
IS 709/809:
Computational Methods in IS Research

Graph Algorithms: Introduction

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Motivation

◼ Several real-life problems can be converted to
problems on graphs

◼ Graphs are one of the pervasive data structures
used in computer science

◼ Graphs are a useful tool for modeling real-world
problems

◼ Graphs allow us to abstract details and focus on the
problem

◼ We can represent our domain as graphs and apply
graph algorithms to solve our problem

Examples

◼ Given a map of UMBC and the surrounding area, how to get
from one place to another?

A

B

C

H

I

G

F

D

E

J

Examples (cont’d)

◼ What data structure to use to represent the problem?

◼ How do you even think about the problem?

A

B

C

D

E F

G H

I

J

Examples (cont’d)
◼ Let us strip away irrelevant details

◼ We have a set of vertices {A, B, C, D, E, F, G, H, I, J}

A

B

C

D

E F

G H

I

J

Examples (cont’d)
◼ Let us strip away irrelevant details

◼ We have a set of edges connecting the vertices

A

B

C

D

E F

G H

I

J

Examples (cont’d)
◼ Let us strip away irrelevant details

◼ Edges can be assigned weights

A

B

C

D

E F

G H

I

J

4

6
6

3

5
6

9

7

8

2

Examples (cont’d)

◼ Let us strip away irrelevant details

A

B

C

D

E F

G H

I

J

4

6
6

3

5
6

9

7

8

2

Other Examples

Protein-protein

interaction Social network Internet

WWW
Power grid

Simple Graphs

u

v

G = (V, E)

u  V, v  V

(u, v)  E

V is a set of vertices.

E is a set of edges.

Directed Graphs

G = (V, E)

u  V, v  V

(u, v)  E

(v, u)  E

V is a set of vertices.

E is a set of edges.
u

v

Weighted Graphs

4

6

3

5
6

9

7

8

2

G = (V, E)
V is a set of vertices

E is a set of edges

6

Cardinality of a Set

◼ “The number of elements in a set”

◼ Let A be a finite set
 If A =  (the empty set), then the cardinality of

A is 0

 If A has exactly n elements, n a natural
number, then the cardinality of A is n

◼ The cardinality of a set A is denoted by |A|

Definition of a Graph

◼ A graph G = (V, E) consists of a set of vertices V and a set
of edges E

◼ E = {(u, v} | u, v  V}
 Vertex v is adjacent to vertex u

 Edges are sometimes called arcs

◼ Example
 V = {A, B, C, D, E, F, G}

 E = {(A, B), (A, D), (B, C), (C, D), (C, G), (D, E), (D, F), (E, F)}

◼ Cardinality of Vertex Set denoted by |V|
 |V| = 7 = number of vertices in set V

◼ Cardinality of Edge Set denoted by |E|
 |E| = 8 = number of edges in set E

Definitions

◼ Undirected graphs
 Edges are unordered (i.e. (u, v) is the same as (v, u))

◼ Directed graphs (digraphs)
 Edges are ordered (i.e. <u, v>  <v, u>)

◼ Weighted graphs
 Edges have a weight w(u, v) or cost (u, v)

Definitions (cont’d)

◼ Degree of a vertex
 Number of edges incident on a vertex

◼ Indegree
 Number of directed edges to vertex

◼ Outdegree
 Number of directed edges from vertex

degree(v4) = 6

indegree(v4) = 3

outdegree(v4) = 3

indegree(v1) = 0

outdegree(v1) = 3

indegree(v6) = 3

outdegree(v6) = 0

Definitions (cont’d)

◼ Path
 Sequence of vertices v1, v2, …, vN such that (vi, vi + 1)  E for

1  i  N

 Path length is the number of edges on the path (i.e., N – 1)

 Simple path has unique intermediate vertices

◼ Cycle
 Path where v1 = vN

 Usually simple and directed

 Acyclic graphs have no cycles

Definitions (cont’d)

◼ Undirected graph is connected if there is a path
between every pair of vertices

◼ Connected, directed graph is called strongly
connected

◼ Complete graph has an edge between every two
vertices

v6 to v1, v7 to v1

Representations

◼ Adjacency matrix is a two dimensional array
 For each edge (u,v), A[u][v] is true otherwise it is false

Representations (cont’d)

◼ It is good to use adjacency lists for sparse graphs

◼ Sparse means not dense

◼ Graph is dense means |E| = (|V|2)

Practical Problem Representations

◼ Graph represents a street map with Manhattan-like
orientation

 Streets run mainly on north-south or east-west

 Any intersection is attached with four streets

 Graph is directed and all streets are two way, then |E| = 4|V|

 Example: Assume 3000 intersections = 3000-vertex graph and
12000 edges
◼ Array size for Adjacency Matrix = 9,000,000

◼ Most of these entries would contain 0

◼ If the graph is sparse a better solution is adjacency list

 For each vertex we keep a list of all adjacent vertices

 Space requirement is O(|E|+|V|), linear in the size of the
graph

Graph Algorithms:

Topological Sort

Topological Sort

◼ Order the vertices in a directed acyclic graph (DAG),
such that if (u, v)  E, then u appears before v in
the ordering

◼ Example

Course Prerequisite Structure at a University

Topological Sort (cont’d)

◼ Topological ordering is not possible if the graph has
a cycle, since for two vertices u and v on the cycle,
u precedes v and v precedes u

◼ The ordering is not necessarily unique; any legal
ordering will do

Possible topological orderings: v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, v6.

Topological Sort (cont’d)

◼ Solution #1
 While there are vertices left in the graph

◼ Find vertex v with indegree equals to 0

◼ Output v

◼ Remove v from the graph together with all edges to and from v

◼ Running of Solution #1 is O(|V|2)

Possible topological ordering:

v1, v2, v5, v4, v3, v7, v6.

Topological Sort Pseudocode

CycleFoundException()

//Not been assigned a topological number

Takes O(|V|) times, |V| such calls

Topological Sort (cont’d)

◼ Solution #2
 Don’t need to search over all vertices for indegree = 0

 Only vertices that lost an edge from the previous vertex’s
removal need to be searched

 Algorithm
◼ Compute the indegree for every vertex

◼ Place all vertices of indegree 0 to an initially empty queue (note: we
can also use a stack)

◼ While the queue is not empty

 Remove a vertex v from the queue

 Output v

 Decrement indegrees of all vertices adjacent to v

 Put a vertex on the queue as soon as its indegree falls to 0

Topological Sort (cont’d)

Topological Sort Pseudocode

Topological Sort (cont’d)

◼ Solution #2
 Assume that the graph is already read into an adjacency list

 Assume the indegrees are computed and stored with the
vertices

◼ Running time of Solution #2 is O(|V| + |E|)

Possible topological ordering:

v1, v2, v5, v4, v3, v7, v6.

Graph Algorithms

◼ Topological sort

◼ Shortest paths

◼ Network flow

◼ Minimum spanning tree

◼ Applications

