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ABSTRACT
Point-of-Interest (POI) demand modeling in urban regions is critical
for many applications such as business site selection and real estate
investment. While some efforts have been made for the demand
analysis of some specific POI categories, such as restaurants, it lacks
systematic means to support POI demand modeling. To this end, in
this paper, we develop a systematic POI demand modeling frame-
work, named Region POI Demand Identification (RPDI), to model
POI demands by exploiting the daily needs of people identified
from their large-scale mobility data. Specifically, we first partition
the urban space into spatially differentiated neighborhood regions
formed by many small local communities. Then, the daily activ-
ity patterns of people traveling in the city will be extracted from
human mobility data. Since the trip activities, even aggregated,
are sparse and insufficient to directly identify the POI demands,
especially for underdeveloped regions, we develop a latent factor
model that integrates human mobility data, POI profiles, and demo-
graphic data to robustly model the POI demand of urban regions
in a holistic way. In this model, POI preferences and supplies are
used together with demographic features to estimate the POI de-
mands simultaneously for all the urban regions interconnected in
the city. Moreover, we also design efficient algorithms to optimize
the latent model for large-scale data. Finally, experimental results
on real-world data in New York City (NYC) show that our method
is effective for identifying POI demands for different regions.

CCS CONCEPTS
• Information systems→ Location based services; Geographic
information systems; •Computingmethodologies→ Factor anal-
ysis; • Human-centered computing → Mobile computing;
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1 INTRODUCTION
Identification of POI demands in spatially differentiated regions
is fundamental for governments, also it is critical for the survival
of local businesses. In some cases, failing to estimate demands
properly is enough to force a company to go out of business. The
demand analysis helps the entrepreneur and the authority in mak-
ing decisions for the efficient allocation of limited resources, such
as business site selection, real estate investment and land use plan-
ning [31]. Take site selection for example, a business will have high
chance to success if it is placed in a highly-demanded region, oth-
erwise it may result in serious business risk and even failure. In
this paper, we aim to provide a systematic POI demand analysis for
urban regions with the help of large-scale human mobility data.

Currently, local businesses and governments largely rely on
labor-intensive surveys to inform their decision-making. For ex-
ample, to understand region demands, a series of research has
been done based on survey data [21, 22]. However, the informa-
tion obtained through the surveys may not be sufficient and timely
enough. Recently, the wide availability of Information Communica-
tions Technology (ICT) has enabled unprecedented opportunities
to collect large-scale human mobility data, e.g., taxi GPS traces,
which is able to cover the whole urban area with fine-grained time
and location information. It reflects the underlying dynamics of
residents in the city, which is much more detailed, and has larger
scale than survey data. While more and more efforts have been put
into analyzing the large-scale human mobility data to understand
urban dynamics, few of them provide a systematic POI demand
modeling but focus on specific POI categories such as restaurant
and gas station [11, 20]. Actually, people vote with their feet, which
is an important economic logic [24], indicates that people have
the ability to choose what they need by traveling. For example, as
illustrated in Figure 1, if people from one region frequently travel
to other regions for restaurants and doctors, it is much likely peo-
ple need new or improved restaurants and health services in this
region. Therefore, the human mobility patterns can be utilized to
identify daily needs of people, and provide governments and local
businesses with opportunities to better understand POI demand
and formulate future planning.
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Figure 1: Identification of Region POI Demand

Indeed, in this paper, we investigate how to identify POI demands
for urban regions by modeling region POI preferences, region POI
supplies, and region demographic features. To the best of our knowl-
edge, this is the first attempt to identify POI demands over different
categories in the city scale. The main challenges of this work in-
clude: 1) Human mobility data is highly skewed between different
regions, even no human mobility data collected for underdevel-
oped regions which in fact need more attention. Take NYC as an
example, Staten Island is one borough of NYC but separated from
other boroughs by New York Bay, which makes it difficult to travel
by taxi to downtown NYC but by ferry. As shown in Figure 3 (a),
the number of taxi trips in Staten Island is much less than other
boroughs. 2) How to integrate region POI profiles and demographic
data together with human mobility data to better model the POI
demand of urban regions in a holistic way. 3) How to learn the de-
mands simultaneously for all the regions in a city with community
opinions considered.

