NNNNNNNNNNNNNNNNNNNNNNNNNNNN

[S 709/809:
Computational Methods in IS Research

Graph Algorithms: Introduction

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

www.umbc.edu

Motivation

m Several real-life problems can be converted to
problems on graphs

m Graphs are one of the pervasive data structures
used in computer science

m Graphs are a useful tool for modeling real-world
problems

m Graphs allow us to abstract details and focus on the
problem

m We can represent our domain as graphs and apply
graph algorithms to solve our problem

Examples

m Given a map of UMBC and the surrounding area, how to get
from one place to another?

e/ Clear ¢ D
Water R
- %,
REC Field
/7 Q 3 .
“Utop Albin O. Kuhn -~ & Back gd %
Library and Gallery
; Drﬁ./., Ao Library Pond Zipcar Location (=
%, C
> % o 2 o Center for Art Design Pla, 5
=% A and Visual Culture c e =
) 1000 Hilltop Cir
E F . 4G
< $ The Quad 2)
v A
True Grit
¥ A
“Mip
A
Joseph Beuys
i Sculpture Garden H
" d >
olds DF 3 ABC S C
Lavfie 1 ».-\\‘S Pig Pen Pond UMBC Stadium Complex
ndess® BWTech@UMBC
Research & I
Technology Park
0 Audacious Inquiry (= -
-

) Arbutus Middle School

(e N D

Examples (cont'd)

m What data structure to use to represent the problem?
m How do you even think about the problem?

(e N D

" Hills
372) £ Je, ~
. ! cle ¢
- %
REC Field
./ Q ': -
“Mton Albin O. Kuhn -~ S Back gd c
Library and Gallery
= D’u,:, Ro Library Pond Zipcar Location (=
o™ "
o >
C; o
S "",/,/. ~ Center for Art Design “Op Y 2
<X and Visual Culture c e =
. 1000 Hilltop Cir
3
E F ' /e
< £ The Quad [»)
>
True Grit 2
Pamjp,
54
fion p, 2 >
S
Joseph Beuys
| culpture Garden ,
’ e UMBC Soccer Stadium
(o), (
[}
N =
' od
o1ds DF % e A
wapfield _’L_}_\\' Pig Pen Pond UMBC Stadium Complex
,\“
4ndes>® BWTech@UMBC s
il Research & I o
e Technology Park
a Audacious Inquiry (= -
S .) Arbutus Middle School

Examples (cont'd)

Let us strip away irrelevant details
We have a set of vertices {A, B, C,D, E, F, G, H, |, J}

372) [
. ! rc/
e/ Clear e
Water Re
= Z
REC Field
» ,
“Utop Albin O. Kuhn a ‘ . Back rd €
Library and Gallery
D’. Library Pond Zipcar Location (=
™ .
ot 5 o
S S Center for Art Design “Op 3
(o0} " 4 =
<a and Visual Culture c o=
. 1000 Hilltop Cir
3
F ‘ y > ' 4
< : The Quad
! :}
True Grit >
*Imnjp
Yn;
U Stion , - S
< a2 v\;\\
Joseph Beuys
culpture Garden H
‘ AN -
\ XY
iolds L J " S
wapfield RN Pig Pen Pond UMBC Stadium Complex
o
ndes® DUMBC
Research & I
Technology Park
-) Arbutus Middle School

Audacious Inquiry (=

(e N D

Examples (cont'd)

Let us strip away irrelevant details
We have a set of edges connecting the vertices

(372) e

REC Field

Albin O. Kuhn
Library and Gallery

Library Pond

Q
(8

RS

1000 Hilltop Cir

E

True Gr

Aﬁq””‘.’u[».
'Stic
on o,

rd= DF
~fields V
A

Pig Pen Pond

Audacious Inquiry (=

Center for Art Design
and Visual Culture

The Quad

Hillts;

Clear Spring

Water Reservoir

Back gd

Zipcar Locatior

Joseph Beuys
Sculpture Garden

UMBC Stadi

~omplex

BWTech@UMBC
Research &
Technology Park

(e Nl D

QO

oN
&

) Arbutus Middle School

Examples (cont'd)

m Let us strip away irrelevant details
m Edges can be assigned weights

'J’_. Hillta;

