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ABSTRACT

Stock prices are formed based on short and/or long-term
commercial and trading activities that reflect different fre-
quencies of trading patterns. However, these patterns are
often elusive as they are affected by many uncertain political-
economic factors in the real world, such as corporate perfor-
mances, government policies, and even breaking news circu-
lated across markets. Moreover, time series of stock prices
are non-stationary and non-linear, making the prediction of
future price trends much challenging. To address them, we
propose a novel State Frequency Memory (SFM) recurren-
t network to capture the multi-frequency trading patterns
from past market data to make long and short term predic-
tions over time.

Inspired by Discrete Fourier Transform (DFT), the SFM
decomposes the hidden states of memory cells into multiple
frequency components, each of which models a particular
frequency of latent trading pattern underlying the fluctua-
tion of stock price. Then the future stock prices are pre-
dicted as a nonlinear mapping of the combination of these
components in an Inverse Fourier Transform (IFT) fashion.
Modeling multi-frequency trading patterns can enable more
accurate predictions for various time ranges: while a short-
term prediction usually depends on high frequency trading
patterns, a long-term prediction should focus more on the
low frequency trading patterns targeting at long-term return.
Unfortunately, no existing model explicitly distinguishes be-
tween various frequencies of trading patterns to make dy-
namic predictions in literature. The experiments on the real
market data also demonstrate more competitive performance
by the SFM as compared with the state-of-the-art methods.
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1 INTRODUCTION

Stock investors attempt to discover latent trading patterns
in stock market to forecast the future price trends for seek-
ing profit-maximization strategies [13, 22]. The prediction of
stock prices is a challenging task because of highly volatile
and non-stationary nature of market [1]. Even more, predict-
ing the stock prices in short or long-term time range relies
on discovering different trading patterns in the security ex-
change market. For example, the investors like mutual funds
and 401(k) managers tend to look for long-term returns and
their trading frequencies are relatively low. On the contrary,
in high-frequency trading, transactions are processed much
more frequently within a short time period, resulting in the
high volatility in stock prices.

Therefore, explicitly discovering and separating various
frequencies of latent trading patterns should play a critical
role in making price predictions for different ranges of time
periods. While there are many approaches to stock price pre-
diction [2, 18, 23, 30], none of existing models, to our best
knowledge, explicitly decompose trading patterns into vari-
ous frequency components, and seamlessly integrate the dis-
covered multi-frequency patterns into price predictions. This
inspires us to discover and leverage the trading patterns of
multiple frequencies, resulting in a novel State Frequency
Memory (SFM) recurrent network for stock price prediction.

In signal processing, the frequency domain of input sig-
nals is discovered by applying Discrete Fourier Transform
(DFT). It decomposes input signals into multiple frequen-
cy components as to study the periodicity and volatility of
the signals. We will adapt this idea to dynamically decom-
pose the hidden states of trading patterns into multiple fre-
quency components that will in turn drive the evolution of
SFM over time. On the other hand, given the nonlineari-
ty and non-stationarity of stock prices, Recurrent Neural
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Network (RNN) has emerged as a candidate to learn tem-
poral patterns such as price fluctuations. However, due to
the vanishing gradients in the training process, the conven-
tional RNN could fail to learn long-term dependencies in a
time series [11]. On the contrary, Long Short Term Memo-
ry (LSTM), a variant of RNN, addresses this problem: its
network structure is composed of several types of memory
gates, which enables it to capture the long-term dependency
of stock prices at different moments. Inspired by the gating
architecture and multi-frequency decomposition, we present
the SFM recurrent network that learns multiple frequency
trading patterns as to make short and long-term price pre-
dictions.

1.1 A Glance at The Architecture

The State Frequency Memory (SFM) recurrent network at-
tempts to extract and leverage non-stationary trading pat-
terns of multiple frequencies. Compared with most of the
existing methods, it is capable of characterizing trading pat-
terns over different cycles, from seconds to minutes to days
and even beyond, to infer the future trends of stock prices.

