (surface
electromyography or sEMG) to record muscle action poten-
tials. Fine-wire EMG requires a needle to be placed in the
muscle being measured. This approach, while accurate, is too
invasive for use in an athletic environment. In addition, this
method suffers greatly from signal degradation due to motion
artifacts when used in a physically active scenario [5, 41].

sEMG is more commonly used since it is less intrusive. We
used an expert-aided, sEMG-based ground-truth for our eval-
uations. However, in general sEMG systems have some lim-
itations. First, electrode placement needs to be precise and
largely movement free [10, 15, 17]. In addition, sweat ac-
cumulation underneath sEMG electrodes compromises elec-
trode adherence to the skin as well as signal fidelity [2, 16,
22]. Finally, pure sEMG methods cannot directly estimate
body motion to combat motion artifact pollution of sEMG

data. These limitations eventually complicate the use of
sEMG in high mobility sports.

Currently, there are commercial sEMG systems such as Athos
Gear in development for use in exercise environments [1].
In general, the published Athos videos focus on its use in
smooth motion squats only, which has well defined motion.
In contrast MyoVibe can be utilized in a cases without the
assumption of motion. We however, acknowledge that with
such advancements in sEMG, both sEMG and MMG systems
could possibly supplement each other in a hybrid system and
achieve better muscle activity sensing performance.

Aside from EMG, there has also been work that utilizes wear-
able inertial sensors to measure body motion [6, 26, 42] as
well as determine sensor location based on vibration sens-
ing [27]. These works utilize similar sensors used in our
system and are complimentary to this work. Recently, some
works, including MMG based techniques, have shifted atten-
tion to detecting muscle activation in isometric/ (limited to no
motion) situations [7, 18, 21, 23]. Unlike EMG approaches,
these have the benefit of simplified placement. However,
these works still restrict muscle measurements to only static
exercise environments on single muscles, since it is easier to
sense and infer muscle activation when the signal pollution is
low.

Shinohara et al., provided convincing evidence that MMG
could be used to monitor quadriceps muscle activation in dy-
namic exercises with smooth motion such as during cycle er-
gometry [8]. However, this work involved detecting muscle
activation only when maximal contractions (maximum exer-
tion) were involved. This may not always be the case in real-
word exercises. In addition, this work does not investigate
dynamic high impact events such as jumping. In contrast,
the muscle activation results obtained by our system were
achieved during sub-maximal muscle contractions, as might
be the case during a regular exercise. We also investigate high
impact exercises such as jumping that potentially have more
signal noise.

CONCLUSION
In this paper we introduced MyoVibe, a system for detecting
muscle activation in skeletal muscles during exercises. My-
oVibe is a novel inertial mechanomyography-based system
that consists of multiple vibration sensors and that utilizes al-
gorithms that account for varying levels of mobility and body
motion induced noise. Previous works investigating this sub-
ject have focused mainly on single muscle isometric (little to
no motion) exercises with little to no signal pollution due to
body motion noise.

To the best of our knowledge, our system is the first to
addresses the challenges of high mobility exercises and a
method that can be implemented across multiple muscles.
Specifically, MyoVibe features a k-EVA motion artifact re-
duction technique in addition to HP filtering. This allows our
inertial muscle activation detection system to reach the accu-
racies of more than 98% when detecting isometric low motion
exercise muscle activation and >80% when detecting muscle
activation in high mobility/noisy environments.
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