NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Computational Methods in IS Research

Graph Algorithms
Shortest Path

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

www.umbc.edu




Shortest-Path Algorithms

= Find the “shortest” BN v S N T 4
path from point A to e o o =N
point B N\ ol

m “Shortest” in time, A

(N
9
)
{1

distance, cost | 7

B in =
m Numerous applications T 2 P
o Map navigation .
s R = R

S

=)

S -

o Flight itineraries _ :
O CirCUit Wiring 1 i C\.‘Q\;, Z\ -\n[::lrfln] h17 min :
o Network routing = . '

D
: 4/
2 Z(795)
@ %\_.
9
G2

(&

BaltlmoreIWashmgton
- Internatlonal Thurgeod...



Shortest Path Problems

m Inputis a weighted graph where each edge (v;, v;) has
cost ¢, ; to traverse the edge

m Cost of a path v,v,...vy is

N-1
o Weighted path cost Zcml

=1

m Unweighted path length is N — 1, number of edges on
path



Shortest-Path Problems (cont'd)

m Single-source shortest path problem
o Given a weighted graph G = (V, E), and a distinguished
start vertex, s, find the minimum weighted path from s
to every other vertex in G
o The shortest weighted path from v, to v, has a cost of 6
and v,V,V, v,




Negative Weights

Graphs can have negative weights

E.g., arbitrage

o Shortest positive-weight path is a net gain
o Path may include individual losses

Problem: Negative weight cycles

o Allow arbitrarily-low path costs

o Shortest path cost fromv.tov, =17
m V.V,V, VeV, =-5,still not shortest

o Shortest path from v, to v, undefined
m  negative-cost cycle

Solution

o Detect presence of negative-weight
cycles




Unweighted Shortest Paths

Problem: Find the shortest path from some vertex s to all

other vertices

o Input: s, the source/starting vertex

o Output: minimum # of edges contained on the path
o No weights on edges

Find shortest length paths
o Same as weighted shortest path with all weights equal

o Startvertexiss = v, n ) )
o Shortest path from s to v, is0 |
Breadth-First Search (BFS) v ) (vs )
o Process vertices in layers
m Closest to the start are evaluated first 1 ‘o

m Then most distant vertices

Vs



Unweighted Shortest Paths (cont’'d)

m For each vertex, keep track of
o Whether we have visited it (known)
o Its distance from the start vertex (d,)

O Its predecessor vertex along the shortest path
from the start vertex (p,)

y known

Vi F

| 0 "o Y o
8 88828238 |&™
oo oo oo o |




Unweighted Shortest Paths (cont’'d)

void Graph::unweighted( Vertex s ) Solution 1: Repeatedly iterate through
{ vertices, looking for unvisited vertices
for each Vertex v i
{ at current distance from start vertex s
v.dist = INFINITY;
v.known = false; Running time: O(|V|?)
}
s.dist = 0;

for( int currDist = 0; currDist < NUM_VERTICES; currDist++ )
for each Vertex v
if( !v.known && v.dist == currDist )

{
v.known = true;
for each Vertex w adjacent to v
if( w.dist == INFINITY ) v known d, p,
[ Vi F [o.0] 0
w.dist = currDist + V2 F 0 0
Vi F 0 0
w.path = v; v . o 0
} ' Vs F 00 0
} Ve F o0 0
V7 F o0 0




Unweighted Shortest Paths (cont’'d)

void Graph::unweighted( Vertex s )

{

Queue<Vertex> q;

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
g.enqueue( s );

while( !q.isEmpty( ) )
{

Vertex v = g.dequeue( );

for each Vertex w adjacent to v
if( w.dist == INFINITY )
{
w.dist = v.dist + 1;
w.path = v;
g.enqueue( w );

Solution 2: Ignore vertices that have already
been visited by keeping only unvisited
vertices (distance = «) on the queue
Running time: O(|E[+|V]|) with adjacency lists

Two groups of vertices based on currDist
and currDist+1

known data member is not used




Unweighted Shortest Paths (cont’'d)

Vi

Va

Initial State

v3 Dequeued

v) Dequeued

ve Dequeued

Ve

V7

\ known d, py known d, p, known d, p, known d, p,
V1 F o0 0 F 1 V3 T 1 V3 T 1 V3
vy F co 0 F co 0 F 2 vy F 2 Vi
V3 F 0 0 T 0 0 T 0 0 T 0 0
V4 F 00 0 F 00 0 F 2 vy F 2 V]
Vs F 00 0 F 00 0 F 00 0 F 00 0
Vg F o0 0 F 1 V3 F 1 V3 T 1 V3
vy F 00 0 F 00 0 F 00 0 F 00 0
Q: V3 V1, V6 V6, V2, V4 V2, Vg
v, Dequeued v4 Dequeued vs Dequeued v7 Dequeued

v known d, p,  known d, p, known d, p, known d, py
Vi T 1 V3 T 1 V3 T 1 V3 T 1 V3
Vo T 2 Vi1 T 2 Vi T 2 Vi T 2 V1
V3 T 0 0 T 0 0 T 0 0 T 0 0
V4 F 2 Vi T 2 vy T 2 vy T 2 Vi
Vs F 3 V) F 3 V) T 3 vy T 3 vy
Ve T 1 V3 T 1 V3 T 1 V3 T 1 V3
vy F 00 0 F 3 V4 F 3 Vg4 T 3 Vg4
Q: V4, Vs Vs, V7 vy empty




Weighted Shortest Paths

m Dijkstra’s algorithm

O

Proceeds in stages just like the unweighted shortest-
path algorithm

Select a vertex v, which has the smallest d, among all
the unknown vertices and declares the shortest path
from s to vis known

Use priority queue to store unvisited vertices by distance
from s

After deleteMin v, update distance of remaining vertices
adjacent to v using decreaseKey

Does not work with negative weights



Dijkstra’s Algorithm

* PSEUDOCODE sketch of the Vertex structure.

