
DeepEye: Resource Efficient Local Execution of Multiple
Deep Vision Models using Wearable Commodity Hardware

Akhil Mathur‡, Nicholas D. Lane‡†, Sourav Bhattacharya‡
Aidan Boran‡, Claudio Forlivesi‡, Fahim Kawsar‡

‡Nokia Bell Labs, †University College London

ABSTRACT
Wearable devices with in-built cameras present interesting oppor-
tunities for users to capture various aspects of their daily life and
are potentially also useful in supporting users with low vision in
their everyday tasks. However, state-of-the-art image wearables
available in the market are limited to capturing images periodically
and do not provide any real-time analysis of the data that might be
useful for the wearers.

In this paper, we present DeepEye - a match-box sized wearable
camera that is capable of running multiple cloud-scale deep learn-
ing models locally on the device, thereby enabling rich analysis of
the captured images in near real-time without offloading them to
the cloud. DeepEye is powered by a commodity wearable proces-
sor (Snapdragon 410) which ensures its wearable form factor. The
software architecture for DeepEye addresses a key limitation with
executing multiple deep learning models on constrained hardware,
that is their limited runtime memory. We propose a novel infer-
ence software pipeline that targets the local execution of multiple
deep vision models (specifically, CNNs) by interleaving the execu-
tion of computation-heavy convolutional layers with the loading of
memory-heavy fully-connected layers.

Beyond this core idea, the execution framework incorporates: a
memory caching scheme and a selective use of model compression
techniques that further minimizes memory bottlenecks. Through a
series of experiments, we show that our execution framework out-
performs the baseline approaches significantly in terms of inference
latency, memory requirements and energy consumption.

Keywords
Wearables; deep learning; embedded devices; computer vision; lo-
cal execution

1. INTRODUCTION
Mobile vision systems have been built for decades, with recent

example systems from research including SenseCam [1], Gabriel [2]
and ThirdEye [3]. All of these systems capture images from devices
worn by the user which are then processed by vision algorithms for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys’17, June 19-23, 2017, Niagara Falls, NY, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4928-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3081333.3081359

extracting high-level information in service of a range of applica-
tions; for example, cognitive assistance, physical analytics, mobile
health, memory augmentation and lifelogging. Now even commer-
cial systems of this type are for sale with the most popular examples
being Google Glass [4] and the Narrative Clip [5]. Fortuitously, as
wearable cameras start to become mainstream the ability of com-
putational models to understand the images they collect has also
undergone a revolution in its abilities. Powered by rapid innova-
tion in the area of deep learning for some image tasks (recognizing
a face [6], locating an image geographically [7], or deciding if an
image is memorable or not [8]) these models are even equalling
human performance.

However, currently there exists a huge gap between this growing
computational ability to understand images and the ability of wear-
able resource constrained devices to execute them. While this is an
active area of research [9, 10, 11, 12, 13, 14], still today virtually
no wearable devices in either research or sold commercial locally
process the images they collect with deep learning models; and are
limited, at best to processing them in the cloud (e.g., systems like
[15]) which exposes users to privacy risks as highly sensitive per-
sonal images are handled by a third party. In fact, many devices
like the Narrative Clip simply capture the image, transfer them to
the cloud for later analysis – and perform no local computation on
the image at all. Alternatively, research prototypes like Gabriel [2]
that is based on Google Glass do perform some mixture of local
and cloud-based processing of images using shallow image model-
ing algorithms (that are not as accurate as deep learning models);
but, this processing comes at a cost with Gabriel having only 1 or
2 hours of battery life (reported in [2]).

The aim of this paper is to explore the future of wearable vision
systems, where devices can locally process images with bleeding
edge deep learning algorithms towards realizing a wide range of
mobile vision based applications. In this work, we aim to not in-
vestigate what will it take for a single deep vision model to run
efficiently – instead we attempt to run multiple concurrent deep
learning algorithms using a wearable form-factor prototype. We
believe this is a critical system design issue that will enable im-
portant ubiquitous computing and mobile computing applications,
many of which are already developed and studied [1, 16, 17, 18, 19,
20, 21], but remain impractical for large-scale deployment because
suitable wearable devices are not yet available.