Fig. 1 compares the block diagram of the SFM with the
RNN and the LSTM. Like the LSTM, the SFM models
the hidden states underlying a time-series with a sequence
of memory cells. However, the memory cells in the SFM
comprise of state components for multiple frequencies, each
of which we call a state-frequency component. Specifically,
an input modulation is decomposed into various frequency
bands and fed into the memory cell together with the de-
composed state-frequencies of the last time. The SFM also
uses the memory gates to model the long term dependency.
The input and output gates regulate the amount of informa-
tion flowing into and out of the memory cell across different
frequency bands. A joint state-frequency forget gate controls
the amount of information across different frequencies should
be kept in memory cells. The hidden states of the output are
formed from a combination of multiple state-frequency com-
ponents, which are mapped to predict the future prices over
various ranges through a nonlinear regression. In this fashion,
trading patterns of various frequencies are learned through
the state-frequency decomposition in memory cells, which
provide clues on the future stock price trends. Experiments
results on fifty stocks across ten sections demonstrate how
the SFM can achieve competitive performances by modeling
multi-frequency trading patterns as compared with the other
state-of-the-art methods.

The remainder of this paper is organized as follows. We
first review the related work in Section 2, followed by the
presentation of the proposed SFM in Section 3. Experiment
results on the stock price dataset are demonstrated in Sec-
tion 4. The conclusions are made in Section 5.

2 RELATED WORK

One of the most widely used models for stock prediction
is the Autoregressive (AR) model for linear and stationary
time-series. For example, [17] applied the quantile AR model

to analyze the dynamics of stock index returns in China; [31]
decomposed the stock return into a couple of components
and utilized the AR model to make prediction. However, s-
tock prices are often highly nonlinear and non-stationary,
which limits the real-world applicability of the AR model.
Hence, a hybrid model combining K-Nearest Neighbor and
support vector machine [21] was applied to learn the non-
linear pattern underlying stock price fluctuations. Alterna-
tively, the Hidden Markov Model (HMM) [14] has also been
applied to make nonlinear prediction of stock trend.

With the advance of deep learning, it has become promis-
ing to exploit and explore deep neural networks [15, 16, 20]
for financial prediction. A Harmony Search based neural net-
work [8] is proposed to forecast the stock market; [2] com-
pared capability of neural networks with Autoregressive In-
tegrated Moving Average (ARIMA) to predict stock trends;
a Bayesian regularized Artificial Neural Networks [27] was
presented to forecast stock indices; [23] presented a com-
bined model desegregating Support Vector Machine, Arti-
ficial Neural Networks, and Random Forest for stock price
forecasting. Although traditional neural networks have the
ability to handle non-linear data, it is inadequate in model-
ing the long-term dependency in time series. This motivates
the use of the gated memory cells to memorize the long-term
context of time-series data, leading to the celebrated Long
Short-Term Memory (LSTM) network.

The LSTM was first proposed in [12], which is a scalable
dynamic model. Since then, many variants of the LSTM-
s [4, 6, 9] have been proposed. [10] surveyed the performance
of various LSTM architectures. There are the existing works
applying the LSTM and RNN to financial prediction. [19]
comprehensively studied the impact of the LSTM’s hyper-
parameters (e.g., the number of neurons, epochs, and data
amount) on the prediction accuracy. A prediction system [18]
has also been developed to fuse the Evolino LSTM with Del-
phi method to make trade decisions. [25] proposed a hybrid
model combing RNN and AR to predict the stock returns.
In [3], the LSTM is adopted to predict prices with histori-
cal numerical and textual data. [5] simulated a stock trading
strategy with the forecast of the LSTM.

However, none of these works reveal the multi-frequency
characteristics of the stock price time-series. Actually, a short-
term prediction relies on the high frequency patterns to mod-
el the high volatility of the price time-series. On the other
hand, a long-term prediction is more relevant to patterns
with low frequencies. To discover the multi-frequency trad-
ing patterns, we develop a State Frequency Memory network
to reveal dynamics of the stock price time-series. With the
learnt frequency components, the proposed model can track
the trend of periodic and generate a reliable prediction on
stock prices.

3 FORMULATION AND MODEL
STRUCTURE

In this section, we will first introduce the conventional L-
STM architecture. Then we propose the architecture of the
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Figure 1: Comparison between the cell structures of the RNN (left), the LSTM (middle) and the SFM (right).