To this end, in this paper, we develop a systematic POI demand
modeling framework, named Region POI Demand Identification
(RPDI), to model POI demands by exploiting the daily needs of peo-
ple identified from their large-scale mobility data. Specifically, in
our proposed framework, we first partition the urban space into spa-
tially differentiated neighborhood regions formed by many small
local communities. Then, a Bayesian model [7] considering context
POI information like distance, rating, and popularity is exploited
to infer trip activities. Besides, we aggregate the trips that origin
from the same region and identify the underlying demands of all
the regions simultaneously using a latent factor model, which inte-
grates region preferences, POI supplies, and demographic features.
Furthermore, we apply the identified demands for region POI de-
mand ranking. Finally, the main contributions of this paper can be
summarized as follows:
• A systematic framework, named RPDI, is developed to identify
POI demands for urban regions in a city. RPDI is able to identify
POI demands over different categories in the city scale with
large-scale human mobility data.
• A latent factor model is proposed to integrate region prefer-
ences, POI profiles, and demographic features for POI demand
modeling. The model helps to identify a set of latent factors,
which in turn can be leveraged for learning region demands
in a coherent way.

• The RPDI framework has been evaluated on large-scale real-
world data for region POI demand identification. The exper-
imental results show that our method outperforms baseline
methods in terms of multiple metrics such as Normalized Root-
Mean-Square Error (NRMSE), F-measure, and Normalized Dis-
counted Cumulative Gain (NDCG).

2 THE REGION POI DEMAND
IDENTIFICATION FRAMEWORK

In this section, we first formally introduce the problem of region
POI demand identification, and then provide an overview of our
proposed Region POI Demand Identification framework.

2.1 Problem Statement
Assume that we haveM POIs denoted by the set P and N regions
in the set R. For simplicity, we let P = {1, 2, · · · ,M }, i.e., we use
integers to represent the POIs. For then-th region in time slot t ∈ T ,
where n = 1, 2, · · · ,N , and t = 1, 2, · · · ,T , we have its activity
records represented as a vector of visiting probabilities to POIs
xnt = (xn1t ,x

n
2t , · · · ,x

n
Mt ), which indicates needs of people. Thus

all the activities for all the regions in all time slots form a region
activity cube X = {xnpt }. However, X is very sparse since not all the
POIs are visited, and moreover, not all the activities are recorded
for certain regions. Formally, our idea of demand identification is to
recover the visiting probabilities of all the regions using community
opinions with region preferences and region supplies considered.
With recovered x̂npt from the demand inference model, we further
derive the region demand dn at POI level and category level. Then
we apply the identified demand for region POI demand ranking,
which is one of many applications leveraging POI demand. Table 1
lists some notations used in this paper.

Table 1: Mathematical Notations

Notation Description

N , M, C, T , D
The number of regions, POIs, POI categories,
time slots, dimensions of region features, re-
spectively.

R, P, C, T
The set of regions, POIs, POI categories, and
time slots, respectively.

F
The matrix of region features, including POI
profiles and demographic features.

X, Y
The region activity cube at POI level and
category level, respectively.

K The dimension of latent factors.

α, v
The latent demand patterns at POI category
level and POI level, respectively.

β The region coefficients for features.
u The latent region pattern coefficients.

2.2 Framework Overview
Figure 2 shows the proposed Region POI Demand Identification
framework. This framework first segment an urban area into re-
gions which are shared by local communities. Then with the help of
collected geographic and demographic data, we are able to extract
POI profiles and demographic features for each region. In the mean
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Figure 2: An overview of RPDI framework

time, we infer trip activities from taxi GPS traces with context in-
formation considered, then propagate trips to the region level. We
treat the activities performed outside the region as the underlying
POI demand of this region. With the region activity cube and re-
gion features obtained, we model the region demand with a latent
factor model, which integrates region preferences, region supplies
and demographics. With the proposed demand model, we aim to
infer region activities with partial activity information given. We
also develop efficient algorithms to optimize the latent model with
large-scale data. Finally, we derive the region demands from the
learned region activities and further apply them for POI demand
ranking, which is useful for various applications such as business
site selection and real estate investment.

3 PRELIMINARIES
In this section, we first introduce the region partition for urban area,
followed by the details of demographics and POI profiles in regions.
At last we introduce how to extract human mobility patterns from
taxi GPS traces and POIs.

3.1 Region Partition
The urban area can be partitioned into regions with different meth-
ods, e.g., grid-based, road network-based [29]. However, these meth-
ods do not take the socioeconomic factor into account. Instead, we
use Neighborhood Tabulation Areas (NTAs)1 provided by New York
City government as our region partition method, which is shown
in Figure 3. NTAs are created to project populations at a small area
level for the long-term sustainability plan for New York City. NTAs
are a valuable summary level for use with both the 2010 Census and
the American Community Survey (ACS). These geographic areas
offer a good compromise between the very detailed data for census
tracts (2,168) and the broad strokes provided by community districts
(59). As a result, we obtain 195 neighborhood regions which are
shared by local communities.

1https://www.nyc.gov

3.2 Region Demographics
The POI demand indeed is the demand of people. The different dis-
tributions of people in a region will affect the demands significantly.
Therefore, the demographic information could be a complement to
human mobility patterns to estimate region demands. To this end,
we integrate the demographic information collected from the US
Census data1 into our proposed model.

