
IS 709/809:
Computational Methods in IS Research 

Algorithm Analysis (Sorting) 

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu



Sorting Problem

◼ Given an array A[0…N – 1], modify A such that A[i]  A[i + 
1] for 0  i  N – 1

◼ Internal vs. external sorting
 Main memory and disk access

◼ Stable vs. unstable sorting
 Equal elements retain original order

 Keep elements with equal keys in the same relative order in the 
output as they were in the input
◼ Input: 1,5x,3,5y,2, 4

◼ Output: 1,2,3,4,5x,5y



Sorting Problem

◼ In-place sorting
 Transform input using a data structure with a constant amount of 

extra storage space; O(1) extra memory
◼ Constant additional storage for the auxiliary variables (i and temp)

 Input is overwritten by the output as the algorithm executes

 Example: Bubble sort, Selection sort, Insertion sort, Heap sort, 
Shell sort etc.

◼ Comparison sorting  vs. non-comparison sorting

 Besides assignment operator; “<” and “>” operators are allowed 
on the input data

 Function template sort with comparator cmp
◼ void sort(Iterator begin, Iterator end, Comparator cmp)



Sorting Algorithms

◼ Insertion sort

◼ Selection sort

◼ Shell sort

◼ Heap sort

◼ Merge sort

◼ Quick sort

◼ …

◼ Simple data structure; focus on analysis



Insertion Sort

◼ Algorithm:

 Start with empty list S and unsorted list A of N items

 For each item x in A
◼ Insert x into S, in sorted order

◼ Example:

7 3 9 5

AS

7 3 9 5

AS

3 7 9 5

AS

3 7 9 5

AS

3 5 7 9

S A



Insertion Sort (cont’d)

◼ In-place

◼ Stable

◼ Best-case?
 O(N)

◼ Worst-case?
 O(N2)

◼ Average-case?
 O(N2)

InsertionSort(A) {

for p = 1 to N – 1 {

tmp = A[p]

j = p

while (j > 0) and (tmp < A[j – 1]) {

A[j] = A[j – 1]

j = j – 1

}

A[j] = tmp

}

}

 Consists of N-1 passes

 For pass p = 1 to N-1

 Position 0 thru p are in sorted order

 Move the element in position p left

until its correct place; among first p+1 elements



Insertion Sort Example

 Consists of N-1 passes

 For pass p = 1 to N-1

 Position 0 thru p are in sorted order

 Move the element in position p left until its correct place is found; among 
first p+1 elements



Selection Sort

◼ Algorithm:
 Start with empty list S and unsorted list A of N items

 for (i = 0; i < N; i++)
◼ x  item in A with smallest key

◼ Remove x from A

◼ Append x to end of S

7 3 9 5

AS

3 7 9 5

AS

3 5 9 7

AS

3 5 7 9

AS

3 5 7 9

S A



Selection Sort (cont’d)

◼ In-place

◼ Unstable

◼ Best-case:  O(N2)

◼ Worst-case:  O(N2)

◼ Average-case:  O(N2)



Shell Sort

◼ Shell sort is a multi-pass algorithm

 Each pass is an insertion sort of the sequences consisting of 
every h-th element for a fixed gap h, known as the increment

 This is referred to as h-sorting

◼ Consider shell sort with gaps 5, 3 and 1 

 Input array: a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12

 First pass, 5-sorting, performs insertion sort on separate sub-
arrays (a1, a6, a11), (a2, a7, a12), (a3, a8), (a4, a9), (a5, a10)

 Next pass, 3-sorting, performs insertion sort on the sub-arrays 
(a1, a4, a7, a10), (a2, a5, a8, a11), (a3, a6, a9, a12)

 Last pass, 1-sorting, is an ordinary insertion sort of the entire 
array (a1,..., a12)



Shell Sort (cont’d)

13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10

13 14 94 33 82

25 59 94 65 23

45 27 73 25 39

10

10 14 73 25 23

13 27 94 33 39

25 59 94 65 82

45

Sorting each column 

(Insertion Sort)

10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45

5-sorting

oWorks by comparing the 

elements that are distant

oThe distance between 

comparisons decreases as 

algorithm runs until 

its last phase



Shell Sort (cont’d)

Sorting each column

10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94

3-sorting

10 14 73

25 23 13

27 94 33

39 25 59

94 65 82

45

10 14 13

25 23 33

27 25 59

39 65 73

45 94 82

94

10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45



Shell Sort (cont’d)

◼ Insertion Sort:

 Start with empty list S and unsorted list A of N items

 For each item x in A
◼ Insert x into S, in sorted order

Unsorted A 

1-sorting/ Insertion Sort

10 13 14 23 25 25 27 33 39 45 59 65 73 82 94 94

10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94

Sorted S 



Shell Sort (cont’d)