= West Hill Apartment Cirel

Clear Spring € Dr

Water Reservoir
Y% 2%
e %

REC Field

/) &
“ Albin O. Kuhn o Back pd
R
Library and Gallery
= Library Pond Zipcar Loce 7
A2 s =
& b =
> % N9 4 o Center for Art Design S
e 3 and Visual Culture =
1000 Hilitop Cir
(r, §
- B
4 £ The Quad o
Tn 6
6 Rdm Nisy
“ation A
O Y
Joseph Beuys
X - Sculpture Garden
£ 7/ g} UMBC Soccer Stadium
&
~
ds OF 28 : = A
\\3‘\\"&”\ A 2 Pig Pen Pond UME ~omplex \\{\L
& : 2 &
4ndes® = BWTech@UMBC S
3 Research & N
Q' Technology Park
@ Audacious Inquiry (= =
= -) Arbutus Middle School

- (e Nl D

Examples (cont'd)

m Let us strip away irrelevant details

Other Examples

Protein-protein
interaction

Power grid ST b

Internet

WWW

Simple Graphs
G = (V, E)

V Is a set of vertices.
E is a set of edges.

ueV,veV
(u,v) e E

Directed Graphs
G = (V, E)

V Is a set of vertices.
E is a set of edges.

ueV,veV
(u,v) e E
(v, u) ¢ E

Weighted Graphs
G = (V, E)

V Is a set of vertices
E is a set of edges

Cardinality of a Set

B “The number of elements in a set”

m Let A be afinite set
o If A= (the empty set), then the cardinality of
Ais O
o If A has exactly n elements, n a natural
number, then the cardinality of A is n

m The cardinality of a set A is denoted by |A]|

Definition of a Graph

A graph G = (V, E) consists of a set of vertices V and a set
of edges E

E={(u,v}|u,veV} ?
o Vertex v is adjacent to vertex u

C /_D
o Edges are sometimes called arcs (¢
Example

o V={A,B,C D,E,F, G}
o E={(A, B), (A D), (B, C), (C, D), (C, G), (D, E),(D,F),(E, F)}

Cardinality of Vertex Set denoted by |V|

o |V| =7 =number of vertices in set V

Cardinality of Edge Set denoted by |E|

o |E| =8 =number of edges in set E

Definitions

m Undirected graphs
o Edges are unordered (i.e. (u, v) is the same as (v, u))
m Directed graphs (digraphs)

o Edges are ordered (i.e. <u, v> # <v, u>)

m Weighted graphs

o Edges have a weight w(u, v) or cost (u, v)

Definitions (cont'd)

m Degree of a vertex

o Number of edges incident on a vertex

m Indegree
o Number of directed edges to vertex

m Qutdegree

o Number of directed edges from vertex

degree(v4) =6
indegree(v4) = 3
outdegree(v4) = 3

Vi V2

indegree(vl) =0
outdegree(vl) =3

v d o indegree(v6) = 3
outdegree(v6) =0

Definitions (cont'd)

m Path

o Sequence of vertices vy, v,, ..., vy such that (v, v., ;) € E for
1<i<N

o Path length is the number of edges on the path (i.e., N — 1)
o Simple path has unique intermediate vertices

m Cycle

o Path where v, = v,

o Usually simple and directed
o Acyclic graphs have no cycles

Definitions (cont'd)

Undirected graph is connected if there is a path
between every pair of vertices

Connected, directed graph is called strongly
connected

Complete graph has an edge between every two

vertices

Vg to vy, v, to v,

Representations

m Adjacency matrix is a two dimensional array

o For each edge (u,v), A[u][v] is true otherwiseitis false

A|B|C
AlO | 1]
B|1]|0]1
Cl1]|1]|O0

Adjacency Matrix
V=

A

VB

C

s e
° el
M g CX e EY

Adjacency List
VI+|E]

Representations (cont’'d)

m [tis good to use adjacency lists for sparse graphs
m Sparse means nhot dense
m Graph is dense means |E| = O(|V]?)

