
IS 709/809:
Computational Methods for IS Research 

Algorithm Analysis 

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu



What is an Algorithm?

◼ An algorithm is a clearly specified set of instructions 
to be followed to solve a problem
 Solves a problem but requires a year is hardly of any use

 Requires several gigabytes of main memory is not useful 
on most machines

◼ Problem
 Specifies the desired input-output relationship

◼ Correct algorithm
 Produces the correct output for every possible input in 

finite time

 Solves the problem 



Purpose

◼ Why bother analyzing algorithm or code; isn’t getting 
it to work enough?

 Estimate time and memory in the average case and worst 
case

 Identify bottlenecks, i.e., where to reduce time and space

 Speed up critical algorithms or make them more efficient



Algorithm Analysis

◼ Predict resource utilization of an algorithm
 Running time

 Memory usage

◼ Dependent on architecture
 Serial

 Parallel

 Quantum



What to Analyze

◼ Our main focus is on running time
 Memory/time tradeoff

 Memory is cheap

◼ Our assumption: simple serial computing model
 Single processor, infinite memory



What to Analyze (cont’d)

◼ Let T(N) be the running time
 N (sometimes n) is typically the size of the input

◼ Linear or binary search?

◼ Sorting?

◼ Multiplying two integers?

◼ Multiplying two matrices?

◼ Traversing a graph?

◼ T(N) measures number of primitive operations 
performed
 E.g., addition, multiplication, comparison, assignment



An Example

# of operations

int sum(int n) {                     ?

int partialSum;                    ?

1. partialSum = 0;                    ?

2. for (int i = 1; i <= n; i++)       ?

3.   partialSum += i * i * i;         ?

4. return partialSum;                 ?

}

T(n) = ?



Running Time Calculations

◼ The declarations count for no time

◼ Simple operations (e.g. +, *, <=, =) count for one 
unit each

◼ Return statement counts for one unit



Revisit the Example

Cost

int sum (int n) 0

{

int partialSum; 0

1.    partialSum = 0; 1

2.      for (int i = 1; i <= n; i++) 1+(N+1)+N

3.         partialSum += i * i * i; N*(1+1+2)

4.         return partialSum; 1

}

T(N) = 6N+4

◼ T(N) = 6N+4

9



Running Time Calculations (cont’d)

◼ General rules

 Rule 1 – Loops
◼ The running time of a loop is at most the running time of the 

statements inside the loop (including tests) times the number of 
iterations of the loop

 Rule 2 – Nested loops
◼ Analyze these inside out

◼ The total running time of a statement inside a group of nested 
loops is the running time of the statement multiplied by the 
product of the sizes of all the loops

Number of iterations



Running Time Calculations (cont’d)

◼ Examples

 Rule 1 – Loops

 Rule 2 – Nested loops

# of operations

for (int i = 0; i < N; i++)          ? (1 + N + N)

sum += i * i;                      ?  3*N

T(N) = ?

# of operations

for (int i = 0; i < n; i++)          ? (1 + N + N)

for (int j = 0; j < n; j++)        ? N*(1 + N + N) 

sum++;                           ? N * N

T(N) = ?



Running Time Calculations (cont’d)

◼ General rules
 Rule 3 – Consecutive statements

◼ These just add

◼ Only the maximum is the one that counts

 Rule 4 – Conditional statements (e.g. if/else)
◼ The running time of a conditional statement is never more than 

the running time of the test plus the largest of the running times 
of the various blocks of conditionally executed statements

 Rule 5 – Function calls
◼ These must be analyzed first



Running Time Calculations (cont’d)

◼ Examples

 Rule 3 – Consecutive statements

# of operations

for (int i = 0; i < n; i++)          ?

a[i] = 0;                          ?

for (int i = 0; i < n; i++)          ?

for (int j = 0; j < n; j++)        ?

a[i] += a[j] + i * j;            ?

T(n) = ?



Running Time Calculations (cont’d)

◼ Examples

 Rule 4 – Conditional statements

# of operations

if (a > b && c < d) {                ?

for (int j = 0; j < n; j++)        ?

a[i] += j;                       ?

}

else {

for (int j = 0; j < n; j++)        ?

for (int k = 1; k <= n; k++)     ?

a[i] += j * k;                 ?

}

T(n) = ?