For each neighborhood, population density, sex, age, compo-
sition are used to depict population information in that region.
Moreover, household income, household type, housing occupancy,
and housing tenure are used to depict household information. In
total we have 25 attributes to depict the demographic features
d f n = (d f n1 ,d f

n
2 , · · · ,d f

n
25) for region rn , and some typical ones

are shown in Figure 3. Note that we describe population composi-
tion using eight attributes with one for each race type (e.g., white,
black, asian, etc.), but in Figure 3 (c) we only show the entropy of
these eight attributes for visualization, where a higher value means
a more mixed population compostion.

3.3 Region POI Profiles
Existing POIs in one region indicate the POI supply of this region
provided, which is on the other side of region demand. As long as
the supply and demand can be balanced, there is no need to add
new POIs to increase the supply. From this point of view, what we
try to estimate in this paper is the region POI demand cannot be
fulfilled locally.

For the n-th region rn , the number of POIs in each POI category
can be counted. The frequency density of POI category c in region
rn is calculated by:

p f nc =
|{p |p ∈ rn , c}|

Area of rn

and the region POI feature vector of region rn is denoted by p f n =
(p f n1 ,p f

n
2 , · · · ,p f

n
C ), whereC is the number of POI categories. The

region feature vector fn = (d fn ,p fn ) ∈ F, consists of demographic
and POI features, is regarded as the metadata of each region.

3.4 Trip Activity Inference
The original human mobility from taxi GPS traces is described by
trip origin and destination, where the activities participated for the
trips are unknown. Fortunately, efforts have been made to infer
the activities involved for each trip [4, 12]. Here, we leverage the
trip context information, i.e., POIs around destination, to describe
the trip activities instead of one destination point. Specifically, we
utilize the Bayesian activity inference model proposed by Gong
et al. [7], which take both spatial and temporal constraints into
consideration, to estimate the probabilities of possible destination
POIs for each trip. After we get the probabilities of POIs for each
trip, we aggregate the trips for regions. Gong et al. [7] show this
model can effectively infer trip activity at the aggregation level.

Given trip tr = (tr .ori, tr .dest , tr .time ), the inference process
first chooses a set of candidate POIs PC ⊂ P within the walking
distance δ of the trip destination, then assigns different visiting
probabilities by considering influences of 1) distance decay, further
the distance from POI to destination smaller the chance of visiting;
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(a) Trip Number (b) Population Density (c) Median Age (d) Population Composition (e) Household Income

Figure 3: Features of regions. Note that darker color stands for a higher value in that region.

2) popular time, POI categories have different popularities at differ-
ent time of day; and 3) attractiveness, POIs with higher ratings can
attract more people to visit.

As we know, the region demands may vary over time of day, e.g.,
more people visiting bar in the evening than in the morning. We
thus segment time into multiple segments in terms of T defined
time slots. For example, we first segment days by weekday and
weekend, then segment each day into 24 slots with each hour as a
slot, and finally we get 48 time slots. The daily average number of
trips for each time slot is shown in Figure 4.

Figure 4: Number of trips at different hours of a day

Specifically, in this model, the probability of user choosing a POI
p ∈ PC for a trip tr , tr .t ∈ t is formulated as follows.

Pr(p |tr ) =
Ap · dist (tr .d,p)

−λ · pop (p |t )∑
q∈PC Aq · dist (tr .d,q)−λ · pop (q |t )

(1)

where dist (a,b) is the distance between two points a and b, and
dist ≤ δ , Ap is the attractiveness of p, which is represented by the
rating from Google POI data, pop (p |t ) is the popularity of p at time
slot t which can be derived from Foursquare check-in data with

pop (p |t ) =
1

|{p ∈ c}|
·
|{checkin ∈ c, t }|∑

c ∈C |{checkin ∈ c, t }|
.

Pr (p |tr ) ranges from 0 to 1, and the sum of the visiting probabilities
of all the candidate POIs for one trip equals to 1. According to [7],
we choose δ = 200m, λ = 1.5 as the parameters. Finally, for each trip
tr , we extract the activity tuple: act (tr ) = (tr .ori, tr .time, tr .pois ).

4 DEMAND INFERENCE
In this section, we introduce how to derive the POI demands for all
the regions by integrating human mobility records, POI and region
profiles. We start with the semantic aggregation of the mobile
activities of each region.

