
IS 709/809:
Computational Methods for IS Research

Algorithm Analysis

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

What is an Algorithm?

◼ An algorithm is a clearly specified set of instructions
to be followed to solve a problem
 Solves a problem but requires a year is hardly of any use

 Requires several gigabytes of main memory is not useful
on most machines

◼ Problem
 Specifies the desired input-output relationship

◼ Correct algorithm
 Produces the correct output for every possible input in

finite time

 Solves the problem

Purpose

◼ Why bother analyzing algorithm or code; isn’t getting
it to work enough?

 Estimate time and memory in the average case and worst
case

 Identify bottlenecks, i.e., where to reduce time and space

 Speed up critical algorithms or make them more efficient

Algorithm Analysis

◼ Predict resource utilization of an algorithm
 Running time

 Memory usage

◼ Dependent on architecture
 Serial

 Parallel

 Quantum

What to Analyze

◼ Our main focus is on running time
 Memory/time tradeoff

 Memory is cheap

◼ Our assumption: simple serial computing model
 Single processor, infinite memory

What to Analyze (cont’d)

◼ Let T(N) be the running time
 N (sometimes n) is typically the size of the input

◼ Linear or binary search?

◼ Sorting?

◼ Multiplying two integers?

◼ Multiplying two matrices?

◼ Traversing a graph?

◼ T(N) measures number of primitive operations
performed
 E.g., addition, multiplication, comparison, assignment

An Example

of operations

int sum(int n) { ?

int partialSum; ?

1. partialSum = 0; ?

2. for (int i = 1; i <= n; i++) ?

3. partialSum += i * i * i; ?

4. return partialSum; ?

}

T(n) = ?

Running Time Calculations

◼ The declarations count for no time

◼ Simple operations (e.g. +, *, <=, =) count for one
unit each

◼ Return statement counts for one unit

Revisit the Example

Cost

int sum (int n) 0

{

int partialSum; 0

1. partialSum = 0; 1

2. for (int i = 1; i <= n; i++) 1+(N+1)+N

3. partialSum += i * i * i; N*(1+1+2)

4. return partialSum; 1

}

T(N) = 6N+4

◼ T(N) = 6N+4

9

Running Time Calculations (cont’d)

◼ General rules

 Rule 1 – Loops
◼ The running time of a loop is at most the running time of the

statements inside the loop (including tests) times the number of
iterations of the loop

 Rule 2 – Nested loops
◼ Analyze these inside out

◼ The total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by the
product of the sizes of all the loops

Number of iterations

Running Time Calculations (cont’d)

◼ Examples

 Rule 1 – Loops

 Rule 2 – Nested loops

of operations

for (int i = 0; i < N; i++) ? (1 + N + N)

sum += i * i; ? 3*N

T(N) = ?

of operations

for (int i = 0; i < n; i++) ? (1 + N + N)

for (int j = 0; j < n; j++) ? N*(1 + N + N)

sum++; ? N * N

T(N) = ?

Running Time Calculations (cont’d)

◼ General rules
 Rule 3 – Consecutive statements

◼ These just add

◼ Only the maximum is the one that counts

 Rule 4 – Conditional statements (e.g. if/else)
◼ The running time of a conditional statement is never more than

the running time of the test plus the largest of the running times
of the various blocks of conditionally executed statements

 Rule 5 – Function calls
◼ These must be analyzed first

Running Time Calculations (cont’d)

◼ Examples

 Rule 3 – Consecutive statements

of operations

for (int i = 0; i < n; i++) ?

a[i] = 0; ?

for (int i = 0; i < n; i++) ?

for (int j = 0; j < n; j++) ?

a[i] += a[j] + i * j; ?

T(n) = ?

Running Time Calculations (cont’d)

◼ Examples

 Rule 4 – Conditional statements

of operations

if (a > b && c < d) { ?

for (int j = 0; j < n; j++) ?

a[i] += j; ?

}

else {

for (int j = 0; j < n; j++) ?

for (int k = 1; k <= n; k++) ?

a[i] += j * k; ?

}

T(n) = ?