Average and Worst-Case Running Times

◼ Estimating the resource use of an algorithm is 
generally a theoretical framework and therefore a 
formal framework is required

◼ Define some mathematical definitions

◼ Average-case running time Tavg(N) 

◼ Worst-case running time Tworst(N)

◼ Tavg(N)  Tworst(N)

◼ Average-case performance often reflects typical 
behavior of an algorithm

◼ Worst-case performance represents a guarantee for 
performance on any possible input



Average and Worst-Case Running Times 
(cont’d)

◼ Typically, we analyze worst-case performance

 Worst-case provides a guaranteed upper bound for all input

 Average-case is usually much more difficult to compute



Asymptotic Analysis of Algorithms

◼ We are mostly interested in the performance or behavior 
of algorithms for very large input (i.e., as N →)
 For example, let T(N) = 10,000 + 10N be the running time of an 

algorithm that processes N transactions

 As N grows large (N →), the term 10N will dominate

 Therefore, the smaller looking term 10N is more important if N 
is large

◼ Asymptotic efficiency of the algorithms
 How the running time of an algorithm increases with the size of 

the input in the limit, as the size of the input increases without 
bound



Asymptotic Analysis of Algorithms (cont’d)

◼ Asymptotic behavior of T(N) as N gets big

◼ Exact expression for T(N) is meaningless and hard 
to compare

◼ Usually expressed as fastest growing term in T(N), 
dropping constant coefficients
 For example, T(N) = 3N2 + 5N + 1

 Therefore, the term N2 describes the behavior of T(N) as 
N gets big

Fastest growing term



Mathematical Background

◼ Let T(N) be the running time of an algorithm

◼ Let f(N) be another function (preferably simple) 
that we will use as a bound for T(N)

◼ Asymptotic notations
 “Big-Oh” notation O()

 “Big-Omega” notation ()

 “Big-Theta” notation ()

 “Little-oh” notation o()



Mathematical Background (cont’d)

◼ “Big-Oh” notation
 Definition:  T(N) = O(f(N)) if there are positive constants c 

and n0 such that T(N)  cf(N) when N ≥ n0

 Asymptotic upper bound on a function T(N)

 “The growth rate of T(N) is  that of f(N)”
◼ Compare the relative rates of growth

 For example:  T(N) = 10,000 + 10N

 Is T(N) bounded by Big-Oh notation by some simple 
function f(N)?  Try f(N) = N and c = 20

 See graphs on the next slide



Mathematical Background (cont’d)

10,000

20,000

30,000

N

1,000

T(N) = 10,000 + 10N

cf(N), where f(N) = N and c = 20

Therefore, T(N) = O(f(N)), where f(N) = N,

c = 20, N ≥ n0, and n0 = 1,000

Simply, T(N) = O(N)

Check if T(N)  cf(N) => T(N)  20N for large N



Mathematical Background (cont’d)

◼ “Big-Oh” notation

 O(f(N)) is the SET of ALL functions T(N) that satisfy:
◼ There exist positive constants c and n0 such that, for all N ≥ n0, 

T(N)  cf(N)

 O(f(N)) is an uncountably infinite set of functions



Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Examples

◼ 1,000,000N  O(N)

 Proof:  Choose c = 1,000,000 and n0 = 1

◼ N  O(N3)

 Proof:  Set c = 1, n0 = 1

 See graphs on the next slide

Thus, big-oh notation doesn’t care about (most) constant factors

It is unnecessary to write O(2N).  We can just simply write O(N)

Big-Oh is an upper bound



Mathematical Background (cont’d)

◼ Graph of N vs. N3



Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Example

◼ N3 + N2 + N  O(N3)

 Proof:  Set c = 3, and n0 = 1

Big-Oh notation is usually used to indicate dominating (fastest-growing) term



Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Another example:  1,000N  O(N2)
◼ Proof:  Set n0 = 1,000 and c = 1

◼ We could also use n0 = 10 and c = 100

 Another example:  If T(N) = 2N2

◼ T(N) = O(N4)

◼ T(N) = O(N3)

◼ T(N) = O(N2)

There are many possible pairs c and n0

All are technically correct, but the last one 

is the best answer



Mathematical Background (cont’d)

◼ “Big-Omega” notation

 Definition:  T(N) = (g(N)) if there are positive constants 
c and n0 such that T(N) ≥ cg(N) when N ≥ n0

 Asymptotic lower bound

 “The growth rate of T(N) is ≥ that of g(N)”

 Examples

◼ N3 = (N2) (Proof:  c = ?, n0 = ?)

