
IS 709/809:
Computational Methods in IS Research 

Graph Algorithms: Introduction 

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu



Motivation

◼ Several real-life problems can be converted to 
problems on graphs

◼ Graphs are one of the pervasive data structures 
used in computer science

◼ Graphs are a useful tool for modeling real-world 
problems

◼ Graphs allow us to abstract details and focus on the 
problem

◼ We can represent our domain as graphs and apply 
graph algorithms to solve our problem



Examples

◼ Given a map of UMBC and the surrounding area, how to get 
from one place to another?
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Examples (cont’d)

◼ What data structure to use to represent the problem?

◼ How do you even think about the problem?
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Examples (cont’d)
◼ Let us strip away irrelevant details

◼ We have a set of vertices {A, B, C, D, E, F, G, H, I, J}
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Examples (cont’d)
◼ Let us strip away irrelevant details

◼ We have a set of edges connecting the vertices
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Examples (cont’d)
◼ Let us strip away irrelevant details

◼ Edges can be assigned weights
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Examples (cont’d)

◼ Let us strip away irrelevant details
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Other Examples

Protein-protein

interaction Social network Internet

WWW
Power grid



Simple Graphs

u

v

G = (V, E)

u  V, v  V

(u, v)  E

V is a set of vertices.

E is a set of edges.



Directed Graphs

G = (V, E)

u  V, v  V

(u, v)  E

(v, u)  E

V is a set of vertices.

E is a set of edges.
u

v



Weighted Graphs
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G = (V, E)
V is a set of vertices

E is a set of edges
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Cardinality of a Set

◼ “The number of elements in a set”

◼ Let  A be a finite set
 If  A =  (the empty set),  then the cardinality of  

A  is  0

 If  A  has exactly  n  elements,  n  a natural 
number, then the cardinality of  A  is  n

◼ The cardinality of a set  A  is denoted by  |A|



Definition of a Graph

◼ A graph G = (V, E) consists of a set of vertices V and a set 
of edges E

◼ E = {(u, v} | u, v  V}
 Vertex v is adjacent to vertex u

 Edges are sometimes called arcs

◼ Example
 V = {A, B, C, D, E, F, G}

 E = {(A, B), (A, D), (B, C), (C, D), (C, G), (D, E), (D, F), (E, F)}

◼ Cardinality of Vertex Set denoted by |V|
 |V| = 7 = number of vertices in set V

◼ Cardinality of Edge Set denoted by |E|
 |E| = 8 = number of edges in set E



Definitions

◼ Undirected graphs
 Edges are unordered (i.e. (u, v) is the same as (v, u))

◼ Directed graphs (digraphs)
 Edges are ordered (i.e. <u, v>  <v, u>)

◼ Weighted graphs
 Edges have a weight w(u, v) or cost (u, v)



Definitions (cont’d)

◼ Degree of a vertex
 Number of edges incident on a vertex

◼ Indegree
 Number of directed edges to vertex

◼ Outdegree
 Number of directed edges from vertex

degree(v4) = 6

indegree(v4) = 3

outdegree(v4) = 3

indegree(v1) = 0

outdegree(v1) = 3

indegree(v6) = 3

outdegree(v6) = 0



Definitions (cont’d)

◼ Path
 Sequence of vertices v1, v2, …, vN such that (vi, vi + 1)  E for 

1  i  N

 Path length is the number of edges on the path (i.e., N – 1)

 Simple path has unique intermediate vertices

◼ Cycle
 Path where v1 = vN

 Usually simple and directed

 Acyclic graphs have no cycles



Definitions (cont’d)

◼ Undirected graph is connected if there is a path 
between every pair of vertices

◼ Connected, directed graph is called strongly 
connected

◼ Complete graph has an edge between every two 
vertices

v6 to v1, v7 to v1



Representations

◼ Adjacency matrix is a two dimensional array 
 For each edge (u,v), A[u][v] is true otherwise it is false



Representations (cont’d)

◼ It is good to use adjacency lists for sparse graphs

◼ Sparse means not dense

◼ Graph is dense means |E| = (|V|2)



Practical Problem Representations

◼ Graph represents a street map with Manhattan-like 
orientation

 Streets run mainly on north-south or east-west

 Any intersection is attached with four streets

 Graph is directed and all streets are two way, then |E| = 4|V|

 Example: Assume 3000 intersections = 3000-vertex graph and 
12000 edges
◼ Array size for Adjacency Matrix  =  9,000,000

◼ Most of these entries would contain 0

◼ If the graph is sparse a better solution is adjacency list

 For each vertex we keep a list of all adjacent vertices

 Space requirement is O(|E|+|V|), linear in the size of the 
graph



Graph Algorithms:

Topological Sort



Topological Sort

◼ Order the vertices in a directed acyclic graph (DAG), 
such that if (u, v)  E, then u appears before v in 
the ordering

◼ Example

Course Prerequisite Structure at a University



Topological Sort (cont’d)

◼ Topological ordering is not possible if the graph has 
a cycle, since for two vertices u and v on the cycle, 
u precedes v and v precedes u

◼ The ordering is not necessarily unique; any legal 
ordering will do

Possible topological orderings:  v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, v6.



Topological Sort (cont’d)

◼ Solution #1
 While there are vertices left in the graph

◼ Find vertex v with indegree equals to 0

◼ Output v

◼ Remove v from the graph together with all edges to and from v

◼ Running of Solution #1 is O(|V|2)

Possible topological ordering:

v1, v2, v5, v4, v3, v7, v6.



Topological Sort Pseudocode

CycleFoundException()

//Not been assigned a topological number

Takes O(|V|) times, |V| such calls



Topological Sort (cont’d)

◼ Solution #2
 Don’t need to search over all vertices for indegree = 0

 Only vertices that lost an edge from the previous vertex’s 
removal need to be searched

 Algorithm
◼ Compute the indegree for every vertex

◼ Place all vertices of indegree 0 to an initially empty queue (note:  we 
can also use a stack)

◼ While the queue is not empty

 Remove a vertex v from the queue

 Output v

 Decrement indegrees of all vertices adjacent to v

 Put a vertex on the queue as soon as its indegree falls to 0



Topological Sort (cont’d)



Topological Sort Pseudocode



Topological Sort (cont’d)

◼ Solution #2
 Assume that the graph is already read into an adjacency list

 Assume the indegrees are computed and stored with the 
vertices

◼ Running time of Solution #2 is O(|V| + |E|)

Possible topological ordering:

v1, v2, v5, v4, v3, v7, v6.



Graph Algorithms

◼ Topological sort

◼ Shortest paths

◼ Network flow

◼ Minimum spanning tree

◼ Applications


