

AN HONORS UNIVERSITY IN MARYLAND

IS 709/809: Computational Methods in IS Research

Graph Algorithms: Introduction

Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

www.umbc.edu

Motivation

- Several real-life problems can be converted to problems on graphs
- Graphs are one of the pervasive data structures used in computer science
- Graphs are a useful tool for modeling real-world problems
- Graphs allow us to abstract details and focus on the problem
- We can represent our domain as graphs and apply graph algorithms to solve our problem

Examples

Given a map of UMBC and the surrounding area, how to get from one place to another?

- What data structure to use to represent the problem?
- How do you even think about the problem?

- Let us strip away irrelevant details
- We have a set of vertices {A, B, C, D, E, F, G, H, I, J}

- Let us strip away irrelevant details
- We have a set of edges connecting the vertices

- Let us strip away irrelevant details
- Edges can be assigned weights

Let us strip away irrelevant details

Other Examples

Power grid

MAAC -ECAR

RCC

WWW

Internet

Simple Graphs

Directed Graphs

Weighted Graphs

G = (V, E)

V is a set of vertices E is a set of edges

Cardinality of a Set

- "The number of elements in a set"
- Let A be a finite set
 - If $A = \emptyset$ (the empty set), then the cardinality of A is 0
 - If A has exactly n elements, n a natural number, then the cardinality of A is n
- The cardinality of a set A is denoted by |A|

Definition of a Graph

- A graph G = (V, E) consists of a set of vertices V and a set of edges E
- $E = \{(u, v) \mid u, v \in V\}$
 - Vertex v is <u>adjacent</u> to vertex u
 - Edges are sometimes called <u>arcs</u>
- Example
 - V = {A, B, C, D, E, F, G}
 - E = {(A, B), (A, D), (B, C), (C, D), (C, G), (D, E), (D, F), (E, F)}
- Cardinality of Vertex Set denoted by |V|
 - |V| = 7 = number of vertices in set V
 - Cardinality of Edge Set denoted by |E|
 - IE| = 8 = number of edges in set E

Definitions

- Undirected graphs
 - Edges are unordered (i.e. (u, v) is the same as (v, u))
- Directed graphs (digraphs)
 - Edges are ordered (i.e. $\langle u, v \rangle \neq \langle v, u \rangle$)
- Weighted graphs
 - Edges have a weight w(u, v) or cost (u, v)

Definitions (cont'd)

- Degree of a vertex
 - Number of edges incident on a vertex
- Indegree
 - Number of directed edges to vertex
- Outdegree
 - Number of directed edges from vertex

degree(v4) = 6 indegree(v4) = 3 outdegree(v4) = 3

indegree(v1) = 0outdegree(v1) = 3

indegree(v6) = 3outdegree(v6) = 0

Definitions (cont'd)

Path

- Sequence of vertices $v_1, v_2, ..., v_N$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le N$
- Path <u>length</u> is the number of edges on the path (i.e., N − 1)
- o <u>Simple</u> path has unique intermediate vertices

Cycle

- Path where $v_1 = v_N$
- Usually simple and directed
- <u>Acyclic</u> graphs have no cycles

Definitions (cont'd)

- Undirected graph is <u>connected</u> if there is a path between every pair of vertices
- Connected, directed graph is called <u>strongly</u> <u>connected</u>
- <u>Complete graph</u> has an edge between every two vertices

 v_6 to v_1 , v_7 to v_1

Representations

Adjacency matrix is a two dimensional array

o For each edge (u,v), A[u][v] is true otherwise it is false

Representations (cont'd)

- It is good to use adjacency lists for sparse graphs
- Sparse means not dense
- Graph is dense means $|E| = \Theta(|V|^2)$

Practical Problem Representations

- Graph represents a street map with Manhattan-like orientation
 - Streets run mainly on north-south or east-west
 - Any intersection is attached with four streets
 - Graph is directed and all streets are two way, then |E| = 4|V|
 - Example: Assume 3000 intersections = 3000-vertex graph and 12000 edges
 - Array size for Adjacency Matrix = 9,000,000
 - Most of these entries would contain 0
- If the graph is **sparse** a better solution is **adjacency list**
 - For each vertex we keep a list of all adjacent vertices
 - Space requirement is O(|E|+|V|), linear in the size of the graph