State Frequency Memory (SFM) recurrent neural networks.
Finally we apply the recurrent neural networks (LSTM or
SFM) to stock price prediction with historical prices.

3.1 Architecture of standard LSTM

Long Short Term Memory (LSTM) [12] network is a vari-
ant of Recurrent Neural Network (RNN). Different from the
feed-forward neural networks, the RNN contains hidden s-
tates which evolve themselves over time. When trained with
Back-Propagation Through Time (BPTT) [29], however, the
conventional RNN suffers from vanishing gradients, making
it unable to handle long-term dependency in a time series.
Consequently, the LSTM was proposed to address this prob-
lem. Additional gating units in the LSTM make it capable of
maintaining the long-term memory of the trading patterns
from the historical prices.

Formally, the LSTM can be formulated as follows. At each
time t, xt is an input vector (e.g., stock prices), ct denotes
the memory state vector, and ht is the hidden state vector
output from ct. Then we have:

it = sigmoid(Wixt +Uiht−1 + bi) (1)

ft = sigmoid(Wfxt +Ufht−1 + bf ) (2)

c̃t = tanh(Wcxt +Ucht−1 + bc) (3)

ct = it ◦ c̃t + ft ◦ ct−1 (4)

ot = sigmoid(Woxt +Uoht−1 + Voct + bo) (5)

ht = ot ◦ tanh(ct) (6)

where W∗ and U∗ denote the weight matrices, and b∗ are
bias vectors. The sigmoid sigmoid(·) is adopted as the activa-
tion function for three types of gating units – the input gate
it, forget gate ft and output gate ot. The input modulation
c̃t and output ht usually use the hyperbolic tangent tanh(·)

as the activation functions, and “◦” denotes point-wise mul-
tiplication.

Three types of gating units control the stock-trading in-
formation entering and leaving a memory cell at each time.
The input gate regulates the allowed amount of new infor-
mation (e.g., new stock prices) flowing into the memory cell;
the forget gate controls how much information should be
kept in the cell; and the output gate defines the amount of
information that can be output. The gating architecture of
the LSTM enables it to balance between the short and long
term dependency over the stock prices in a time series.

3.2 State Frequency Memory Recurrent
Networks

In stock market, stock exchange and trading activities are
performed at different paces and cycles, yielding multi-frequency
trading patterns underlying stock prices. Price prediction-
s over various ranges rely on different frequencies of trad-
ing patterns to provide useful clues on the future trends:
short-term prediction depends more on high-frequency price
data while the long-term prediction should focus more on
low-frequency data. Thus, inspired by the Discrete Fourier
Transform (DFT), we propose the State Frequency Memory
(SFM) recurrent network to enable the discovery and mod-
elling of the latent trading patterns across multiple frequency
bands underlying the fluctuation of stock prices.

In particular, the SFM models the dynamics of an input
time-series {xt|t = 1, 2, ..., T} with a sequence of memory
cells. We denote the output hidden state of SFM at time
t as ht ∈ RD. However, to enable the capability of learn-
ing patterns across various frequencies, the memory states
of SFMs are decomposed into a set of K discrete frequen-
cies {wk = 2πk

K
|k = 1, 2, ...,K}, which are evenly spaced on

[0, 2π].
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This constructs a joint decomposition of states and fre-
quencies to capture the temporal context of the input time-
series. In this way, we represent the memory states of the
SFM as a matrix St ∈ CD×K at time t, with rows and
columns corresponding to D states and K frequencies. Then,
the state-frequency memory of the SFM evolves as a combi-
nation of the gated past memory and the current input like
the LSTM. However, unlike the LSTM, the recurrent update
of the SFM depends on different state-frequency components,
reflecting the objectives to make a short or a long term pre-
diction over stock prices.

In particular, the updating rule for the state-frequency
matrix is formulated below.