4.1 Region Activity Aggregation
After we infer the trip activities, next we aggregate the trips from
the same region to obtain region activities. Specifically, for the n-th
region rn and time slot t , we aggregate the intentions of activities
originating from rn as follows:

prnpt =
∑

tr : tr .or i=rntr .t ime=t

Pr(p |tr ),

where p ∈ P is the index of the POIs. Moreover, we aggregate and
normalize the probability score as

xnpt =
prnpt∑

q∈P pr
n
qt
,

and obtain the region activity cube X = {xnpt } at the POI level.
Other than that, the region activities can also be aggregated to

POI category level, which is commonly used in literature [4]. Specif-
ically, with the probabilities of POIs visited by people from region
rn inferred, we can further summarize the visiting probability of
those POIs per category c ∈ C and obtain the category-level aggre-
gated visit probability as ynct =

∑
p∈c x

n
pt . In this way, we construct

the representation of POI visit as an aggregated visiting probability
vector over different POI categories. Similarly, we obtain the region
activity cube Y = {ynct } at the POI category level.

Figure 5 shows the correlations of extracted features and human
mobility patterns between regions, from which we can see several
region clusters formed indicating that we may learn from peers.
Please note our latent factor model can be applied at both the POI
level and the POI category level to infer the POI demand.

(a) (b)

Figure 5: Correlation Map (a) features of regions, (b) human
mobility patterns of regions.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

950



4.2 Latent Factor Model
As aforementioned, human mobility data can tape the “foot vot-
ing”, i.e., where people go is for what they need but cannot be
fulfilled locally. Therefore, one straightforward way to infer the
region demand is to directly aggregate the probabilities of the desti-
nation POIs. However, the distribution of the mobility data is highly
skewed, thus some regions may not have enough or even no obser-
vations to recover the demand by activity aggregation. Moreover,
one trip may visit multiple POIs and the POIs can compete with
each other, but the simple aggregation cannot take these factors
into account. In the following, we develop a latent factor model,
which considers profiles of regions and POIs, to learn the region
demand with skewed mobility records. In other words, the regions
with enough human mobility data can help the regions with few
observations in the modeling process.

Intuitively, a person starting an activity from a region first needs
to decide which demand category (e.g., shopping, eating, recreation)
to be fulfilled. If the demand cannot be fulfilled locally, which cost
the least amount of time and energy, then the person needs to decide
which POIs in which regions to go. Along this line, we model the
demand patterns at both POI category level (α ) and POI level (v).
Given a time slot t , in each column vector αct ∈ RK and vpt ∈ RK
are the pattern coefficients for one category (c) and one POI (p),
respectively. Similarly, the latent variables in the matrix u encode
the pattern coefficients of the regional POI demands. The column
vector un ∈ RK is for the n-th region. In this way, the observed
activity can be modeled as:

xnpt ∼ u
′
nvpt .

The structure of the proposed region demand inference model is
shown in Figure 6. Note that, the region demands may vary over
time of the day, e.g., more people visiting bar in the evening than
in the morning. We thus segment time everyday into multiple time
slots indexed by t = 1, 2, · · · ,T and learn the demand patterns for
each time slot.

As shown in the graphical model (Figure 6), we also use side-
information (e.g., POI category, regional POI supply and demo-
graphic data) to enhance the model. Specifically, suppose we use K
latent demand patterns to model the demand portfolio of the region.
The pattern coefficients un ∈ RK and the demographic features
fn ∈ R

D of the n-th region is modeled as:

un ∼ β ′ fn ,

where the matrix β ∈ RD×K will be learned in the modeling process.
Similarly, we have:

vpt ∼ αc (p )t ,

if the p-th POI is in the c (p)-th POI category.
We put the above modeling processes in an unified probabilistic

framework, with the following distribution specifications: xnpt ∼
N (u ′nvpt ,σ ) ∈ R,un ∼ N (β ′ fn ,σu IK ) ∈ R

K , andvpt ∼ N (αc (p )t ,

σv IK ) ∈ R
K , where σ , σu , and σv are standard deviations of the

normal distributions, respectively. Now, we use the negative log-
likelihood of the model as the objective function (Equation 2) to

σα αc,t

σv vp,t

cp

xn,p,t un fn

βk σβ

σu

σ

C

M

T

K

N

Figure 6: The Demand Inference Model

optimize the model parameters (α , β , u, and v):

L (α , β ,u,v |x ,σ ) =
1

2σ 2

∑
n,p,t

(xnpt − u
′
nvpt )

2

+
1

2σ 2
u

∑
n
∥un − β

′ fn ∥
2 +

1
2σ 2

v

∑
p,t
∥vpt − αc (p )t ∥

2

+
1

2σ 2
α

∑
c,t
∥αct ∥

2 +
1

2σ 2
β

∑
k

∥βk ∥
2

(2)

The last two terms are added to reduce the generalization error
with the following priors on the latent variables α and β : αct ∼
N (0,σα IK ) ∈ RK , and βk ∼ N (0,σβ ID ) ∈ RD .