◼ In-place

◼ Unstable

◼ Best-case

 Sorted:  (N log2 N)

◼ Worst-case

 Shell’s increments (by 2k):  (N2)

 Hibbard’s increments (by 2k – 1): (N3/2)

◼ Average-case: (N7/6)

◼ Later sorts do not undo the work done in previous sorts
 If an array is 5-sorted and then 3-sorted, the array is now not only 3-

sorted, but both 5- and 3-sorted

ShellSort(A) {

gap = N

while (gap > 0) {

gap = gap / 2

B = <A[0], A[gap], A[2*gap], …>

InsertionSort(B)

}

}



Merge Sort

◼ Idea:  We can merge 2 sorted lists into 1 sorted list 
in linear time

◼ Let Q1 and Q2 be 2 sorted queues

◼ Let Q be empty queue

◼ Algorithm for merging Q1 and Q2 into Q:
 While (neither Q1 nor Q2 is empty)

◼ item1 = Q1.front()

◼ item2 = Q2.front()

◼ Move smaller of item1, item2 from present queue to end of Q

 Concatenate remaining non-empty queue (Q1 or Q2) to end 
of Q



Merge Sort (cont’d)

◼ Recursive divide-and-conquer algorithm

◼ Algorithm:
 Start with unsorted list A of N items

 Break A into halves A1 and A2, having N/2 and N/2 items

 Sort A1 recursively, yielding S1

 Sort A2 recursively, yielding S2

 Merge S1 and S2 into one sorted list S



Merge Sort (cont’d)

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

1 + log2 N levels

3 7 5 9 4 8 0 1

3 5 7 9 0 1 4 8

0 1 3 4 5 7 8 9

Sorted S1 Sorted S2

Unsorted A1 Unsorted A2 

Sorted S 

Divide with 

O(log n) steps

Conquer with

O(log n) steps

Dividing is trivial

Merging is non- trivial



Merging Two Sorted Arrays

1 13 24 26 2 15 27 38A B

Temporary 

array to hold

the output

C

i
j

1. C[k++] =Populate min{ A[i], B[j] }

2. Advance the minimum contributing pointer

1 2 13 15 24 26 27 38

k

(N) time



Merge Sort (cont’d)

◼ Not in-place

◼ Stable

◼ Analysis:  All cases
 T(1) = (1)

 T(N) = 2T(N/2) + (N)

 T(N) = (N log2 N)

 See whiteboard

MergeSort(A)

MergeSort2(A, 0, N – 1)

MergeSort2(A, i, j)

if (i < j)

k = (i + j) / 2

MergeSort2(A, i, k)

MergeSort2(A, k + 1,  j)

Merge(A, i, k + 1, j)

Merge(A, i, k, j)

Create auxiliary array B

Copy elements of sorted A[i…k] and

sorted A[k+1…j] into B (in order)

A = B



Quick Sort

◼ Like merge sort, quick sort is a divide-and-conquer 
algorithm, except

 Don’t divide the array in half

 Partition the array based on elements being less than or 
greater than some element of the array (the pivot)

◼ In-place, unstable

◼ Worst-case running time:  O(N2)

◼ Average-case running time:  O(N log2 N)

◼ Fastest generic sorting algorithm in practice



Quick Sort (cont’d)

◼ Algorithm:

 Start with list A of N items

 Choose pivot item v from A

 Partition A into 2 unsorted lists A1 and A2
◼ A1:  All keys smaller than v’s key

◼ A2:  All keys larger than v’s key

◼ Items with same key as v can go into either list

◼ The pivot v does not go into either list

 Sort A1 recursively, yielding sorted list S1

 Sort A2 recursively, yielding sorted list S2

 Concatenate S1, v, and S2, yielding sorted list S

How to choose pivot?



Quick Sort (cont’d)

4 7 1 5 9 3 0
For now, let the pivot v be the

first item in the list.

1 3 0 7 5 94S1 S2

v

0 1 3S1 S2

v

5 7 9S1 S2

v

0 1 3 4

v

5 7 9S1 S2

0 1 3 4 5 7 9

O(N log2 N)

Dividing (“Partitioning”) is 

non-trivial

Merging is trivial



Quick Sort Algorithm

◼ quicksort (array:  S)
1. If size of S is 0 or 1, return

2. Pivot = Pick an element v in S

3. Partition S – {v} into two disjoint groups
S1 = {x  (S – {v}) | x < v}
S2 = {x  (S – {v}) | x > v}

4. Return {quicksort(S1), followed by v, followed by 
quicksort(S2)}



Quick Sort (cont’d)

0 1 3 4 5 7 9
For now, let the pivot v be the

first item in the list.