St = Ft ◦ St−1 + (it ◦ c̃t)


ejω1t

ejω2t

...
ejωKt


T

∈ CD×K (7)

where j =
√
−1 and

[
ejω1t, ejω2t, ..., ejωKt

]
are the Fourier

basis of K frequency components of the state sequence.
Here, to balance the short and long-term dependency in a

time-series, we adopt the memory gating architecture. The
input gate it ∈ RD regulates the amount of new information
flowing into the current memory cell. We define a joint state-
frequency forget gate matrix Ft ∈ RD×K to control how
much information on various states and frequencies should
be kept in the memory cell.

The input modulation c̃t aggregates the current input in-
formation, which is then decomposed into a set of frequency
bands. This multi-frequency decomposition of input informa-
tion enables the SFM to discover the trading patterns across
various frequencies.

The updating rule can be separated into the real and imag-
inary parts of the state-frequency matrix St:

ReSt = Ft ◦ReSt−1 + (it ◦ c̃t) [cosω1t, ...cosωKt] (8)

ImSt = Ft ◦ ImSt−1 + (it ◦ c̃t) [sinω1t, ...sinωKt] (9)

It is well known that complex numbers can be uniquely
represented by its amplitude and phase. To encode the state-
frequency matrix St, we represent its amplitude At and the
phase ∠St as:

At = |St| =
√

(ReSt)2 + (ImSt)2 ∈ RD×K (10)

∠St = arctan(
ImSt

ReSt
) ∈ [−π

2
,
π

2
]D×K (11)

where arctan(·) is an element-wise inverse tangent function.
Each entry |St|d,k of At captures the amplitude of the dth
state on the kth frequency. The state phase ∠St models the
phase shift of each frequency component.

The amplitude will be fed into the memory cell gate and
its frequency components will be composed to obtain the
output hidden state ht ∈ RD. We ignore the phase ∠St

as we found it has no significant impact on the results in

our experiments but incurs extra computational and memory
overheads.

To control how much of the past information should be
kept in the memory cell, we define a state forget gate fste

t

and a frequency forget gate ffre
t to regulate the information

on multi-states and multi-frequencies respectively. They are
formulated as:

fste
t = sigmoid(Wstext +Usteht−1 + bste) ∈ RD (12)

ffre
t = sigmoid(Wfrext +Ufreht−1 + bfre) ∈ RK (13)

Then a state-frequency forget gate Ft is defined as the outer

product ⊗ between fste
t and ffre

t to jointly regulate the
state and frequency information:

Ft = fste
t ⊗ ffre

t ∈ RD×K (14)

It can be regarded as a composition gate over different states
and frequencies to control the information flowing into the
memory cell.

The formulations of the input gate it and the input mod-
ulation c̃t are in the same fashion as the LSTM:

it = sigmoid(Wixt +Uiht−1 + bi) (15)

c̃t = tanh(Wcxt +Ucht−1 + bc) (16)

The input modulation feeds the current observation xt and
the output hidden state ht−1 of the last step into the mem-
ory cell, forming the recurrent structure. As we discussed, it
is decomposed into a set of frequency components with the
Fourier basis to update the memory states. The input gate
it controls how much of the new information are allowed to
get into the memory cell.

To obtain the output hidden state ht, a state-only memory
state ct is reconstructed to aggregate the information over
various frequencies on the state amplitude At:

ct = tanh(Atua + ba) (17)

where ua ∈ RK is an inverse transform vector. The vector
composites the frequency components of the memory state.
Then the state-only state ct is obtained as a non-linear map-
ping of the composition. This process is like the Inverse Fouri-
er Transformation (IFT) which recovers the original signal by
combining the frequency components. Rather than adopting
the standard Inverse Fourier transformation basis, the model
learns the weights ua for objective learning tasks.

With the output gate ot regulating the information al-
lowed to output from the memory cell, the output hidden
state ht is computed as:

ot = sigmoid(Woxt +Uoht−1 + Voct + bo) (18)

ht = ot ◦ ct (19)

As a variant of recurrent neural networks, the SFM can al-
so be trained with the BPTT algorithm. The SFM recurrent
network keeps the gating architecture of the LSTM, so as to
remain the capability of capturing the long term dependency
of time-series. Moreover, its unique complex-value memory
states model multiple patterns with different frequencies. In
the stock price prediction task, the SFM discovers clues from
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Figure 2: Price prediction with Recurrent Neural
Network

the temporal context with a suitable length adjusted by the
gate units. On the other hand, it models the trading pattern-
s with various frequencies in stock market. For short term
prediction, more high frequency components are needed to
capture the high volatility of the time-series. While the long-
term prediction is more relevant to the trading patterns with
low frequencies. These patterns with various frequencies pro-
vide useful hints on the future trend, which is confirmed by
the experiments we conducted.