Practical Problem Representations

m Graph represents a street map with Manhattan-like
orientation
o Streets run mainly on north-south or east-west
o Any intersection is attached with four streets
o Graph is directed and all streets are two way, then |E| =4|V|
®

Example: Assume 3000 intersections = 3000-vertex graph and
12000 edges

m Array size for Adjacency Matrix = 9,000,000
m Most of these entries would contain O

m |f the graph is sparse a better solution is adjacency list
o For each vertex we keep a list of all adjacent vertices

o Space requirement is O(|E|+]|V]), linear in the size of the
graph

WASHINGTON STATE

@ [UNIVERSITY
Wil Cleiss, Face to Bice,

Graph Algorithms:

Topological Sort

Topological Sort

m Order the vertices in a directed acyclic graph (DAG),
such that if (u, v) € E, then u appears before v in
the ordering

m Example

Course Prerequisite Structure at a University

Topological Sort (cont'd)

m Topological ordering is not possible if the graph has
a cycle, since for two vertices u and v on the cycle,
u precedes v and v precedes u

m The ordering is not necessarily unique; any legal
ordering will do

Possible topological orderings: vy, V,, Vs, Vg, Vg, V4, Vg and vy, V,, Vg, V,, Vo, V3, V.

Topological Sort (cont'd)

m Solution #1

o While there are vertices left in the graph

m Find vertex v with indegree equals to O
m Outputv

m Remove v from the graph together with all edges to and from v

m Running of Solution #1 is O(|V|?)

Possible topological ordering:
Vi, Vo, Ve, Vg, Vg, Vo, V.

Topological Sort Pseudocode

void Graph::topsort()
{
for(int counter = 0; counter < NUM VERTICES; counter++)

{

Vertex v = findNewVertexOfIndegreeZero() ;//Notbeen assigned a topological numbet

if(v == NOT A VERTEX) Takes O(|V|) times, |V| such calls
throw CycleFoundException();

v.topNum = counter;

for each Vertex w adjacent to v
w.indegree--;

[CydeFoundExcepﬁonO]

Topological Sort (cont'd)

m Solution #2

Don’t need to search over all vertices for indegree =0

O

O

Only vertices that lost an edge from the previous vertex’s
removal need to be searched

Algorithm

m Compute the indegree for every vertex

m Place all vertices of indegree 0 to an initially empty queue (note: we
can also use a stack)

m While the queue is not empty

O

O
O
O

Remove a vertex v from the queue

Output v

Decrement indegrees of all vertices adjacent to v

Put a vertex on the queue as soon as its indegree falls to 0

Topological Sort (cont'd)

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7
Vi 0 0 0 0 0 0 0
V) 1 0 0 0 0 0 0
V3 2 1 1 1 0 0 0
Vg4 3 2 1 0 0 0 0
Vs 1 1 0 0 0 0 0
Vg 3 3 3 3 2 1 0
V7 2 2 2 1 0 0 0
Enqueue Vi V) Vs Vg V3, V7 Vg
Dequeue vy vy Vs V4 V3 V7 Vg

Topological Sort Pseudocode

void Graph::topsort()
{
Queue<Vertex> q;
int counter = 0;

q.makeEmpty();
for each Vertex v
if(v.indegree == 0)
q.enqueue(v);

while(!q.isEmpty())
{

Vertex v
v.topNum

q.dequeue();
++counter; // Assign next number

for each Vertex w adjacent to v
if(--w.indegree == 0)
q.enqueue(w);

if(counter != NUM_VERTICES)
throw CycleFoundException();

Topological Sort (cont'd)

m Solution #2

o Assume that the graph is already read into an adjacency list

o Assume the indegrees are computed and stored with the
vertices

m Running time of Solution #2 is O(|V| + |E]|)

Possible topological ordering:
Vi, Vo, Ve, Vg, Vg, Vo, V.

Graph Algorithms

m Topological sort

m Shortest paths

m Network flow

B Minimum spanning tree
m Applications