4.3 Learning Algorithm
In this section we introduce an efficient algorithms to optimize the
latent factor model with large-scale data. In the proposed model,
we have parameters in: 1) α ,v for time-aware demand patterns
for POI categories and POIs respectively; 2) u for latent demand
preferences for individual regions; 3) finally β for regression coef-
ficients between the region features and the demand preferences
of each region. We iteratively update these parameters to optimize
the objective function in Equation 2.

Specifically, to optimize α with other parameters fixed, the prob-
lem is equivalent to minimize:

1
2σ 2

v

∑
p,t
∥vp,t − αc (p ),t ∥

2 +
1

2σ 2
α

∑
c,t
∥αc,t ∥

2 (3)

Therefore, for each POI category c and time index t , to compute
αc,t , we minimize:

1
2σ 2

v

∑
p :c (p )=c

∥vp,t − αc,t ∥
2 +

1
2σ 2

α
∥αc,t ∥

2 (4)

For this problem, we have closed form solution:

αc,t =

∑
p :c (p )=c vp,t

Mc + σ
2
v/σ

2
α

(5)

whereMc = |{p | c (p) = c}| is the number of POIs in category c .
The problem to optimize β is the so-called ridge regression which

is to minimize:
1

2σ 2
u

∑
n
∥un − β

′ fn ∥
2 +

1
2σ 2

β

∑
k

∥βk ∥
2
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Since FF′ + σ 2
u/σ

2
β ID is not singular, we also have closed form

solution as:

β = (FF′ + σ 2
u/σ

2
β ID )

−1Fu ′ ∈ RD×K

where F ∈ RD×N ,u ∈ RK×N and ID ∈ RD×D is the identity matrix.
For updating u and v , we use gradient descent optimization. To

this end, we have
∂L

∂un
= −

1
σ 2

∑
p,t

(xnpt − ⟨un ,vpt ⟩)vpt +
1
σ 2
u
(un − β

′ fn )

∂L

∂vpt
= −

1
σ 2

∑
n
(xnpt − ⟨un ,vpt ⟩)un +

1
σ 2
v
(vpt − αc (p ),t )

4.4 Variations and Extensions
There are several variations of our modeling process. For example,
we can use the the following objective function to directly identify
the POI demand of urban regions at the POI category level with
region activity cube Y:

L (α , β,u |x ,σ ) =
1

2σ 2

∑
n,c,t

(ynct − u
′
nαct )

2

+
1

2σ 2
u

∑
n
∥un − β

′ fn ∥
2

+
1

2σ 2
α

∑
c,t
∥αct ∥

2 +
1

2σ 2
β

∑
k

∥βk ∥
2

(6)

In this way, we can estimate:

ŷnct ∼ u
′
nαct .

This might be different with the simple aggregation of the results
at the POI level, e.g.,

x̂npt ∼ u
′
nvpt ,

ŷnct ∼
∑
p∈c

x̂npt ,

where u and v are from Equation 2. We named the model variation
in Equation 6 as RPDI_c, which will be investigated in our empirical
studies in section 5.

5 EXPERIMENTAL RESULTS
In this section we first introduce the data and settings of our exper-
iments. Then we evaluate the performances of the proposed region
demand inference model. Finally we show the results of our model
applying to POI demand ranking.

5.1 Experimental Data
All the experiments were performed on real-world datasets includ-
ing one taxi trip dataset from the New York City (NYC)2, one POI
dataset collected from Google Map3, one Location-based Social
Network (LBSN) dataset collected from Foursquare4, and one de-
mographic dataset as introduced in subsection 3.2.
The taxi trip dataset is generated by about 50,000 taxis in New
York City from January to June, 2016, in total we have around 72
million trips collected. Each trip is associated with pick-up and
2http://www.nyc.gov/html/tlc/html/home/home.shtml
3https://developers.google.com/places/
4https://www.foursquare.com/

drop-off dates/times, pick-up and drop-off locations, trip distances,
itemized fares, rate types, payment types, and driver-reported pas-
senger counts. Here we focus on the time, origin, and destination
information related to taxi trips.
The POI dataset is collected from Google Places API and have a
flat category structure, which contains 97 fine categories, such as
restaurant, store, park, etc. Due to space limit, we cannot list all the
categories here, please refer to Google Places5 for the whole list
of categories. This dataset can be split into two sets, one contains
297,078 POIs created before June, 2016, which are employed to
estimate the human activities. Another set contains 3,817 POIs,
which are created after June, 2016, is used as our validation set
of demand ranking. The distribution of newly created POIs are
shown in Figure 7 (a) and (b) in terms of regions and categories,
respectively. Here we assume that people are rational and the new
POIs are created to meet the demands.
The Foursquare dataset includes 504,152 check-in observations
for 55,717 POIs. Each check-in contains the user ID, check-in time,
venue ID and the venue’s geo-coordinates. Note the Foursquare
dataset has 418 POI categories which is more detailed than Google
POI, and we manually match the 418 POI categories to the Google
POI categories to make them consistent.

