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Motivation

m Several real-life problems can be converted to
problems on graphs

m Graphs are one of the pervasive data structures
used in computer science

m Graphs are a useful tool for modeling real-world
problems

m Graphs allow us to abstract details and focus on the
problem

m We can represent our domain as graphs and apply
graph algorithms to solve our problem



Examples

m  Given a map of UMBC and the surrounding area, how to get
from one place to another?
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Examples (cont'd)

m  What data structure to use to represent the problem?
m How do you even think about the problem?
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Examples (cont'd)

Let us strip away irrelevant details
We have a set of vertices {A, B, C,D, E, F, G, H, |, J}
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Examples (cont'd)

Let us strip away irrelevant details
We have a set of edges connecting the vertices
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Examples (cont'd)

m Let us strip away irrelevant details
m Edges can be assigned weights
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Examples (cont'd)

m Let us strip away irrelevant details




Other Examples

Protein-protein
interaction

Power grid ST b

Internet

WWW



Simple Graphs
G = (V, E)

V Is a set of vertices.
E is a set of edges.

ueV,veV
(u,v) e E



Directed Graphs
G = (V, E)

V Is a set of vertices.
E is a set of edges.

ueV,veV
(u,v) e E
(v, u) ¢ E



Weighted Graphs
G = (V, E)

V Is a set of vertices
E is a set of edges



Cardinality of a Set

B “The number of elements in a set”

m Let A be afinite set
o If A= (the empty set), then the cardinality of
Ais O
o If A has exactly n elements, n a natural
number, then the cardinality of A is n

m The cardinality of a set A is denoted by |A]|



Definition of a Graph

A graph G = (V, E) consists of a set of vertices V and a set
of edges E

E={(u,v}|u,veV} ?
o Vertex v is adjacent to vertex u

C /_D
o Edges are sometimes called arcs (¢
Example

o V={A,B,C D,E,F, G}
o E={(A, B), (A D), (B, C), (C, D), (C, G), (D, E),(D,F),(E, F)}

Cardinality of Vertex Set denoted by |V|

o |V| =7 =number of vertices in set V

Cardinality of Edge Set denoted by |E|

o |E| =8 =number of edges in set E




Definitions

m Undirected graphs
o Edges are unordered (i.e. (u, v) is the same as (v, u))
m Directed graphs (digraphs)

o Edges are ordered (i.e. <u, v> # <v, u>)

m Weighted graphs

o Edges have a weight w(u, v) or cost (u, v)




Definitions (cont'd)

m Degree of a vertex

o Number of edges incident on a vertex

m Indegree
o Number of directed edges to vertex

m Qutdegree

o Number of directed edges from vertex

degree(v4) =6
indegree(v4) = 3
outdegree(v4) = 3

Vi V2

indegree(vl) =0
outdegree(vl) =3

v d o indegree(v6) = 3
outdegree(v6) =0




Definitions (cont'd)

m Path

o Sequence of vertices vy, v,, ..., vy such that (v, v., ;) € E for
1<i<N

o Path length is the number of edges on the path (i.e., N — 1)
o Simple path has unique intermediate vertices

m Cycle

o Path where v, = v,

o Usually simple and directed
o Acyclic graphs have no cycles




Definitions (cont'd)

Undirected graph is connected if there is a path
between every pair of vertices

Connected, directed graph is called strongly
connected

Complete graph has an edge between every two

vertices

Vg to vy, v, to v,



Representations

m Adjacency matrix is a two dimensional array

o For each edge (u,v), A[u][v] is true otherwiseitis false

A|B|C
AlO | 1]
B|1]|0]1
Cl1]|1]|O0

Adjacency Matrix
V=

A

VB

C

s e
° el
M g CX e EY

Adjacency List
VI+|E]



Representations (cont’'d)

m [tis good to use adjacency lists for sparse graphs
m Sparse means nhot dense
m Graph is dense means |E| = O(|V]?)