0 1 3 4 5 7 9S1 S2

v

1 3 4 5 7 9S1

v

S2

3 4 5 7 9S1

v

S2

4 5 7 9S1

v

S2

What if the list is already sorted?

O(N2)
When input already sorted,

choosing first item as pivot is disastrous. 



Quick Sort (cont’d)

We need a better

pivot-choosing strategy.



Quick Sort (cont’d)

◼ Merge sort always divides array in half

 Quick sort might divide array into sub problems of size 1 
and N – 1
◼ When?

◼ Leading to O(N2) performance

 Need to choose pivot wisely (but efficiently)

◼ Merge sort requires temporary array for merge 
step

 Quick sort can partition the array in place

 This more than makes up for bad pivot choices



Quick Sort (cont’d)

◼ Choosing the pivot

 Choosing the first element
◼ What if array already or nearly sorted?

◼ Good for random array

 Choose random pivot
◼ Good in practice if truly random

◼ Still possible to get some bad choices

◼ Requires execution of random number generator

◼ On average, generates ¼, ¾ split



Quick Sort (cont’d)

◼ Choosing the pivot

 Best choice of pivot?
◼ Median of array

◼ Median is expensive to calculate

◼ Estimate median as the median of three elements (called the 
median-of-three strategy)

 Choose first, middle, and last elements

 E.g., <8, 1, 4, 9, 6, 3, 5, 2, 7, 0>

◼ Has been shown to reduce running time (comparisons) by 14%



Quick Sort (cont’d)

◼ Partitioning strategy
 Partitioning is conceptually straightforward, but easy to do 

inefficiently

 Good strategy
◼ Swap pivot with last element A[right]

◼ Set i = left

◼ Set j = (right – 1)

◼ While (i < j)

 Increment i until A[i] > pivot

 Decrement j until A[j] < pivot

 If (i < j) then swap A[i] and A[j]

◼ Swap pivot and A[i]



Partitioning Example
8 1 4 9 6 3 5 2 7 0     Initial array

8 1 4 9 0 3 5 2 7 6     Swap pivot; initialize i and j

i               j

8 1 4 9 0 3 5 2 7 6     Position i and j

i             j

2 1 4 9 0 3 5 8 7 6     After first swap

i             j

2 1 4 9 0 3 5 8 7 6     Before second swap

i     j

2 1 4 5 0 3 9 8 7 6     After second swap

i     j

2 1 4 5 0 3 9 8 7 6     Before third swap

j i

2 1 4 5 0 3 6 8 7 9     After swap with pivot

i     



Quick Sort (cont’d)

◼ Partitioning strategy

 How to handle duplicates?

 Consider the case where all elements are equal.
◼ Current approach:  Skip over elements equal to pivot

 No swaps (good)

 But then i = (right – 1) and array partitioned into N – 1 and 1 
elements

◼ Worst-case performance:  O(N2)



Quick Sort (cont’d)

◼ Partitioning strategy

 How to handle duplicates?

 Alternate approach
◼ Don’t skip elements equal to pivot

 Increment i while A[i] < pivot

 Decrement j while A[j] > pivot

◼ Adds some unnecessary swaps

◼ But results in perfect partitioning for the array of identical 
elements

 Unlikely for input array, but more likely for recursive calls to quick sort



Which Sort to Use?

◼ When array A is small, generating lots of recursive 
calls on small sub-arrays is expensive

◼ General strategy

 When N < threshold, use a sort more efficient for small 
arrays (e.g. insertion sort)

 Good thresholds range from 5 to 20

 Also avoids issue with finding median-of-three pivot for 
array of size 2 or less

 Has been shown to reduce running time by 15%



Analysis of Quick Sort

◼ Let m be the number of elements sent to the left 
partition

◼ Compute running time T(N) for array of size N

◼ T(0) = T(1) = O(1)

◼ T(N) = T(m) + T(N – m – 1) + O(N)

◼ Pivot selection takes constant time

Time to sort 

left partition

Time to sort 

right partition

Linear time 

spent in partition



Analysis of Quick Sort (cont’d)

◼ Recurrence formula: 

 T(N) = T(m) + T(N – m – 1) + O(N)

◼ Worst-case analysis

 Pivot is the smallest element (m = 0)

T(N) = T(0) + T(N – 1) + O(N)

T(N) = O(1) + T(N – 1) + O(N)

T(N) = T(N – 1) + O(N);  since T(N – 1) = T(N – 2) + O(N – 1); 

T(N) = T(N – 2) + O(N – 1) + O(N)

T(N) = T(N – 3) + O(N – 2) + O(N – 1) + O(N)

…

)()()( 2

1

NOiONT
N

i

==
=



Analysis of Quick Sort (cont’d)

◼ Recurrence formula: 