3.3 Price Prediction

Both the SFM and the LSTM are variants of recurrent neural
networks. They can be applied to predict the stock price as
illustrated in Fig. 2, where a RNN cell can be a SFM cell
and LSTM cell. The LSTM-based price prediction model is
considered as the state-of-the-art baseline that is compared
against the proposed SFM model.

Consider a time series of trading prices {pt|t = 1, 2, ..., T}
of a stock. Our goal is to make a n-step prediction on pt+n

based on the prices up to pt, where n ≥ 1. Formally, the
n-step prediction is defined below.

Definition 3.1. (n-step prediction)
Given prices {pt|t = 1, 2, ..., T}, n-step prediction on the
price pt+n at time t+ n can be seen as a function:

p̂t+n = f(pt, pt−1, ..., p1) (20)

where f denotes the model mapping from the history prices
to the price of n-step ahead.

As the scales of prices varies for different stocks, without
loss of generality, we normalize the prices {pt|t = 1, 2, ..., T}
of each stock to {vt|t = 1, 2, ..., T} on the range [−1, 1].

Here we adapt a RNN variant, the SFM or the LSTM, as
such a mapping f for n-step prediction. The initial hidden
state h0 and memory state (if any) are set to zero, while
the normalized price vt is taken as an input at each step.
The chosen RNN variant produces a hidden vector ht that
is used for price prediction. Specifically, we apply a matrix

transformation on the hidden vector to make the n-step pre-
diction:

v̂t+n = wpht + bp (21)

where wp is a weight vector, and bp is the bias. Note that
although this is a linear transformation, the nonlinearity of
this price predictor arises from the nonlinear hidden vector
ht.

This architecture differs from an AR model that uses im-
mediately preceding data in a sliding window of a fixed size
w for price prediction, i.e., using {pt−r|0 ≤ r < w} to pre-
dict pt+n. For an AR model, the data in this window can
be treated as the context. Although increasing the size of
the sliding window can incorporate the longer-term context
of stock prices, it significantly increases the model complex-
ity as the window size grows, often leading to an increased
overfitting risk into history prices.

We do not encounter this problem in the LSTM or SFM.
Because the memory state has the capacity of keeping the
long-term dependency between the input prices. Therefore,
it is unnecessary to involve the past prices in a time window
as in an AR model. Indeed, feeding those past prices into
memory cells could result in redundant memory of the past
data, which could even degenerate its prediction accuracy
due to an increased model complexity.

To learn general trading patterns in the stock market,
prices of multiple stocks are used to train the regression net-
work. Denote the prices as {pmt |t = 1, 2, ..., T ;m = 1, 2, ...,M}
with M stocks, the model is trained by minimizing the sum
of square errors between the predicted and true normalized
prices in the training set:

L =

M∑
m=1

T∑
t=1

(vmt+n − v̂mt+n)
2 (22)

All the model parameters are updated through the BPTT
algorithm. In this way, the weights of the model are shared
among all the stocks.

The RNN layer in the regression network is flexible to be
replaced by any RNN variant. We replace the RNN with the
LSTM and the SFM for comparison. In both architectures,
the internal memory states are maintained to summarize the
internal factors of trading patterns up to the time t. These
internal factors are supposed to capture the long-term de-
pendency between stock prices with the help of the memory
gates.

Moreover, the memory states in the SFM decompose the
states into multiple frequency components. Multi-frequency
patterns are summarized within the memory cell. Composing
these frequency memory components, it outputs the hidden
state ht that can be used to predict the future prices. With
the state-frequency memory states, it enables the SFM to
capture the multi-frequency trading patterns as well as the
internal dependency in the time-series of stock prices.