Practical Problem Representations

m Graph represents a street map with Manhattan-like
orientation
o Streets run mainly on north-south or east-west
o Any intersection is attached with four streets
o Graph is directed and all streets are two way, then |E| =4|V|
®

Example: Assume 3000 intersections = 3000-vertex graph and
12000 edges

m Array size for Adjacency Matrix = 9,000,000
m Most of these entries would contain O

m |f the graph is sparse a better solution is adjacency list
o For each vertex we keep a list of all adjacent vertices

o Space requirement is O(|E|+]|V]), linear in the size of the
graph
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Graph Algorithms:

Topological Sort



Topological Sort

m Order the vertices in a directed acyclic graph (DAG),
such that if (u, v) € E, then u appears before v in
the ordering

m Example

Course Prerequisite Structure at a University



Topological Sort (cont'd)

m Topological ordering is not possible if the graph has
a cycle, since for two vertices u and v on the cycle,
u precedes v and v precedes u

m The ordering is not necessarily unique; any legal
ordering will do

Possible topological orderings: vy, V,, Vs, Vg, Vg, V4, Vg and vy, V,, Vg, V,, Vo, V3, V.



Topological Sort (cont'd)

m Solution #1

o While there are vertices left in the graph

m  Find vertex v with indegree equals to O
m  Outputv

m  Remove v from the graph together with all edges to and from v

m Running of Solution #1 is O(|V|?)

Possible topological ordering:
Vi, Vo, Ve, Vg, Vg, Vo, V.




Topological Sort Pseudocode

void Graph::topsort( )
{
for( int counter = 0; counter < NUM VERTICES; counter++ )

{

Vertex v = findNewVertexOfIndegreeZero( ) ;//Notbeen assigned a topological numbet

if( v == NOT A VERTEX ) Takes O(|V|) times, |V| such calls
throw CycleFoundException( );

v.topNum = counter;

for each Vertex w adjacent to v
w.indegree--;

[CydeFoundExcepﬁonO ]




Topological Sort (cont'd)

m Solution #2

Don’t need to search over all vertices for indegree =0

O

O

Only vertices that lost an edge from the previous vertex’s
removal need to be searched

Algorithm

m  Compute the indegree for every vertex

m Place all vertices of indegree 0 to an initially empty queue (note: we
can also use a stack)

m  While the queue is not empty

O

O
O
O

Remove a vertex v from the queue

Output v

Decrement indegrees of all vertices adjacent to v

Put a vertex on the queue as soon as its indegree falls to 0



Topological Sort (cont'd)

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7
Vi 0 0 0 0 0 0 0
V) 1 0 0 0 0 0 0
V3 2 1 1 1 0 0 0
Vg4 3 2 1 0 0 0 0
Vs 1 1 0 0 0 0 0
Vg 3 3 3 3 2 1 0
V7 2 2 2 1 0 0 0
Enqueue Vi V) Vs Vg V3, V7 Vg
Dequeue vy vy Vs V4 V3 V7 Vg




Topological Sort Pseudocode

void Graph::topsort( )
{
Queue<Vertex> q;
int counter = 0;

q.makeEmpty( );
for each Vertex v
if( v.indegree == 0 )
q.enqueue( v );

while( !q.isEmpty( ) )
{

Vertex v
v.topNum

q.dequeue( );
++counter; // Assign next number

for each Vertex w adjacent to v
if( --w.indegree == 0 )
q.enqueue( w );

if( counter != NUM_VERTICES )
throw CycleFoundException( );



Topological Sort (cont'd)

m Solution #2

o Assume that the graph is already read into an adjacency list

o Assume the indegrees are computed and stored with the
vertices

m Running time of Solution #2 is O(|V| + |E]|)

Possible topological ordering:
Vi, Vo, Ve, Vg, Vg, Vo, V.




Graph Algorithms

m Topological sort

m Shortest paths

m Network flow

B Minimum spanning tree
m Applications