In this work we present the design, implementation and evalua-
tion of DeepEye; a one-of-a-kind wearable that is capable of exe-
cuting 5 state-of-the-art deep vision models entirely on the device
on images that are periodically captured (with a default sampling
rate of 30 seconds). DeepEye is unlike any current wearable vi-
sion device in its capability to process images without cloud sup-
port, an ability that affords critical privacy assurances to users who

68

can trust their images never have to leave the device. In its cur-
rent form the prototype device weighs 60gm and it has dimensions
of 44 X 68 X 12 mm (illustrations are available in Figures 1 and
8). Although it has general support for all forms of Convolutional
(CNNs) and Deep Neural Network models (DNNs) [22] (the most
popular two forms of deep learning) – we evaluate it within this pa-
per while supporting deep models that perform the following image
tasks: face recognition, counting salient images in a scence, visual
scene recognition, object detection, age and gender assessment of
faces and more unusually the prediction of the memorability of an
image [8]. Using these models it would be possible to use Deep-
Eye to realize a wide range of vision applications; for example, a
life-logging application that smartly filters images based on their
expected memorability. Importantly, under this workload DeepEye
still manages to maintain a battery life of nearly 17 hours with it
taking only 10.10 seconds (depending on the model set used) to
compute all deep models.

Two core enablers allow DeepEye to provide these levels of effi-
cient mobile image processing. The first is the hardware design that
combines a Qualcomm Snapdragon 410 processor (the same found
in many smartwatches) with a custom integrated carrier board of
our own design consisting of a 5 megapixel camera sensor and
a 2400 mAh LiPo battery. The second enabler is an inference
pipeline optimized specifically to cope with the needs of multiple
models. Multiple deep model inference execution presents spe-
cific bottlenecks separate to those of single models; for instance,
it becomes impossible to always keep all layers for each model in
memory. Our inference pipeline optimizes at the level of individ-
ual deep learning layers and builds on a fundamental inter-model
optimization insight: namely, that CNNs are comprised of a com-
bination of computation-heavy convolutional layers and memory-
heavy fully-connected layers. While convolutional layers tax the
memory resources lightly, they are computationally demanding; in
contrast, fully-connected layers have the exact opposite resource
demands. Due to these orthogonal resource demands of memory
and compute, it is possible to schedule and batch layers together
from multiple models that better maximizes the resource of con-
strained devices and avoids bottlenecks that prevents multiple deep
models from being executed. This core idea is complemented with
a layer caching scheme and a selective use of SVD-based layer
compression that further minimizes memory bottlenecks.

Finally – to complement our system and resource efficiency fo-
cus – we investigate the accuracy of the deep models used within
DeepEye by testing them against images collected by actual wear-
able cameras (specifically Narrative Clips [5]). This is important
because these models were not trained with data captured by wear-
able cameras and this will negatively impact their performance.
Typically their accuracy numbers are assessed with data that is
not representative of wearable devices. To address this, more than
18,000 images are provided from the authors of [23] which we
have further labeled with image entities (≈4000) using Amazon
Mechanical Turk (detailed in § 5.6). Overall, our findings indicate
that deep models’ accuracy does (as expected) decline than typical
reported values primarily due to the nature of egocentric images
(e.g., low lighting conditions, object occlusion). As such, there is a
clear need to fine-tune these deep models for objects and scenarios
commonly found in egocentric images.

The scientific contributions of this work include:
• We design the proof-of-concept DeepEye wearable. This is

a first-of-its-kind device that is capable of executing multiple
deep learning based vision algorithms purely locally. Compara-
ble wearables from research, and those available commercially,
at best may be able to run just a single example deep model

Device Weight Lifetime Cloud? Inference?
(gm) (hours)

DeepEye 60 16 No Yes
Gabriel [2] 42 1 Yes Yes

SenseCam [1] 93.5 24 No No
Autographer [24] 59 24 No No
Narrative Clip [5] 19 30 No No

Table 1: Comparison of DeepEye with recent and/or popular wearables
from the literature and available commercially

Figure 1: DeepEye Prototype. Device is comfortable being placed in the
front pocket of the user’s shirt.

– but none are designed to, or capable of, executing multiple
models.
• We develop an inference pipeline for wearables designed to

meet the challenges faced when multiple models are being exe-
cuted (large memory footprint, shear computational overhead).
This pipeline primarily relies on increasing processor utiliza-
tion by scheduling layers with orthogonal bottlenecks.
• We build prototype hardware to demonstrate the feasibility of

our design. This prototype relies on a commodity SoC (contain-
ing both CPU and GPU) and is capable of capturing/processing
images with 5 deep models within reasonable resource bounds.
• We perform an extensive evaluation of the performance of Deep-

Eye including its: inference pipeline, hardware, and even the
accuracy of these models using images typical of wearable de-
vices. We show that relative to alternatives, like serially per-
forming inference using all models, the DeepEye offer more
than 1.7x gains in execution latency.