4 EXPERIMENTS

In this section, we conduct experiments to test the proposed
SFM network. We first provide the details of the dataset
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Table 1: Stock symbols of the selected corporations in the dataset. Five corporations with top market capital-
ization in each sector are selected.

basic materials cyclicals 1 energy financials healthcare industrials non-cyclicals 2 technology telecommunications 3 utilities

BHP AMZN CVX BAC JNJ BA KO AAPL CHL D
DOW CMCSA PTR BRK-B MRK GE MO GOOGL DCM DUK
RIO DIS RDS-B JPM NVS MA PEP INTC NTT EXC
SYT HD TOT SPY PFE MMM PG MSFT T NGG
VALE TM XOM WFC UNH UPS WMT ORCL VZ SO

we collected for experiments. Then, the comparison between
the SFM and the other methods is presented. Finally we will
discuss the parameter sensitivity of the model performance.

4.1 Dataset

We retrieve the stock prices from Yahoo! Finance. Specifi-
cally, we collect the daily opening prices of 50 stocks among
10 sectors from 2007 to 2016 for the experiments. For each
sector, corporations with top 5 market capitalization are s-
elected. Tab. 1 presents the stock symbols as well as the
sectors of the selected corporations.

All the corporations are listed in the market before 2007.
In history, there are several share splits for some stocks. In
this situation, the prices are normalized according to the
most recent split. The length of the historical prices is 2518
days. Models are trained with the daily prices with 2014
days from 2007 to 2014. Daily prices during 2015 and 2016
are used to validate and test respectively. The length of both
validation and test time-series is 252. With prices of 50 cor-
porations during the past ten years, we expect the models
to learn general patterns in the market over time.

4.2 Comparison with other methods

To test our model, we conduct experiments to compare the
proposed SFM network with the other state-of-the-art meth-
ods, including Autoregressive model and the conventional
LSTM.

Autoregressive (AR) model is a classical method that is
widely used for time-series forecasting. It predicts the future
market price from the prices of several past steps. Specifical-
ly, its prediction is made as a linear combination of the past
prices subject to a Gaussian noise term. The parameter w
of an AR model specifies the number of past prices involved
in the prediction, reflecting the degree of the dependence on
the history data. The best w can be found by minimizing
the Akaike Information Criterion (AIC) or Bayesian infor-
mation criterion (BIC) [24]. Compared with the proposed
model, an AR model is a linear regression model and can
only model stationary time-series. Through the comparison
with the AR model, we aim to test the capability of SFM to
capture non-linear and non-stationary dependency, as well
as the multi-frequency trading patterns in the market.

1Cyclical consumer goods & services.
2Non-cyclical consumer goods & services.
3Telecommunications services.

Table 2: The average square error of three models
for 1-step, 3-step and 5-step prediction.

1-step 3-step 5-step

AR 6.01 18.58 30.74
LSTM 5.93 18.38 30.02
SFM 5.57 17.00 28.90

We also compare with the conventional LSTM. It only
captures the internal dependency of history prices. By the
comparison with the conventional LSTM, we can evaluate
the ability of the SFM in exploring trading patterns with
various frequencies to predict the stock prices. Both LSTM
and SFM are trained with a same procedure. The RMSprop
optimizer [28] is used to train the models, with a fixed learn-
ing rate set as 0.01. The weights W∗ and U∗ are initialized
by Xavier uniform initializer [7] and Orthogonal initializer
[26] respectively. The bias vectors b∗ are initialized as ze-
ros. All the training sequences are fed to update the weights
and bias per iteration. Both of the models converge after 4K
iterations.

We choose the average square error per day per stock as
our evaluation metric to compare the performances. We com-
pare the 1-step, 3-step and 5-step prediction accuracy. A-
mong them, the 1-step prediction implies the trend of the
next day, which is a short-term prediction. The 3-step pre-
diction indicates the half-week trend. Since the stock mar-
ket opens only on the weekdays, 5-step prediction implies the
trend in the next week. In other words, 5-step prediction typ-
ically covers one weekend, usually a much challenging task.
The comparison of the test errors are reported in Tab. 2.
To explicitly illustrate the performance, we select Bank of
America (BAC) in the financials sector and Microsoft (MS-
FT) in the technology sector to plot the error curves of the
test time series in Fig. 3.