Average and Worst-Case Running Times

◼ Estimating the resource use of an algorithm is
generally a theoretical framework and therefore a
formal framework is required

◼ Define some mathematical definitions

◼ Average-case running time Tavg(N)

◼ Worst-case running time Tworst(N)

◼ Tavg(N)  Tworst(N)

◼ Average-case performance often reflects typical
behavior of an algorithm

◼ Worst-case performance represents a guarantee for
performance on any possible input

Average and Worst-Case Running Times
(cont’d)

◼ Typically, we analyze worst-case performance

 Worst-case provides a guaranteed upper bound for all input

 Average-case is usually much more difficult to compute

Asymptotic Analysis of Algorithms

◼ We are mostly interested in the performance or behavior
of algorithms for very large input (i.e., as N →)
 For example, let T(N) = 10,000 + 10N be the running time of an

algorithm that processes N transactions

 As N grows large (N →), the term 10N will dominate

 Therefore, the smaller looking term 10N is more important if N
is large

◼ Asymptotic efficiency of the algorithms
 How the running time of an algorithm increases with the size of

the input in the limit, as the size of the input increases without
bound

Asymptotic Analysis of Algorithms (cont’d)

◼ Asymptotic behavior of T(N) as N gets big

◼ Exact expression for T(N) is meaningless and hard
to compare

◼ Usually expressed as fastest growing term in T(N),
dropping constant coefficients
 For example, T(N) = 3N2 + 5N + 1

 Therefore, the term N2 describes the behavior of T(N) as
N gets big

Fastest growing term

Mathematical Background

◼ Let T(N) be the running time of an algorithm

◼ Let f(N) be another function (preferably simple)
that we will use as a bound for T(N)

◼ Asymptotic notations
 “Big-Oh” notation O()

 “Big-Omega” notation ()

 “Big-Theta” notation ()

 “Little-oh” notation o()

Mathematical Background (cont’d)

◼ “Big-Oh” notation
 Definition: T(N) = O(f(N)) if there are positive constants c

and n0 such that T(N)  cf(N) when N ≥ n0

 Asymptotic upper bound on a function T(N)

 “The growth rate of T(N) is  that of f(N)”
◼ Compare the relative rates of growth

 For example: T(N) = 10,000 + 10N

 Is T(N) bounded by Big-Oh notation by some simple
function f(N)? Try f(N) = N and c = 20

 See graphs on the next slide

Mathematical Background (cont’d)

10,000

20,000

30,000

N

1,000

T(N) = 10,000 + 10N

cf(N), where f(N) = N and c = 20

Therefore, T(N) = O(f(N)), where f(N) = N,

c = 20, N ≥ n0, and n0 = 1,000

Simply, T(N) = O(N)

Check if T(N)  cf(N) => T(N)  20N for large N

Mathematical Background (cont’d)

◼ “Big-Oh” notation

 O(f(N)) is the SET of ALL functions T(N) that satisfy:
◼ There exist positive constants c and n0 such that, for all N ≥ n0,

T(N)  cf(N)

 O(f(N)) is an uncountably infinite set of functions

Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Examples

◼ 1,000,000N  O(N)

 Proof: Choose c = 1,000,000 and n0 = 1

◼ N  O(N3)

 Proof: Set c = 1, n0 = 1

 See graphs on the next slide

Thus, big-oh notation doesn’t care about (most) constant factors

It is unnecessary to write O(2N). We can just simply write O(N)

Big-Oh is an upper bound

Mathematical Background (cont’d)

◼ Graph of N vs. N3

Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Example

◼ N3 + N2 + N  O(N3)

 Proof: Set c = 3, and n0 = 1

Big-Oh notation is usually used to indicate dominating (fastest-growing) term

Mathematical Background (cont’d)

◼ “Big-Oh” notation

 Another example: 1,000N  O(N2)
◼ Proof: Set n0 = 1,000 and c = 1

◼ We could also use n0 = 10 and c = 100

 Another example: If T(N) = 2N2

◼ T(N) = O(N4)

◼ T(N) = O(N3)

◼ T(N) = O(N2)

There are many possible pairs c and n0

All are technically correct, but the last one

is the best answer

Mathematical Background (cont’d)

◼ “Big-Omega” notation

 Definition: T(N) = (g(N)) if there are positive constants
c and n0 such that T(N) ≥ cg(N) when N ≥ n0

 Asymptotic lower bound

 “The growth rate of T(N) is ≥ that of g(N)”

 Examples

◼ N3 = (N2) (Proof: c = ?, n0 = ?)