2. DeepEye OVERVIEW
In this section we begin by systematically describing DeepEye and
summarizing the capabilities of this wearable. DeepEye extends
current capabilities of wearables by allowing simultaneous execu-
tion of multiple large-scale deep vision models locally in an effi-
cient manner. The main use-cases of running multiple vision mod-
els include: (i) logging of everyday life, while capturing various
aspects of the environment, (ii) providing navigation and social
support for partially blind people in real-world situations, and (iii)
enabling privacy-aware inferencing on personal devices by running
all inferences on locally, completely avoiding cloud-based services.
Moreover, as new sensors are becoming increasingly available on
mobile platforms, application developers are adding new features
that require a number of different inference tasks to be executed
simultaneously.

2.1 Existing Camera Wearables
In Table 1, we summarize various camera-based wearable devices
proposed in the literature as well as those commercially available

69

Figure 2: Software architecture of DeepEye

in the market, along with their form factors and capabilities. A
common observation is that most camera-capture wearables such
as Narrative Clip or Autographer only capture and stores images
without providing any kind of context inferencing support. Further,
devices such as the Gabriel [2] which provide inference on the col-
lected images do so by offloading computations to a cloud backend.
Contrary to existing wearables, DeepEye makes a significant leap
forward by addressing technical challenges in simultaneously exe-
cuting a number of very large vision models locally, which has not
been attempted previously. Figure 1 illustrates a fully functional
prototype of DeepEye.

2.2 Design Considerations
The primary design goal for DeepEye is to support the execution
of multiple deep vision models locally on the device, which can
enable a new class of applications for camera-based wearables. In
this vein, the following three key design considerations have shaped
the design of DeepEye:
• Multiple Model Execution: Study of how a system will be-

have, and what needs to be optimized when a number of mod-
els need to be locally executed periodically on the device. This
means no single model can completely reside in memory con-
stantly. This is also similar to the situation where a single large
deep model is too big to reside completely at memory, this can
become an increasingly critical issue due to the direction of
deep models to be 100s and even 1000s layers deep – which
is much larger than the 10 to 20 layers more often seen today.
• Wearable Continous Vision Device: The device should have

a battery life able to last the typical waking hours of a day,
within a form-factor that is comfortable for the user. Ideally a
form-factor not significantly larger than existing devices today
(such as the Narrative Clip) but still enabling a transformative
increase in the amount of vision based deep models applicable
to collected images.
• Minimal Accuracy Loss Optimizations: The device should

minimize the accuracy losses associated with common opti-
mization techniques which trade-off accuracy for resource re-
duction. As such, the core techniques we target in our design
seek to increase the utilization of the device SoC and the effi-
ciencies available in multiple model situations.

2.3 Architecture and Dataflow
We briefly describe the operation of DeepEye to provide context

for how data is processed, and thus how the optimizations discussed

in the following section are applied. Figure 2 depicts the overall
architecture of our system, and its main components are as follows:
• Layer Store Initialization: Before DeepEye ever runs it must

be initialized based on the collection of deep models to be exe-
cuted. Each layer of the model is separated, and dependencies
from the model architecture noted. DeepEye treats layers as the
unit that are processed and once all layers of a model are pro-
cessed then the output of the entire model is determined. At this
phase logical dependencies between models can also be config-
ured. For example, some models may only operate on face,
therefore they should only be activated when a face is detected
(by a face recognition model). Note: For the purposes of exper-
iments all models execute regardless of such dependencies.
• Sampling and Pre-processing: At a configurable sampling

rate images are taken and held temporarily for each deep model
to be applied. At this phase the various types of pre-processing
required by each model are applied so that their input layer can
be initialized when it runs.
• Inference Engine: As described in the next section, this en-

gine manages when different CNN layers are processed and
how layers are cached to reduce overhead such as the paging
in and out of layers. Individual layers are executed by DeepEye
with the aim to reduce the resources consumed by all models
collectively. The execution time of a total collection of models
defines an upper bound on the camera sampling frequency; it is
prohibited for the camera to sample photos at a rate faster than
the system can process them locally. DeepEye can offer image
inferences in the form of local API calls that applications can
then be built.
• BLAS: In order to optimize the numeric operations on the

hardware, DeepEye uses the optimized BLAS library for nu-
meric computations. The inference engine passes the layers to
be executed on the hardware to BLAS, which in turn distributes
their computations across the multiple processors available on
the device.