From Tab. 2, we can see that the SFM outperforms both
the AR and the LSTM models, whereas the LSTM works
better than AR model. For each model, as we expected, the
performance becomes worse as the prediction step increases.
However, the SFM degenerates more slowly than the oth-
er two models. This is attributed to its ability of modeling
multi-frequency trading patterns with adjusted context of
the price time-series.
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(a) BAC 1-step (b) BAC 3-step (c) BAC 5-step

(d) MSFT 1-step (e) MSFT 3-step (f) MSFT 5-step

Figure 3: Square error curves of AR, LSTM and SFM. The figure (a)(b)(c) show the results on BAC stock
for different period of prediction. Figure (d)(e)(f) illustrate the error curves of models on MSFT stock.

On the other hand, the number w of past prices involved
in the AR model can be regarded as the size of the memory
of the price data. We also conduct experiments with the AR
model of different w. The results are shown in Tab. 3. The
test error does not show any significant improvements with
an increasing number of w. In fact, the test error becomes
even worse when w is larger. This could be caused by the
increased model complexity with more parameters, leading
to overfitting to the training sequence of price data. On the
contrary, both the LSTM and the proposed SFM reach a
better test error than the AR model, showing that they are
more capable of capturing the long-term dependency without
running an overfitting issue facing the AR model.

In addition, with the involvement of trading patterns with
multiple frequencies, the SFM shows a more precise predic-
tion than the LSTM that only models the internal depen-
dencies. We note that the frequency components account for
trading activities at different paces and cycles. Regulating
information of different frequencies with the gate units, the
SFM filters the irrelevant frequency components and retains
the relevant components to provide a guidance for the pre-
diction of future trend. In this way, it prevents the states
from over-dominating the price prediction by trapping the
model into the local pattern of price changes. The experimen-
t results also confirm it with the competitive performance
achieved by the SFM.

From Fig. 3, we can see that all the three models can
capture the trend of stock prices. As expected, the error
curves of the SFM are lower than those of the LSTM and

Table 3: The test errors of the AR model versus
different numbers w of involved past prices.

w 3 5 10 15 20

1-step 6.01 6.10 6.07 6.16 6.26
3-step 18.58 18.71 18.98 19.26 19.86
5-step 31.06 30.74 31.2 32.05 32.35

the AR model. Moreover, the AR tends to simply repeat the
trajectory of history prices with a serious delay. This causes
a very poor prediction accuracy when the stock price changes
abruptly. In contrast, the LSTM and the SFM perform much
better than the AR model, since they are less likely to be
affected by the local pattern of price changes in a short term.

4.3 Impact of Model Complexity

The complexity of the proposed SFM network has a direct
impact on the performance. In theory, the training error can
be arbitrarily low with a sufficiently complex model. Howev-
er, a low prediction error on the training set does not imply
a low test error. A complex model can increase the overfit-
ting risk. In particular, the complexity of the SFM can be
measured in terms of two metrics – the number of states and
the number of frequencies. In the following two parts, we s-
tudy their impacts on the prediction performance, revealing
some insight into how the model works with different config-
urations.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2147



Table 4: The average square error versus the number
of states in LSTM

# of states 10 20 40 50

1-step 5.93 6.60 6.91 6.89
3-step 18.38 19.05 18.60 18.68
5-step 30.30 30.58 30.02 31.07

It is worth noting that the proper hyper-parameters re-
garding the model complexity are chosen based on the per-
formance on the validation set. In our experiments, we use
the prices from 2007 to 2014 to learn the model, and the
prices during 2015 as the validation set. Once the hyper-
parameters are chosen, the trained model is evaluated on
the test set.

4.3.1 Impact of the number of states. For the LSTM, the
complexity is estimated by the number of states, i.e., the
dimension of the memory states. However, for the SFM, the
number of states indicates the number of rows of the memory
state matrices, which implies the number of patterns expect-
ed to learn from the price time-series. The more expected
patterns the network learns, the more complex the model
is. We conduct experiments with varying number of states
in both the LSTM and the SFM to study its impact on the
performance.