(a) Regions (b) Categories

Figure 7: The distribution of new POIs in NYC. Note that in
(b) only top 10 most POI categories are labeled due to space.

5.2 Evaluation Metrics
In our experiments, we first evaluate the performances of our pro-
posed latent factor model by comparing learned POI demands with
observed demands. Then we apply our model for POI demand rank-
ing, and the performances are presented.
Model Performance. We removed a uniform random subset of
10% of the entries in X (or Y) as a test set and trained on the remain-
ing 90%. We chose to remove random entries in X (or Y) as opposed
to random trips so as to avoid the obvious bias that regions will
tend to revisit the same POIs. The goal of demand identification is
to estimate the demands for a region which may not be observed.
So, by limiting the test set to new region-POI pairs we are able
to define an evaluation metric more inline with the problem we
are solving. We learn the models and obtain the estimated POI
demands for each region, then compare this estimation with testing
data. The evaluation metric used for the comparison is Normalized
Root-Mean-Square Error (NRMSE).

5https://developers.google.com/places/supported_types
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Normalized Root-Mean-Square Error (NRMSE). The root-mean-square
error (RMSE) is a frequently used measure of the differences be-
tween values (sample and population values) predicted by a model
or an estimator and the values actually observed. Normalizing the
RMSE with respect to the standard deviation (or mean) facilitates
the comparison between datasets or models with different scales.

RMSE =

√∑n
i (x̂i − xi )

2

n
,NRMSE =

RMSE

std (x )
(7)

POI Demand Ranking. We rank our identified POI demands to
see what’s the most needed POI categories in a region, and which re-
gions are with the most demand for certain POI category. Therefore,
our experiments are conducted in two-folds: (1) Given a region,
rank the demands for different POI categories; (2) Given a POI
category, rank the demands of different regions.

For practical usage, we train a model for each time slot. To
provide a unified region demand to users, the output of thesemodels
can be aggregated as dnp =

∑
t w

n
t · x̂

n
pt , wherew

n
t =

| {tr ∈rn,t } |∑
t | {tr ∈rn,t } |

,
dnp stands for demand of region rn for POIp. And further normalized
by categorywith supply information considered, d̄nc = 1

| {p∈rn,c } |+1 ·∑
p∈c d

n
p . Here d̄nc is the marginal demand for one POI in category

c , which measures the potential demand can be delivered to a new
POI. Our ranking result is given by ranking d̄nc in descending order.
To evaluate the ranking list given, we use the newly created POIs
after June, 2016 as our groundtruth of demand, which is ranked in
descending order by the ratio of increased new POIs: | {q∈rn,c } |

| {p∈rn,c } |+1 ,
where q ∈ NP,p ∈ P, and NP is the new POI set.
F-measure. F-measure combines precision and recall together with
a harmonic mean, which is defined as

F1@ top-k = 2 ·
Precision@k × Recall@k

Precision@k + Recall@k
. (8)

Given a top-k ranking list Srank sorted in a descending order based
on the estimated demands, precision and recall can be obtained
as follows: Precision@ top-k = Srank

⋂
Snew

k , and Recall@ top-k =
Srank

⋂
Snew

Snew , where Snew are the POI categories newly created
in the groundtruth data. The F-measure for the entire city are
computed by averaging all the F-measure values of all the regions
(or categories).
Normalized Discounted Cumulative Gain (NDCG). Given a top-k
ranking list sorted in a descending order of the estimated demands,
NDCG [9] is defined as

NDCG@ top-k =
1

IDCG
×

k∑
i=1

2r eli − 1
loд(i + 1)

, (9)

where IDCG is themaximumpossible DCG for a given set of ranking
list, and reli is 1 if the ranked POI category at position i is newly
created and 0 otherwise. NDCG measures the ranking quality of
the recommender system based on a graded relevance scale of
recommendations. The NDCG for the entire city are computed by
averaging all the NDCG values of all the regions (or categories).

5.3 Baselines
We compare the proposed method (RPDI) with five baselines, which
are introduced as follows.

Non-Negative Matrix Factorization (NMF) is a matrix factoriza-
tion model, which factorize a matrix into (usually) two matrices,
with the property that all three matrices have no negative elements.
This non-negativity makes the resulting matrices easier to inspect.

Logistic Matrix Factorization (LMF) [10] is a factorization model
for the implicit case in which it models the probability of a user
choosing an item by a logistic function.