◼ N3 = (N) (Proof: c = 1, n0 = 1)

n0

N

f(N)

g(N)T(N)

g(N) = O(f(N))
f(N) = Ω(g(N))

Mathematical Background (cont’d)

◼ g(N) is asymptotically upper bounded by f(N)

◼ f(N) is asymptotically lower bounded by g(N)
28

Mathematical Background (cont’d)

◼ “Big-Theta” notation

 Definition: T(N) = (h(N)) if and only if T(N) = O(h(N))
and T(N) = (h(N))

 Asymptotic tight bound

 “The growth rate of T(N) equals the growth rate of h(N)”

 Examples

◼ 2N2 = (N2)

◼ Suppose T(N) = 2N2 then T(N) = O(N4); T(N) = O(N3); T(N) = O(N2)

all are technically correct, but last one is the best answer. Now

writing T(N)= (N2) says not only that T(N)= O(N2), but also the

result is as good (tight) as possible

Mathematical Background (cont’d)

◼ “Little-oh” notation

 Definition: T(N) = o(g(N)) if for all constants c there exists an
n0 such that T(N) < cg(N) when N > n0

◼ That is, T(N) = o(g(N)) if T(N) = O(g(N)) and T(N)  (g(N))

◼ The growth rate of T(N) less than (<) the growth rate of g(N)

◼ Denote an upper bound that is not asymptotically tight

◼ The definition of O-notation and o-notation are similar

 The main difference is that in T(N)=O(g(N)), the bound

0  T(N)  cg(N) holds for some constant c > 0, but in

T(N)=o(g(N)), the bound 0  T(N) < cg(N) holds for all

constants c > 0

 For example , N = o(N2), but 2N2 ≠ o(N2)

Mathematical Background (cont’d)

◼ Examples

 N2 = O(N2) = O(N3) = O(2N)

 N2 = (1) = (N) = (N2)

 N2 = (N2)

 N2 = o(N3)

 2N2 + 1 = (?)

 N2 + N =(?)

Mathematical Background (cont’d)

◼ O() – upper bound

◼ () – lower bound

◼ () – tight bound

◼ o() – strict upper bound

Mathematical Background (cont’d)

◼ O-notation gives an upper bound for a function to within a constant
factor

◼ -notation gives an lower bound for a function to within a constant
factor

◼ -notation bounds a function to within a constant factor

 The value of f(n) always lies between c1 g(n) and c2 g(n) inclusive

Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 When asked to analyze an algorithm’s complexity

◼ 1st preference: Use ()

◼ 2nd preference: Use O() or o()

◼ 3rd preference: Use ()

Tight bound

Upper bound

Lower bound

Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 Always express an algorithm’s complexity in terms of its
worst-case, unless specified otherwise
◼ Note: Worst-case can be expressed in any of the asymptotic

notations: O(), (), (), or o()

Mathematical Background (cont’d)

◼ Rules of thumb when using asymptotic notations

 Way’s to answer a problem’s complexity
◼ Q1) This problem is at least as hard as … ?

 Use lower bound here

◼ Q2) This problem cannot be harder than … ?

 Use upper bound here

◼ Q3) This problem is as hard as … ?

 Use tight bound here

Mathematical Background (cont’d)

◼ Some rules
 Rule 1: If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

◼ T1(N) + T2(N) = O(f(N) + g(N)) less formally it is max (O(f(N)), O(g(N)))

◼ T1(N) * T2(N) = O(f(N) * g(N))

 Rule 2: If T(N) is a polynomial of degree k, then T(N) = (Nk)

 Rule 3: logk N = O(N) for any constant k
◼ Logarithm grows very slowly as log N  N for N ≥ 1

 Rule 4: loga N = (logb N) for any constants a and b

Mathematical Background (cont’d)

◼ Rate of Growth
Considered “efficient”

Considered “useless” 38

Mathematical Background (cont’d)

◼ Some examples

 Prove that: n log n = O(n2).

◼ We know that log n  n for n ≥ 1 (here, n0 = 1).

◼ Multiplying both sides by n: n log n  n2

 Prove that: 6n3  O(n2).
◼ Proof by contradiction

◼ If 6n3 = O(n2), then 6n3  cn2

Maximum subsequence sum problem

◼ Maximum subsequence sum problem
 Given (possibly negative) integers A1, A2, …, AN, find the

maximum value (≥ 0) of:

 We don’t need the actual sequence (i, j), just the sum

 If the final sum is negative, the maximum sum is 0

 E.g. <1, -4, 4, 2, -3, 5, 8, -2>


=

j

ik

kA

i j The maximum sum is 16

40

Solution 1

◼ MaxSubSum: Solution 1
 Idea: Compute the sum for all possible subsequence

ranges (i, j) and pick the maximum sum

MaxSubSum1(A)

maxSum = 0

for i = 1 to N

for j = i to N

sum = 0

for k = i to j

sum = sum + A[k]

if (sum > maxSum)

maxSum = sum

return maxSum

All possible starting point

All possible ending point

Calculate sum for range (i, j)