Tab. 4 illustrates the results of the LSTM. For 1-step and
3-step prediction, the LSTM achieves the best performance
with 10-dimensional memory states. We observe the overfit-
ting with the increasing number of states. Simply increasing
the number of states cannot decrease the test error anymore.
Even worse, too large number of states (i.e., more than 50) in
LSTM can even worsen the test error, causing an excessive
fitting into the training prices. Without the decomposition
and regulation of information over different frequencies, the
LSTM blindly blends the information of all frequencies, in-
cluding the irrelevant frequency components. Thus, it tends
to over-dominate the price prediction by trapping the model
into the local pattern. Note that since the 5-step prediction
is more challenging, the LSTM needs more states (i.e., 40)
to achieve the best performance.

Fixing the number of frequencies as 10, the results of the
SFM is presented in Tab. 5. By introducing the decomposi-
tion and regulation of the states, the overfitting problem is
not as serious as the LSTM. Especially, the SFM achieves
its best performance with 50 states for the 3-step and 5-step.
Although in 1-step prediction, the performance starts to get
worse with increasing number of states, the SFM degener-
ates more slowly than the LSTM. We will illustrate that the
number of frequencies instead of states is more critical for
1-step prediction, which is a short-term prediction. The re-
sults indicate that the overfitting problem is relieved with
the regulation of multiple frequency components. Actually,
the gate units automatically filter the irrelevant frequency
components. Relevant frequency components are retained to
provide useful hints on the future trend of the stock market.

Table 5: The average square error versus the number
of states in SFM. The number of frequencies is fixed
as 10.

# of states 10 20 40 50

1-step 5.57 5.79 6.15 5.91
3-step 18.48 19.20 17.25 17.00
5-step 29.48 29.84 31.30 28.90

Table 6: The average square error versus the number
of frequencies in SFM. The number of states is fixed
as 50.

# of frequencies 5 10 15 20

1-step 6.69 5.91 5.91 5.88
3-step 18.39 17.00 19.15 19.52
5-step 30.95 28.9 30.57 31.22

With the decomposition and regulation of multiple frequen-
cies, involving more hidden states becomes meaningful and
yields a more accurate prediction.

4.3.2 Impact of number of frequencies. Besides the states,
the number of frequencies is also an important hyperparame-
ter in the SFM. Fixing the number of states as 50, we explore
the impacts of the number of frequencies on the performance.
The results are shown in Tab. 6.

From Tab. 6, we can see that the SFM achieves the best
performance for 1-step prediction with 20 frequency compo-
nents. In this case, more frequency components are needed
to model the high volatility in such a short term. As we in-
troduced in Sec. 3.2, the frequencies are evenly distributed
on [0, 2π]. It is clear that with more frequencies, the memo-
ry states involve more information on the high frequency in
short-terms. And the components of high frequency account
for the short-term trading activities. It indicates the poten-
tial of the SFM to model the high frequency trading in the
stock market. For 3-step and 5-step prediction, the best per-
formance is achieved with 10 frequencies. As their volatility
is not as high as the 1-step prediction, components with low
frequency become more relevant to the prediction. The re-
sults indicate that with varying number of frequencies, the
SFM is capable of capturing patterns in trading activities at
different paces.

5 CONCLUSION

In this paper, we present a State Frequency Memory regres-
sion network learning trading patterns with multiple frequen-
cies to predict the trend of stock prices. Actually, the stock
price reflects the multi-frequency patterns due to the trading
activities performed at different paces. Discovering relevant
frequency patterns provides useful clues on the future price
trend. However, to the best of our knowledge, none of exist-
ing methods of price prediction model distinguish between
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the multi-frequency patterns underlying the price time-series.
With the joint state-frequency memory states, the SFM mod-
els the trading patterns as multiple frequency components.
The long-term dependencies are as well revealed with the
gating structure like the LSTM. Experiment results on the
real price data demonstrate that the SFM can discover and
regulate the multi-frequency patterns in the stock prices, out-
performing both the AR and the conventional LSTM models.
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