Moreover, NMF_c, LMF_c, RPDI_c are the methods we apply
NMF, LMF, RPDI to the aggregated region activity cube Y at POI
category level, respectively.

5.4 Results of Model Performances
We evaluate our proposed model and baseline models using the
NRMSE evaluation metric for a differing number of latent factors
K ranging from 10 to 50. As shown in Figure 8 (a), we can see RPDI
achieves best performance among all the models, with relatively
small NRMSE obtained. While LMF performs worst among all the
methods. For the models applied to Y, they are able to obtain rela-
tively small NRMSE, because Y is much smaller than X and easier
to be factorized. With the increasing of K , the NRMSE decreases
slowly. We also find that increasing the number of the latent factors
beyond 50 did not improve performance on our dataset. Moreover,
the priors of latent variables (σ ,σα ,σβ ,σu ,σv ) are validated with
values (0.0001, 0.001, 0.01, 0.1, 1, 10, 100), and we find 0.1 achieves
the best performance (as shown in Figure 8 (b)).

10 20 30 40 50

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
R
M
S
E

K

NMF_c

LMF_c

RPDI_c

NMF

LMF

RPDI

(a) Dimension of latent factors

1E-4 1E-3 0.01 0.1 1 10 100

2

4

6

N
R
M
S
E

σ

RPDI

(b) Priors

Figure 8: NRMSE of models

5.5 Results of POI Demand Ranking
In the next, we investigate the performances of our methods on
ranking region POI demand in two-folds: rank the POI demand for
every region, and rank the region demand for every POI category.

First, given a region, we rank the demands for POI categories.
And aggregate the results for all the regions as our final result. The
performances in terms of F-measure and NDCG with respect to
top-k categories are shown in Figure 9. In the figures, we can see
that RPDI achieves better overall performances than the others,
outperforming the second best model NMF by 8.5%. The perfor-
mances of models using category visiting probabilities are not as
good as the models using POI visiting probabilities, probably due
to the aggregation of category cannot reveal people’s choices of
POIs when going out. Among the ranking lists of all the regions,
the top 10 most needed POIs are as follows: restaurant, bar, lodging,
health, doctor, dentist, school, clothing store, beauty salon, cafe.
We can see most of these POIs are quite related to local businesses
and can bring much convenience to local residents if demands can
be satisfied. Moreover, to better illustrate the ranking results for
regions, we show several examples of the top-10 identified demands
of regions in Table 2.
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Table 2: Identified POI demands for regions.
Region Name Identified Demands@top-10 Groundtruth

Homecrest ’restaurant’ ’bar’ ’school’ ’lodging’ ’beauty salon’ ’store’ ’cafe’ ’clothing
store’ ’bakery’ ’finance’

’beauty salon’ ’store’ ’restaurant’ ’clothing store’ ’car repair’ ’health’ ’finance’
’jewelry store’ ’doctor’ ’hair care’

Central Harlem South ’beauty salon’ ’dentist’ ’store’ ’night club’ ’health’ ’clothing store’ ’electron-
ics store’ ’health’ ’general contractor’ ’bank’

’school’ ’beauty salon’ ’store’ ’gym’ ’health’ ’laundry’ ’mosque’ ’liquor store’
’doctor’

Clinton Hill ’restaurant’ ’bar’ ’school’ ’store’ ’beauty salon’ ’lodging’ ’cafe’ ’dentist’
’clothing store’ ’bakery’

’beauty salon’ ’store’ ’bar’ ’pharmacy’ ’restaurant’ ’bakery’ ’grocery or super-
market’ ’clothing store’ ’car repair’ ’liquor store’

Bedford ’restaurant’ ’beauty salon’ ’school’ ’bar’ ’lodging’ ’cafe’ ’clothing store’
’night club’ ’health’ ’food’

’school’ ’beauty salon’ ’food’ ’store’ ’restaurant’ ’real estate agency’ ’grocery
or supermarket’ ’clothing store’ ’health’ ’laundry’

Fordham North ’beauty salon’ ’health’ ’clothing store’ ’restaurant’ ’moving company’
’car repair’ ’finance’ ’car wash’ ’doctor’ ’general contractor’ ’beauty salon’ ’restaurant’ ’clothing store’ ’health’
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Figure 9: Rank categories for regions with different top-k

Then, given a POI category, we rank the POI demands of regions.
And aggregate the results for all the POI categories as our final
result. The performances in terms of F-measure and NDCG with
respect to top-k regions are shown in Figure 10. In the figures, we
can see that RPDI is still able to obtain better overall performances
than the others. However, the ranking results are not as good as
ranking for regions, since we havemore regions than POI categories
which makes it a harder problem. Similar to the ranking for regions,
the performances of models using category visiting probabilities
are not as good as the models using POI visiting probabilities.
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Figure 10: Rank regions for categories with different top-k
To better illustrate the ranking results for POI categories, we

show the estimated demands of two typical kinds of POIs, restau-
rants and health services. As shown in Figure 11, it is notable to see
that the estimated demands of restaurants (shown in (a)) in Manhat-
tan do not rank high among all the regions. Although Manhattan is
the central area of NYC and the market of restaurants is huge, there
is not much demand for new restaurants since the supply is also
high. As for health services, there are higher demands in areas with
lower household income in Brooklyn, Bronx, and Queens. From
this point of view, the government should make efforts to allocate
more health services in these areas.