3. MULTIPLE MODEL
DEEP INFERENCE PIPELINE

In this section we describe the inference pipeline of DeepEye. We
begin by providing a primer on a Convolutional Neural Network
(CNN) which is a popular deep learning model architecture for
computer vision models. Next, we describe the major bottlenecks
in running one or multiple CNN models on resource-constrained
devices. To address these bottlenecks, we propose a new execution
pipeline which includes a number of optimization strategies and a
novel scheduling technique.

3.1 CNNs on Embedded Devices
Here we focus on the challenges associated with running CNN
models on resource-constrained embedded devices. We begin by
providing a brief overview of how a CNN model generates infer-
ence from the raw data, and then explain the challenges in exe-
cuting the various layers of a CNN on embedded devices such as
DeepEye.

Convolutional Neural Network Primer. CNNs are an alternative
to DNNs (Deep Neural Networks) that still share many architec-
tural similarities. As shown in Figure 3, a CNN is composed of
one or more: convolutional layers, pooling or sub-sampling layers,
and fully connected layers (with this final type being equivalent to
those used in DNNs). The aim of these layers is to extract sim-
ple representations at high resolution from the input data, and then

70

Sensor Data

Feed-forward LayersConvolutional
Layers

Pooling Layer Convolution Layer

Output
Layer

Figure 3: A CNN mixes convolutional and feed-forward layers.

converting these into more complex representations, but at much
coarser resolutions within subsequent layers. This is achieved by
first applying convolutional filters (with small kernel width) to cap-
ture local data properties. Next follow max or min pooling layers
causing representations to be invariant to translations, this also acts
as a form of dimensionality reduction. Finally, fully connected lay-
ers (i.e., a DNN) are applied to complete classification. Inference
under a CNN operates only on a single segment of data (i.e., an im-
age) at a time. Data is provided to convolutional layers at the head
of the architecture. This can be considered a form of feature extrac-
tion before the fully connected layers are engaged. Inference then
proceeds exactly as previously described for DNNs until ultimately
a classification is reached.

CNN bottlenecks on resource-constrained devices. As has been
reported in prior literature [9], the memory overhead in executing
a deep model is dominated by the loading of weight parameters of
fully-connected (fc) layers. In comparison, the convolutional ker-
nels are small is size and take significantly less time to load. On the
other hand, the computational overhead in deep model execution is
dominated by the convolution operations, which are an order of
magnitude higher than the matrix multiplication operations in the
fc layers. In the context of wearable and embedded devices, the
slow disc read and memory bus speed could be a major bottleneck
is loading FC layers into the memory, and increase the latency of
model execution. We study this bottleneck through a experiment on
eight popular vision-based CNN models, where we run the models
on an embedded platform (Qualcomm Snapdragon 410c) and mea-
sure the load and execution times of all the individual layers. In
Figure 4 we summarize the results from this experiment and show
the breakdown of average1 time taken to load the fully-connected
layers and execute the convolutional layers. The experiment reveals
that on this embedded platform, the loading of fully-connected lay-
ers is the most expensive operation, even more than the loading and
execution of convolutional layers by a factor of 1.3 (ObjectNet) to
2.15 (MemNet). As such, if we can explore opportunities to reduce
the loading time of FC-layers, it will speed up the entire inference
pipeline. In §3.2, we propose employing layer caching and layer
compression techniques on the FC-layers to achieve latency gains
in execution of deep models on constrained devices.