* In real C++, path would be of type Vertex *,

* and many of the code fragments that we describe
* require either a dereferencing * or use the

* -> operator instead of the . operator.

* Needless to say, this obscures the basic algorithmic ideas.

*/

struct Vertex

{
List adj; // Adjacency list
bool known;

DistType dist; // DistType is probably int

Vertex path; // Probably Vertex *, as mentioned above

// Other data and member functions as needed



Dijkstra’s Algorithm Implementation

m Priority queue such as binary heap
m Selection of a vertex v is deleteMin operation

o Once unknown minimum vertex is found it is no longer
unknown

o Must be removed from future consideration

m Update of w’ s distance (adjacent to v)

O decreaseKey operation




void Graph::dijkstra( Vertex s )

{
for each Vertex v
{
v.dist = INFINITY;
v.known = false; _
) BuildHeap: O(|V|)
s.dist = 0;
for( 5 5 )
{
Vertex v = smallest unknown distance vertex; DeleteMin: O(|V| Iog |V|)
if( v == NOT_A_VERTEX )
break;

v.known = true;

for z?ach Vertex w adjacent to v *In unweighted case we setd,,= d,+ 1 if d,= infinity
if( tw.known ) Here we lower the value of d,, if vertex v offered a shorter path
if( v.dist + cvw < w.dist )«d =d, + c,,if the new value d,, is an improvement

{
// Update w
decrease( w.dist to v.dist + cvw ); DecreaseKey: O(|E| log |V])

w.path = v;

} Total running time: O(|E| log |V|)



<+
2
]
>
O
-
)
-
S
g
<
)S
q®
S
)
o)
<
-

Py

known d, p, v known d,

pv V

known  d,

Vv

known  d,

Vv

O NN~ N Oy N

H B~ BB

V1
V2

O NN~ NN

HoBA e e

Vi
V)

o TR TR SR PR SRS

V1
V2
V3
v

Vs
Ve
V7

o O O O o O O

© 3838828378

S I e A

known d, p, v known d, p, v known d, p,

v

o NN~ MO N

H BB

O NN Mo~ NN

H

Vi
V2
V3

H B e




Dijkstra’s
Algorithm




Why Dijkstra Works

m Dijkstra’s algorithm is known as greedy algorithm

o Solves a problem in stages by doing what appears to be
the best thing at each stage

m Prove that it works: Hypothesis

o A least-cost path from X to Y contains least-cost paths
from X to every city on the path

o E.g., if X2C1>C2->C3->Y is the least-cost path from X
toY, then

m X2>C1->C2->C3is the least-cost path from X to C3
m X2>C1-2>C2is the least-cost path from X to C2 20

m  X->Clis the least-cost path from X to C1 100 " 10

10



Why Dijkstra Works

m  Assume hypothesis is false @'\‘
o i.e., Given a least-cost path P from X to Y that go
is a better path P’ from X to C than the one in P P

m Show a contradiction

o But we could replace the subpath from X to C in P with this lesser-
cost path P’

The path cost from Cto Y is the same

Thus we now have a better path from Xto Y

But this violates the assumption that P is the least-cost path from X
toY

m  Therefore, the original hypothesis must be true



Printing Shortest Paths
/**

* Print shortest path to v after dijkstra has run.
* Assume that the path exists.
*/
void Graph::printPath( Vertex v )
{

if( v.path != NOT_A VERTEX )

{
printPath( v.path ); v known d, p,
cout << " to "3 Vi T 0 0
} vy T 2 \2]
V3 T 3 Vg4
cout << v; \ T 1 %
] Vs T 3 V4
Vg T 6 V7
V7 T 5 Vg




Negative Edge Costs but No Cycles

void Graph::weightedNegative( Vertex s )

{ Running time: O(|E|-|V|)
Queue<Vertex> q; Negative weight cycles?
Dijkstra’s algorithm does not work

for each Vertex v

v.dist = INFINITY; *Vertex u is known but there may be a path from
unknown vertex v back to u that is very negative
s.dist = 03 *Add a constant value to each edge cost?
g.enqueue( s ); *Solve this with the combination of unweighted and

weighted algorithms

while( !q.isEmpty( ) )
{

Vertex v = q.dequeue( );

for each Vertex w adjacent to v
if( v.dist + cvw < w.dist )

{

// Update w
w.dist = v.dist + cvw;
w.path = v;

if( wis not already in q )
g-enqueve( w )5 // a bit can be set for each vertex to  D0es not work for above graph,

} indicate presence in the queue as it has negative-cost cycles



Shortest-Path Problems (cont'd)

Unweighted shortest-path problem: O(|E| + |V])

Weighted shortest-path problem

o No negative edges: O(|E| log |V])

o Negative edges: O(|E| x |[V|)=> poor time bound
Acyclic graphs: O(|E| + |V]) in linear time

No asymptotically faster algorithm for single-
source/single-destination shortest path problem

o No algorithms find the path from s to one vertex (one-to-one)
any faster than finding the path from s to all vertices (one-to-
many)




Shortest Path Algorithms

Important graph problem with numerous applications
Unweighted graph: O(|E| + |V])

Weighted graph

o Dijkstra: O(|E| log |V])

o Negative weights: O(|E| x |V])

All-pairs shortest paths

o Dijkstra: O(|V| x |E]| log |V]) =0O(]|V]3 log |V|)

o Floyd-Warshall: O(|V|3)