6 RELATEDWORK
POI Recommendation. POI recommendation, targeting at rec-
ommending the right POIs to the target users [14, 15, 17], can be

(a) Restaurants (b) Health Services

Figure 11: Identified POI demands for categories. Note that
darker color stands for a higher demand in that region.

seen as discovering POI demands for users. Previous studies often
used collaborative filtering (CF) algorithm to fuse the check-in in-
formation, e.g., user interest preferences, social influence, temporal
influence and geographical influence [5, 28]. In [26], Ye et al. consid-
ered the social influence under the framework of a user-based CF
model, and modeled the geographical influence by a model-based
method (a Bayesian CF algorithm). Moreover, Yuan et al. [28] and
Gao et al. [5] introduced temporal preference to enhance the algo-
rithm efficiency and effectiveness. The authors separated a day into
different time slots and user preferences were learned for each slot,
thus POIs can be recommended according to different times of a
day. Cheng et al. [3] considered more comprehensive information,
such as the multi-center of user check-in patterns, and the skewed
user check-in frequency. Moreover, Liu et al. [16] proposed a ge-
ographical probabilistic factor analysis framework to analyze the
joint effects of multiple factors by considering user preference for
locations as a multiplication of interest in the locations, location
popularity and distance.

Different from the above works, we consider the POI demand
problem at the region level. Moreover, we integrate the region
supply information and demographic information into the proposed
model to learn region demands more accurately.
Site Selection. Traditionally, the site selection problem has been
studied by researchers from land economy community using spatial
interaction models, and multiple regression discriminant analysis
[2]. In recent years, location-based services have been widely used
to tackle this problem [11]. Karamshuk et al. selected optimal retail
store location from a list of locations by using supervised learning
with features mined from Foursquare check-in data. Li et al. [13]
studied ambulance stations site selection by using real traffic in-
formation so as to minimize the average travel time to reach the
emergency requests. Niu et al. [20] extracted discriminative features
of gas stations from heterogeneous mobile data and then formalized
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a gas station ranking predictor to select gas station location. Xu et
al. [25] proposed a framework to combine the spatial distribution
of user demands with the popularity and economic attributes for
optimal location selection.

Different from the above works, we consider a more general
framework to identify region POI demands. In this framework, it
learns demand of regions for all POIs simultaneously instead of
focuses on specific POI categories like restaurant or gas station.
Human Mobility Pattern Mining. Understanding human mobil-
ity in urban environments is central to traffic forecasting, location-
based services, and urban planning. A significant number of papers
on human mobility analysis have been published in recent years
thanks to the widely available mobility data, such as GPS data,
cellular network data, and transportation data [1, 8, 18, 23].

To the best of our knowledge, we are the first to work on the
problem of discovering region POI demand by leveraging human
mobility patterns. Although there is no existing work on the exact
application we are working on, there are many existing work on
making use of human mobility patterns for different novel applica-
tions. Giannotti et al. [6, 19] developed trajectory pattern mining,
and applied it to predict the next location at a certain level of accu-
racy by using GPS data. Zheng et al. [30] detected flawed designs
in current road network with a frequent graph method on taxi GPS
traces. Yuan et al. [27] proposed a topic-based inference model that
discovers regions of different functions, such as educational areas
and business districts, using both human mobility data and POIs.

7 CONCLUSION
In this paper, we investigated how to exploit human mobility pat-
terns, geographic data, and demographic data for identifying re-
gion POI demands. Along this line, we first proposed a framework,
named Region POI Demand Identification (RPDI), to model POI
demands with the daily needs identified from their large-scale mo-
bility data. Specifically, in this framework, an urban space was
first partitioned into spatially differentiated neighborhood regions
formed by local communities. Then, the daily activity patterns of
people traveling in the city were extracted from human mobility
data. However, the trip activities, even aggregated, were sparse
and insufficient to directly identify the POI demands, especially
for underdeveloped regions. Therefore, with a proposed demand
inference model considering POI preferences and supplies together
with demographic features, we estimated the POI demands of all
the regions simultaneously. As shown in the experimental results
on real-world data, the proposed RPDI framework could provide
effective POI demand identification for different regions.
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