
Computational Methods in IS Research

Graph Algorithms
Shortest Path

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Shortest-Path Algorithms

◼ Find the “shortest”
path from point A to
point B

◼ “Shortest” in time,
distance, cost

◼ Numerous applications
 Map navigation

 Flight itineraries

 Circuit wiring

 Network routing

Shortest Path Problems

◼ Input is a weighted graph where each edge (vi, vj) has
cost ci, j to traverse the edge

◼ Cost of a path v1v2…vN is

 Weighted path cost

◼ Unweighted path length is N – 1, number of edges on
path


−

=

+

1

1

1,

N

i

iic

Shortest-Path Problems (cont’d)

◼ Single-source shortest path problem

 Given a weighted graph G = (V, E), and a distinguished
start vertex, s, find the minimum weighted path from s
to every other vertex in G

 The shortest weighted path from v1 to v6 has a cost of 6
and v1v4v7 v6

Negative Weights

◼ Graphs can have negative weights

◼ E.g., arbitrage

 Shortest positive-weight path is a net gain

 Path may include individual losses

◼ Problem: Negative weight cycles

 Allow arbitrarily-low path costs

 Shortest path cost from v5 to v4 = 1 ?

◼ v5 v4 v2 v5 v4 = - 5, still not shortest

 Shortest path from v1 to v6 undefined
◼ negative-cost cycle

◼ Solution

 Detect presence of negative-weight
cycles

Unweighted Shortest Paths
◼ Problem: Find the shortest path from some vertex s to all

other vertices
 Input: s, the source/starting vertex

 Output: minimum # of edges contained on the path

 No weights on edges

◼ Find shortest length paths

 Same as weighted shortest path with all weights equal

 Start vertex is s = v3
 Shortest path from s to v3 is 0

◼ Breadth-First Search (BFS)

 Process vertices in layers
◼ Closest to the start are evaluated first

◼ Then most distant vertices

Unweighted Shortest Paths (cont’d)

◼ For each vertex, keep track of

 Whether we have visited it (known)

 Its distance from the start vertex (dv)

 Its predecessor vertex along the shortest path
from the start vertex (pv)

Unweighted Shortest Paths (cont’d)
Solution 1: Repeatedly iterate through

vertices, looking for unvisited vertices

at current distance from start vertex s

Running time: O(|V|2)

Unweighted Shortest Paths (cont’d)

Solution 2: Ignore vertices that have already

been visited by keeping only unvisited

vertices (distance = ∞) on the queue

Running time: O(|E|+|V|) with adjacency lists

Two groups of vertices based on currDist

and currDist+1

known data member is not used

Unweighted Shortest Paths (cont’d)

Weighted Shortest Paths

◼ Dijkstra’s algorithm

 Proceeds in stages just like the unweighted shortest-
path algorithm

 Select a vertex v, which has the smallest dv among all
the unknown vertices and declares the shortest path
from s to v is known

 Use priority queue to store unvisited vertices by distance
from s

 After deleteMin v, update distance of remaining vertices
adjacent to v using decreaseKey

 Does not work with negative weights

Dijkstra’s Algorithm

Dijkstra’s Algorithm Implementation

◼ Priority queue such as binary heap

◼ Selection of a vertex v is deleteMin operation

 Once unknown minimum vertex is found it is no longer
unknown

 Must be removed from future consideration

◼ Update of w’s distance (adjacent to v)

 decreaseKey operation

BuildHeap: O(|V|)

DeleteMin: O(|V| log |V|)

DecreaseKey: O(|E| log |V|)

Total running time: O(|E| log |V|)

•In unweighted case we set dw= dv + 1 if dw= infinity

•Here we lower the value of dw if vertex v offered a shorter path

•dw= dv + cv,w if the new value dw is an improvement

Dijkstra’s Adjacency List

Dijkstra’s

Algorithm

Why Dijkstra Works

◼ Dijkstra’s algorithm is known as greedy algorithm

 Solves a problem in stages by doing what appears to be
the best thing at each stage

◼ Prove that it works: Hypothesis

 A least-cost path from X to Y contains least-cost paths
from X to every city on the path

 E.g., if X→C1→C2→C3→Y is the least-cost path from X
to Y, then

◼ X→C1→C2→C3 is the least-cost path from X to C3

◼ X→C1→C2 is the least-cost path from X to C2

◼ X→C1 is the least-cost path from X to C1
A

D C

B
20

10

10100

100

100

Why Dijkstra Works

◼ Assume hypothesis is false
 i.e., Given a least-cost path P from X to Y that goes through C, there

is a better path P’ from X to C than the one in P

◼ Show a contradiction
 But we could replace the subpath from X to C in P with this lesser-

cost path P’

 The path cost from C to Y is the same

 Thus we now have a better path from X to Y

 But this violates the assumption that P is the least-cost path from X
to Y

◼ Therefore, the original hypothesis must be true

X C

Y
P’

Printing Shortest Paths

Negative Edge Costs but No Cycles

Running time: O(|E|·|V|)

Negative weight cycles?

Dijkstra’s algorithm does not work

•Vertex u is known but there may be a path from

unknown vertex v back to u that is very negative

•Add a constant value to each edge cost?

•Solve this with the combination of unweighted and

weighted algorithms

// a bit can be set for each vertex to

indicate presence in the queue

Does not work for above graph,

as it has negative-cost cycles

Shortest-Path Problems (cont’d)
◼ Unweighted shortest-path problem: O(|E| + |V|)

◼ Weighted shortest-path problem
 No negative edges: O(|E| log |V|)

 Negative edges: O(|E| x |V|)→ poor time bound

◼ Acyclic graphs: O(|E| + |V|) in linear time

◼ No asymptotically faster algorithm for single-
source/single-destination shortest path problem
 No algorithms find the path from s to one vertex (one-to-one)

any faster than finding the path from s to all vertices (one-to-
many)

Shortest Path Algorithms

◼ Important graph problem with numerous applications

◼ Unweighted graph: O(|E| + |V|)

◼ Weighted graph

 Dijkstra: O(|E| log |V|)

 Negative weights: O(|E| x |V|)

◼ All-pairs shortest paths

 Dijkstra: O(|V| x |E| log |V|) = O(|V|3 log |V|)

 Floyd-Warshall: O(|V|3)