◼ N3 = (N) (Proof:  c = 1, n0 = 1)



n0

N

f(N)

g(N)T(N)

g(N) = O(f(N))
f(N) = Ω(g(N))

Mathematical Background (cont’d)

◼ g(N) is asymptotically upper bounded by f(N)

◼ f(N) is asymptotically lower bounded by g(N)
28



Mathematical Background (cont’d)

◼ “Big-Theta” notation

 Definition:  T(N) = (h(N)) if and only if T(N) = O(h(N)) 
and T(N) = (h(N))

 Asymptotic tight bound

 “The growth rate of T(N) equals the growth rate of h(N)”

 Examples

◼ 2N2 = (N2)

◼ Suppose T(N) = 2N2 then T(N) = O(N4); T(N) = O(N3); T(N) = O(N2)

all are technically correct, but last one is the best answer. Now

writing T(N)= (N2) says not only that T(N)= O(N2), but also the

result is as good (tight) as possible



Mathematical Background (cont’d)

◼ “Little-oh” notation

 Definition:  T(N) = o(g(N)) if for all constants  c there exists an 
n0 such that T(N) < cg(N) when N > n0

◼ That is, T(N) = o(g(N)) if T(N) = O(g(N)) and T(N)  (g(N))

◼ The growth rate of T(N) less than (<) the growth rate of g(N)

◼ Denote an upper bound that is not asymptotically tight

◼ The definition of O-notation and o-notation are similar

 The main difference is that in T(N)=O(g(N)), the bound

0  T(N)  cg(N) holds for some constant c > 0, but in

T(N)=o(g(N)),  the bound 0  T(N) < cg(N) holds for all

constants  c > 0

 For example , N = o(N2), but 2N2 ≠ o(N2)



Mathematical Background (cont’d)

◼ Examples

 N2 = O(N2) = O(N3) = O(2N)

 N2 = (1) = (N) = (N2)

 N2 = (N2)

 N2 = o(N3)

 2N2 + 1 = (?)

 N2 + N =(?)



Mathematical Background (cont’d)

◼ O() – upper bound

◼ () – lower bound

◼ () – tight bound

◼ o() – strict upper bound



Mathematical Background (cont’d)

◼ O-notation gives an upper bound for a function to within a constant 
factor

◼ -notation gives an lower bound for a function to within a constant 
factor

◼ -notation bounds a function to within a constant factor

 The value of f(n) always lies between c1 g(n) and c2 g(n) inclusive



Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 When asked to analyze an algorithm’s complexity

◼ 1st preference:  Use ()

◼ 2nd preference:  Use O() or o()

◼ 3rd preference:  Use ()

Tight bound

Upper bound

Lower bound



Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 Always express an algorithm’s complexity in terms of its 
worst-case, unless specified otherwise
◼ Note:  Worst-case can be expressed in any of the asymptotic 

notations:  O(), (), (), or o()



Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 Way’s to answer a problem’s complexity
◼ Q1)  This problem is at least as hard as … ?

 Use lower bound here

◼ Q2)  This problem cannot be harder than … ?

 Use upper bound here

◼ Q3)  This problem is as hard as … ?

 Use tight bound here



Mathematical Background (cont’d)

◼ Some rules
 Rule 1:  If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

◼ T1(N) + T2(N) = O(f(N) + g(N)) less formally it is max (O(f(N)), O(g(N)))

◼ T1(N) * T2(N) = O(f(N) * g(N))

 Rule 2:  If T(N) is a polynomial of degree k, then T(N) = (Nk)

 Rule 3:  logk N = O(N) for any constant k
◼ Logarithm grows very slowly as log N  N for N ≥ 1 

 Rule 4:  loga N = (logb N) for any constants  a and b



Mathematical Background (cont’d)

◼ Rate of Growth
Considered “efficient”

Considered “useless” 38



Mathematical Background (cont’d)

◼ Some examples

 Prove that:  n log n = O(n2).

◼ We know that log n  n for n ≥ 1 (here, n0 = 1).

◼ Multiplying both sides by n:  n log n  n2

 Prove that:  6n3  O(n2).
◼ Proof by contradiction

◼ If 6n3 = O(n2), then 6n3  cn2



Maximum subsequence sum problem

◼ Maximum subsequence sum problem
 Given (possibly negative) integers A1, A2, …, AN, find the 

maximum value (≥ 0) of:

 We don’t need the actual sequence (i, j), just the sum

 If the final sum is negative, the maximum sum is 0

 E.g. <1, -4, 4, 2, -3, 5, 8, -2>


=

j

ik

kA

i j The maximum sum is 16

40



Solution 1

◼ MaxSubSum:  Solution 1
 Idea:  Compute the sum for all possible subsequence 

ranges (i, j) and pick the maximum sum

MaxSubSum1(A)

maxSum = 0

for i = 1 to N

for j = i to N

sum = 0

for k = i to j

sum = sum + A[k]

if (sum > maxSum)

maxSum = sum

return maxSum

All possible starting point

All possible ending point

Calculate sum for range (i, j)

O(N)

O(N)

O(N)

T(N) = O(N3)

41



Algorithm 1



Solution 1 (cont’d)

◼ Analysis of Solution 1
 Three nested for loops, each iterating at most N times

 Operations inside for loops take constant time

 But,  for loops don’t always iterate N times

 More precisely;


−

=

−

= =

=
1

0

1

1)(
N

i

N

ij

j

ik

NT
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Solution 1 (cont’d)

◼ Analysis of Solution 1
 Detailed calculation of T(N)

 Will be derived in the class; 

T(N)= (N3 + 3N2 + 2N)/6 = O(N3)


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Solution 2 

◼ MaxSubSum:  Solution 2
 Observation: 

 So, we can re-use the sum from previous range 


−

==

+=
1j

ik

kj

j

ik

k AAA

MaxSubSum2(A)

maxSum = 0

for i = 1 to N

sum = 0

for j = i to N

sum = sum + A[j]

if (sum > maxSum)

maxSum = sum

return maxSum

O(N)

O(N)

T(N) = O(N2)45



Algorithm 2
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Solution 2 (cont’d)

◼ Analysis of Solution 2
 Two nested for loops, each iterating at most N times

 Operations inside for loops take constant time

 More precisely;


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Solution 2 (cont’d)

◼ Analysis of Solution 2
 Detailed calculation of T(N)

 Will be derived in the class; 

T(N)= N(N+1)/2 = O(N2)


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−
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Solution 3 

◼ MaxSubSum:  Solution 3
 Idea:  Recursive, “divide and conquer”

◼ Divide sequence in half:  A1..center and A(center + 1)..N

◼ Recursively compute MaxSubSum of left half

◼ Recursively compute MaxSubSum of right half

◼ Compute MaxSubSum of sequence constrained to use Acenter

and A(center + 1)

◼ For example

<1, -4, 4, 2, -3, 5, 8, -2>

compute maxsubsumleft compute maxsubsumright

compute maxsubsumcenter 49



Solution 3 (cont’d)
◼ MaxSubSum:  Solution 3 

 Idea:  Recursive, “divide and conquer”

 Divide: split the problem into two roughly equal subproblems,

which are then solved recursively

 Conquer: patching together the two solutions of the subproblems, 
and possibly doing a small amount of additional work to arrive at a 
solution for the whole problem

 The maximum subsequence sum can be in one of three places
◼ Entirely in the left half of the input

◼ Entirely in the right half

◼ Or it crosses the middle and is in both halves

◼ First two cases can be solved recursively

◼ Last case: find the largest sum in the first half that includes the last element in the 
first half and the largest sum in the second half that includes the first element in 
the second half. These two sums then can be added together.

50



Example

◼ For example, consider the sequence  

4, -3, 5, -2 || -1, 2, 6,-2, where || marks the half-way point

 The maximum subsequence sum of the left half is 6: 4 + -3 + 5. 

 The maximum subsequence sum of the right half is 8: 2 + 6.

 The maximum subsequence sum of sequences having -2 as the 
right edge is 4: 4 + -3 + 5 + -2; and the maximum subsequence 
sum of sequences having -1 as the left edge is 7: -1 + 2 + 6. 

 Comparing 6, 8 and 11 (4 + 7), the maximum subsequence sum 
is 11 where the subsequence spans both halves: 4 + -3 + 5 + -2 + 
-1 + 2 + 6.

51



Solution 3 (cont’d)

◼ MaxSubSum:  Solution 3

MaxSubSum3(A, i, j)

maxSum = 0

if (i == j)

if (A[i] > 0)

maxSum = A[i]

else

k = floor((i + j) / 2)

maxSumLeft = MaxSubSum3(A, i, k)

maxSumRight = MaxSubSum4(A, k + 1, j)

compute maxSumThruCenter

maxSum = Maximum(maxSumLeft, maxSumRight, maxSumThruCenter)

return maxSum

52



Solution 3 (cont’d)

53



// How to find the maximum subsequence sum that passes through the center

Keep right end

fixed at center

and vary left end

Keep left end

fixed at center + 1

and vary right end

Add the two to determine maximum subsequence sum through center
54



Solution 3 (cont’d)
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Solution 3 (cont’d)