 T(N) = T(m) + T(N – m – 1) + O(N)

◼ Best-case analysis

 Pivot is in the middle (m = N / 2)

T(N) = T(N / 2) + T(N / 2) + O(N)

T(N) = 2T(N / 2) + O(N)

T(N) = O(N log N)

◼ Average-case analysis

 Assuming each partition equally likely

 T(N) = O(N log N)



Comparison of Sorting Algorithms

Selection Sort (N2) (N2) (N2)             Best Case                

is quadratic 

Bubble Sort (N2) (N2) (N)             Best Case                

is linear 



Comparison of Sorting Algorithms (cont’d)

~3 hours
Good sorting applets:

•http://www.sorting-algorithms.com

•http://math.hws.edu/TMCM/java/xSortLab/

All times are in seconds

http://www.sorting-algorithms.com/
http://math.hws.edu/TMCM/java/xSortLab/


Lower Bound on Sorting

◼ Best worst-case sorting algorithm (so far) is O(N log N)

◼ Can we do better?

◼ Can we prove a lower bound on the sorting problem?

◼ Preview

 For comparison-based sorting, we can’t do better

 We can show lower bound of (N log N)



Decision Trees

◼ A decision tree is a binary tree

 Each node represents a set of possible orderings of the 
array elements

 Each branch represents an outcome of a particular 
comparison

◼ Each leaf of the decision tree represents a 
particular ordering of the original array elements



Decision Trees (cont’d)

Decision tree for

sorting three elements



Decision Trees (cont’d)

◼ The logic of every sorting algorithm that uses 
comparisons can be represented by a decision tree

◼ In the worst case, the number of comparisons used 
by the algorithm equals the depth of the deepest 
leaf

◼ In the average case, the number of comparisons is 
the average of the depth of all leaves

◼ There are N! different orderings of N elements



Lower Bound for Comparison-based 
Sorting

◼ Lemma 7.1:  A binary tree of depth d has at most 2d

leaves

◼ Lemma 7.2:  A binary tree with L leaves must have 
depth at least log L

◼ Theorem 7.6:  Any comparison-based sorting 
requires at least log (N!) comparison in the worst 
case

◼ Theorem 7.7:  Any comparison-based sorting 
requires (N log N) comparisons



Linear Sorting

◼ Some constraints on input array allow faster than 
(N log N) sorting (no comparisons)

◼ Counting Sort1

 Given array A of N integer elements, each less than M

 Create array C of size M, where C[i] is the number of i’s 
in A

 Use C to place elements into new sorted array B

 Running time (N + M) = (N) if M = (N)

1Weiss incorrectly calls this Bucket Sort.



Linear Sorting (cont’d)

◼ Bucket Sort

 Assume N elements of A uniformly 
distributed over the range [0, 1)

 Create N equal-size buckets over [0, 1)

 Add each element of A into appropriate 
bucket

 Sort each bucket (e.g. with insertion sort)

 Return concatenation of buckets

 Average-case running time (N)
◼ Assumes each bucket will contain (1) 

elements



External Sorting

◼ What if the number of elements N we wish to sort 
do not fit in main memory?

◼ Obviously, our existing sorting algorithms are 
inefficient

 Each comparison potentially requires a disk access

◼ Once again, we want to minimize disk accesses



External Merge Sort

◼ N = number of elements in array A to be sorted

◼ M = number of elements that fit in main memory

◼ K = N / M

◼ Approach
 Read in M amount of A, sort it using quick sort, and write it back to 

disks:  O(M log M)

 Repeat above K times until all of A processed

 Create K input buffers and 1 output buffer, each of size M / (K + 1)

 Perform a K-way merge:  O(N)

◼ Update input buffers one disk-page at a time

◼ Write output buffer one disk-page at a time



Multiway Merge (3-way) Example

Ta1 

Ta2

Ta3

Tb1  11  81  94     41  58  75

Tb2  12  35  96     15

Tb3  17  28  99

Ta1  11  12  17  28  35  81  94  96  99

Ta2  15  41  58  75

Ta3

Tb1

Tb2 

Tb3  

Ta1

Ta2

Ta3

Tb1  11  12  15  17  28  35  41  58  75 81  94  96  99

Tb2 

Tb3  

Ta1  81 94  11  96  12  35  17  99  28  58  41  75  15 Read from input tape

Write each of these runs into output tape

Sort in internal memory that can hold M records

Take the first run from each tape and merge



Sorting:  Summary

◼ Need for sorting is ubiquitous in software

◼ Optimizing the sorting algorithm to the domain is 
essential

◼ Good general-purpose algorithms available

 Quick sort

◼ Optimizations continue…

 Sort benchmark

http://sortbenchmark.org/

http://sortbenchmark.org/