O(N)

O(N)

O(N)

T(N) = O(N3)

41

Algorithm 1

Solution 1 (cont’d)

◼ Analysis of Solution 1
 Three nested for loops, each iterating at most N times

 Operations inside for loops take constant time

 But, for loops don’t always iterate N times

 More precisely;


−

=

−

= =

=
1

0

1

1)(
N

i

N

ij

j

ik

NT

43

Solution 1 (cont’d)

◼ Analysis of Solution 1
 Detailed calculation of T(N)

 Will be derived in the class;

T(N)= (N3 + 3N2 + 2N)/6 = O(N3)


−

=

−

= =

=
1

0

1

1)(
N

i

N

ij

j

ik

NT

44

Solution 2

◼ MaxSubSum: Solution 2
 Observation:

 So, we can re-use the sum from previous range


−

==

+=
1j

ik

kj

j

ik

k AAA

MaxSubSum2(A)

maxSum = 0

for i = 1 to N

sum = 0

for j = i to N

sum = sum + A[j]

if (sum > maxSum)

maxSum = sum

return maxSum

O(N)

O(N)

T(N) = O(N2)45

Algorithm 2

46

Solution 2 (cont’d)

◼ Analysis of Solution 2
 Two nested for loops, each iterating at most N times

 Operations inside for loops take constant time

 More precisely;


−

=

−

=

=
1

0

1

1)(
N

i

N

ij

NT

47

Solution 2 (cont’d)

◼ Analysis of Solution 2
 Detailed calculation of T(N)

 Will be derived in the class;

T(N)= N(N+1)/2 = O(N2)


−

=

−

=

=
1

0

1

1)(
N

i

N

ij

NT

48

Solution 3

◼ MaxSubSum: Solution 3
 Idea: Recursive, “divide and conquer”

◼ Divide sequence in half: A1..center and A(center + 1)..N

◼ Recursively compute MaxSubSum of left half

◼ Recursively compute MaxSubSum of right half

◼ Compute MaxSubSum of sequence constrained to use Acenter

and A(center + 1)

◼ For example

<1, -4, 4, 2, -3, 5, 8, -2>

compute maxsubsumleft compute maxsubsumright

compute maxsubsumcenter 49

Solution 3 (cont’d)
◼ MaxSubSum: Solution 3

 Idea: Recursive, “divide and conquer”

 Divide: split the problem into two roughly equal subproblems,

which are then solved recursively

 Conquer: patching together the two solutions of the subproblems,
and possibly doing a small amount of additional work to arrive at a
solution for the whole problem

 The maximum subsequence sum can be in one of three places
◼ Entirely in the left half of the input

◼ Entirely in the right half

◼ Or it crosses the middle and is in both halves

◼ First two cases can be solved recursively

◼ Last case: find the largest sum in the first half that includes the last element in the
first half and the largest sum in the second half that includes the first element in
the second half. These two sums then can be added together.

50

Example

◼ For example, consider the sequence

4, -3, 5, -2 || -1, 2, 6,-2, where || marks the half-way point

 The maximum subsequence sum of the left half is 6: 4 + -3 + 5.

 The maximum subsequence sum of the right half is 8: 2 + 6.

 The maximum subsequence sum of sequences having -2 as the
right edge is 4: 4 + -3 + 5 + -2; and the maximum subsequence
sum of sequences having -1 as the left edge is 7: -1 + 2 + 6.

 Comparing 6, 8 and 11 (4 + 7), the maximum subsequence sum
is 11 where the subsequence spans both halves: 4 + -3 + 5 + -2 +
-1 + 2 + 6.

51

Solution 3 (cont’d)

◼ MaxSubSum: Solution 3

MaxSubSum3(A, i, j)

maxSum = 0

if (i == j)

if (A[i] > 0)

maxSum = A[i]

else

k = floor((i + j) / 2)

maxSumLeft = MaxSubSum3(A, i, k)

maxSumRight = MaxSubSum4(A, k + 1, j)

compute maxSumThruCenter

maxSum = Maximum(maxSumLeft, maxSumRight, maxSumThruCenter)

return maxSum

52

Solution 3 (cont’d)

53

// How to find the maximum subsequence sum that passes through the center

Keep right end

fixed at center

and vary left end

Keep left end

fixed at center + 1

and vary right end

Add the two to determine maximum subsequence sum through center
54

Solution 3 (cont’d)