◼ Analysis of Solution 3

 T(1) = O(1)

 T(N) = 2T(N / 2) + O(N)

 T(N) = O(?) 
◼ Will be derived in the class



Solution 4

◼ MaxSubSum:  Solution 4
 Observations

◼ Any negative subsequence cannot be a prefix to the 
maximum subsequence

◼ Or, only a positive, contiguous subsequence is worth adding

◼ Example: <1, -4, 4, 2, -3, 5, 8, -2>
MaxSubSum4(A)

maxSum = 0

sum = 0

for j = 1 to N

sum = sum + A[j]

if (sum > maxSum)

maxSum = sum

else if (sum < 0)

sum = 0

return maxSum
T(N) = O(N) 57



Solution 4 (cont’d)

58



◼ Online Algorithm

 constant space and runs in linear time

 just about as good as possible

Solution 4 (cont’d)

59



MaxSubSum Running Times



MaxSubSum Running Times (cont’d)



MaxSubSum Running Times (cont’d)



Logarithmic Behavior

◼ T(N) = O(log2 N)

◼ An algorithm is O(log2 N) if it takes constant O(1) 
time to cut the problem size by a fraction (which is 
usually ½)

◼ Usually occurs when
 Problem can be halved in constant time

 Solutions to sub-problems combined in constant time

◼ Examples
 Binary search

 Euclid’s algorithm

 Exponentiation



Binary Search
◼ Given an integer X and integers A0, A1, …, AN – 1, which 

are presorted and already in memory, find i such that Ai

= X, or return i = -1 if X is not in the input

◼ Obvious Solution: scanning through the list from left to 
right and runs in linear time
 Does not take advantage of the fact that list is sorted

 Not likely to be best

◼ Better Strategy: Check if X is the middle element
 If so, the answer is at hand

 If  X is smaller than middle element, apply the same strategy to the sorted 
subarray to the left of the middle element

 Likewise, if X is larger than middle element, we look at the right half

◼ T(N) = O(log2 N)





Euclid’s Algorithm

◼ Compute the greatest common divisor gcd(M, N) 
between the integers M and N

 That is, the largest integer that divides both

 Example: gcd (50,15) = 5

 Used in encryption



Euclid’s Algorithm (cont’d)



Euclid’s Algorithm (cont’d)

◼ Estimating the running time: how long the sequence 
of remainders is?
 log N is a good answer, but value of the remainder does not decrease 

by a constant factor

 Indeed the remainder does not decrease by a constant factor in one 
iteration, however we can prove that after two iterations the remainder 
is at most half of its original value

 Number of iterations is at most 2 log N  = O(log N)

◼ T(N) = O(log2 N)



Euclid’s Algorithm (cont’d)

◼ Analysis
 Note:  After two iterations, remainder is at most half its 

original value
◼ Theorem 2.1:  If M > N, then M mod N < M / 2

 T(N) = 2 log2 N = O(log2 N)
◼ log2 225 = 7.8, T(225) = 16 (overestimate)

 Better worst-case:  T(N) = 1.44 log2 N
◼ T(225) = 11

 Average-case:  T(N) = (12 ln 2 ln N) / 2 + 1.47
◼ T(225) = 6



Exponentiation

◼ Compute XN = X * X * … * X (N times), integer N

◼ Obvious algorithm:

 To compute XN uses (N-1) 

multiplications

◼ Observations

 A recursive algorithm can do better

 N <= 1 is the base case

 XN = XN / 2 * XN / 2 (for even N)

 XN = X(N – 1) / 2 * X(N – 1) / 2 * X (for odd N)

◼ Minimize number of multiplications

◼ T(N) = 2 log2 N = O(log2 N)

pow(x, n)

result = 1

for i = 1 to n

result = result * x

return result

T(N) = O(N)



Exponentiation (cont’d)



Exponentiation (cont’d)

◼ To compute X62 , the algorithm does the following 
calculations, which involve only 9 multiplications

 X3 =  (X2) . X   then   X7 =  (X3)2 . X    then X15 =  (X7)2 . X 

then X31 =  (X15)2 . X  then X62 =  (X31)2

 The number of multiplications required is at most 2 logN, 
because at most 2 multiplications  (if N is odd) are 
required to halve the problem



Summary

◼ Algorithm analysis

◼ Bound running time as input gets big

◼ Rate of growth: O() and Θ()

◼ Compare algorithms

◼ Recursion and logarithmic behavior