Graph Algorithms:

Topological Sort

Topological Sort

- Order the vertices in a directed acyclic graph (DAG), such that if (u, v) ∈ E, then u appears before v in the ordering
- Example

Course Prerequisite Structure at a University

Topological Sort (cont'd)

- Topological ordering is not possible if the graph has a cycle, since for two vertices u and v on the cycle, u precedes v and v precedes u
- The ordering is not necessarily unique; any legal ordering will do

Possible topological orderings: v_1 , v_2 , v_5 , v_4 , v_3 , v_7 , v_6 and v_1 , v_2 , v_5 , v_4 , v_7 , v_3 , v_6 .

Topological Sort (cont'd)

Solution #1

- While there are vertices left in the graph
 - Find vertex v with indegree equals to 0
 - Output v
 - Remove v from the graph together with all edges to and from v
- Running of Solution #1 is O(|V|²)

Possible topological ordering: v_1 , v_2 , v_5 , v_4 , v_3 , v_7 , v_6 .

Topological Sort Pseudocode

```
void Graph::topsort( )
for( int counter = 0; counter < NUM_VERTICES; counter++ )</pre>
ł
     Vertex v = findNewVertexOfIndegreeZero();//Not been assigned a topological number
                                                     Takes O(|V|) times, |V| such calls
     if( v == NOT A VERTEX )
         throw CycleFoundException( );
     v.topNum = counter;
     for each Vertex w adjacent to v
         w.indegree--;
                                                          CycleFoundException()
                                                                  v_1
                                                            V3
                                             v_5
                                 V1
                                       v_7
```

Topological Sort (cont'd)

Solution #2

- Don't need to search over all vertices for indegree = 0
- Only vertices that lost an edge from the previous vertex's removal need to be searched
- Algorithm
 - Compute the indegree for every vertex
 - Place all vertices of indegree 0 to an initially empty queue (note: we can also use a stack)
 - While the queue is not empty
 - Remove a vertex v from the queue
 - Output v
 - O Decrement indegrees of all vertices adjacent to v
 - Put a vertex on the queue as soon as its indegree falls to 0

Topological Sort (cont'd)

	Indegree Before Dequeue #							
Vertex	1	2	3	4	5	6	7	
v ₁	0	0	0	0	0	0	0	
v ₂	1	0	0	0	0	0	0	
v ₃	2	1	1	1	0	0	0	
v_4	3	2	1	0	0	0	0	
v_5	1	1	0	0	0	0	0	
v ₆	3	3	3	3	2	1	0	
v_7	2	2	2	1	0	0	0	
Enqueue	v_1	v_2	v_5	v_4	v_3, v_7		v ₆	
Dequeue	v_1	v_2	v_5	v_4	v_3	v_7	v_6	

Topological Sort Pseudocode

ł

```
void Graph::topsort( )
Queue<Vertex> q;
int counter = 0;
q.makeEmpty( );
for each Vertex v
    if( v.indegree == 0 )
        q.enqueue( v );
while( !q.isEmpty( ) )
{
    Vertex v = q.dequeue( );
    v.topNum = ++counter; // Assign next number
    for each Vertex w adjacent to v
        if( --w.indegree == 0 )
            q.enqueue( w );
}
if( counter != NUM VERTICES )
    throw CycleFoundException( );
```

Topological Sort (cont'd)

Solution #2

- Assume that the graph is already read into an adjacency list
- Assume the indegrees are computed and stored with the vertices
- Running time of Solution #2 is O(|V| + |E|)

Possible topological ordering: v_1 , v_2 , v_5 , v_4 , v_3 , v_7 , v_6 .

Graph Algorithms

- Topological sort
- Shortest paths
- Network flow
- Minimum spanning tree
- Applications