55

Solution 3 (cont’d)

◼ Analysis of Solution 3

 T(1) = O(1)

 T(N) = 2T(N / 2) + O(N)

 T(N) = O(?)
◼ Will be derived in the class

Solution 4

◼ MaxSubSum: Solution 4
 Observations

◼ Any negative subsequence cannot be a prefix to the
maximum subsequence

◼ Or, only a positive, contiguous subsequence is worth adding

◼ Example: <1, -4, 4, 2, -3, 5, 8, -2>
MaxSubSum4(A)

maxSum = 0

sum = 0

for j = 1 to N

sum = sum + A[j]

if (sum > maxSum)

maxSum = sum

else if (sum < 0)

sum = 0

return maxSum
T(N) = O(N) 57

Solution 4 (cont’d)

58

◼ Online Algorithm

 constant space and runs in linear time

 just about as good as possible

Solution 4 (cont’d)

59

MaxSubSum Running Times

MaxSubSum Running Times (cont’d)

MaxSubSum Running Times (cont’d)

Logarithmic Behavior

◼ T(N) = O(log2 N)

◼ An algorithm is O(log2 N) if it takes constant O(1)
time to cut the problem size by a fraction (which is
usually ½)

◼ Usually occurs when
 Problem can be halved in constant time

 Solutions to sub-problems combined in constant time

◼ Examples
 Binary search

 Euclid’s algorithm

 Exponentiation

Binary Search
◼ Given an integer X and integers A0, A1, …, AN – 1, which

are presorted and already in memory, find i such that Ai

= X, or return i = -1 if X is not in the input

◼ Obvious Solution: scanning through the list from left to
right and runs in linear time
 Does not take advantage of the fact that list is sorted

 Not likely to be best

◼ Better Strategy: Check if X is the middle element
 If so, the answer is at hand

 If X is smaller than middle element, apply the same strategy to the sorted
subarray to the left of the middle element

 Likewise, if X is larger than middle element, we look at the right half

◼ T(N) = O(log2 N)

Euclid’s Algorithm

◼ Compute the greatest common divisor gcd(M, N)
between the integers M and N

 That is, the largest integer that divides both

 Example: gcd (50,15) = 5

 Used in encryption

Euclid’s Algorithm (cont’d)

Euclid’s Algorithm (cont’d)

◼ Estimating the running time: how long the sequence
of remainders is?
 log N is a good answer, but value of the remainder does not decrease

by a constant factor

 Indeed the remainder does not decrease by a constant factor in one
iteration, however we can prove that after two iterations the remainder
is at most half of its original value

 Number of iterations is at most 2 log N = O(log N)

◼ T(N) = O(log2 N)

Euclid’s Algorithm (cont’d)

◼ Analysis
 Note: After two iterations, remainder is at most half its

original value
◼ Theorem 2.1: If M > N, then M mod N < M / 2

 T(N) = 2 log2 N = O(log2 N)
◼ log2 225 = 7.8, T(225) = 16 (overestimate)

 Better worst-case: T(N) = 1.44 log2 N
◼ T(225) = 11

 Average-case: T(N) = (12 ln 2 ln N) / 2 + 1.47
◼ T(225) = 6

Exponentiation

◼ Compute XN = X * X * … * X (N times), integer N

◼ Obvious algorithm:

 To compute XN uses (N-1)

multiplications

◼ Observations

 A recursive algorithm can do better

 N <= 1 is the base case

 XN = XN / 2 * XN / 2 (for even N)

 XN = X(N – 1) / 2 * X(N – 1) / 2 * X (for odd N)

◼ Minimize number of multiplications

◼ T(N) = 2 log2 N = O(log2 N)

pow(x, n)

result = 1

for i = 1 to n

result = result * x

return result

T(N) = O(N)

Exponentiation (cont’d)

Exponentiation (cont’d)

◼ To compute X62 , the algorithm does the following
calculations, which involve only 9 multiplications

 X3 = (X2) . X then X7 = (X3)2 . X then X15 = (X7)2 . X

then X31 = (X15)2 . X then X62 = (X31)2

 The number of multiplications required is at most 2 logN,
because at most 2 multiplications (if N is odd) are
required to halve the problem

Summary

◼ Algorithm analysis

◼ Bound running time as input gets big

◼ Rate of growth: O() and Θ()

◼ Compare algorithms

◼ Recursion and logarithmic behavior