Bottlenecks in running multiple CNNs on embedded devices.
As the demand for simultaneously running a number of deep mod-
els increases, we quickly run into a situation when the available
memory on an embedded platform becomes insufficient to hold all
the deep models. Under this situation, a common strategy is to run
the deep models sequentially, i.e., loading one model at a time, run
inferencing and clearing model memory before moving on to the
next model. However this repeated paging-in and paging-out of
large models adds significant overhead to the inference process, es-
pecially in the case of continuous inference systems such as Deep-
Eye. Moreover, there can be cases where a deep model is so large
that it cannot fit into the available memory on an embedded plat-
form – in these scenarios, a common approach is to break the deep

1 All models have been executed 100 times and we report the
average here.

GenderNet

AgeNet

MemNet

SceneNet

SalientNet

FaceNet

EmotionNet

ObjectNet
0

1000

2000

3000

4000

5000

 1.54x 1.73x

 2.15x 1.98x 1.82x 1.82x

 2.05x

 1.31x
Load & Execution times for
Convolutional Layers

Load Times for FC Layers

Figure 4: Understanding the bottleneck in deep vision model execution
on embedded platforms. Loading model parameters is the single most
time consuming task, which was seen across eight different models pop-
ular within the computer vision community.

model into its constituent layers, which are then paged-in to mem-
ory and executed in series. Even then, the bottleneck associated
with loading of model parameters into memory still exists, and in
fact it is amplified due to the presence of multiple deep models.
In §3.2, we present a new technique of scheduling the execution
of deep model layers which provides latency gains over the series
execution – our approach exploits a key property of CNN models
which is that the execution of layers follow a strict order (i.e. fc
layers are executed on the output of the convolution layers), and
aims to interleave the execution of convolution layers with loading
of FC layers.

3.2 DeepEye Inference Engine
In this section, we present an overview of the inference pipeline
used by DeepEye for executing multiple CNN models on resource-
constrained devices. The key innovation in the pipeline is a novel
approach of interleaving the loading of fully-connected layers with
the execution of convolutional layers. We also discuss how our
inference pipeline incorporates layer caching, model compression,
and image hashing (detailed in § 3.3) to provide additional latency
gains over the baseline approaches. Note that the pipeline is in-
dependent of the underlying processor, and can be applied to any
available processor (e.g., CPU, DSP) on the system.

Figure 5: Overview of the DeepEye Inference Engine

Figure 5 illustrates the various components of the deep inference
engine. The inference engine is initialized offline by segregating
all model layers into computation- and memory-heavy layers, i.e.
convolutional and fully-connected layers respectively. Next, the
engine allows various kinds of model compression techniques to

71

be applied on the pool of layers. Currently, DeepEye supports the
SVD-based layer compression technique proposed in the DeepX
toolkit [25] for model compression, however more techniques could
be added in future. In the online phase while computing the infer-
ence, the engine reads an input image from the camera, calculates
a perceptual hash vector [26] (detailed in the subsequent sections)
for the image, and compares it with the hash values of the last five
images. If the hash similarity is above a certain threshold (i.e., the
images are similar), the inference pipeline is terminated and the in-
ference output corresponding to the nearest hash vector is returned.
If the image hash does not match the previous five images, the infer-
ence pipelines continues by applying various pre-processing steps
on the image to generate the necessary input expected by the indi-
vidual models in the pipeline. Once the preprocessing of the im-
age is completed, the results are immediately fed to the input layer
(convolutional layers) of all the models. Thereafter, the caching
and interleaved execution of convolution and FC layers take place
(detailed in § 3.3), which finally results in an inference output for
each model. The inference results are then written to the disc or
can be passed onto any user-facing apps through API calls.

3.3 Optimization Techniques
In the following subsections, we discuss each of the optimization

techniques employed by the DeepEye engine.

Runtime Interleaving: The core runtime optimization in Deep-
Eye’s execution pipeline is based on the idea of processing differ-
ent layers from a pool of deep vision models in parallel to reduce
the execution latency. As discussed above, the loading of FC layers
and the execution of convolution layers are the two most expensive
operations in running a deep model on embedded devices. Interest-
ingly, due to the feed-forward inferencing followed in deep models,
the memory-heavy FC layers are only executed after the input is
fully processed by the convolution layers – as such, the loading of
FC layers can potentially be interleaved with the execution of con-
volution layers. Naturally, the case of multiple model inferences
allows for greater opportunities to parallelize the aforementioned
execution and loading processes across multiple models.

CV4

CV3

CV2

CV1

CV3

CV2

CV1

CV1

CV2

CV3

CV2

CV1

CV3

CV2

CV1

Fully Connected Layers

Convolution Layers

FC1

FC2

FC3

FC1

FC2

FC1

FC2

FC3 FC1

FC1

FC2

FC3

As
yn

ch
ro

no
us

 a
cr

os
s

m
od

el

Asynchronous across
m

odel

Event-based Synchronization

Pre-processing of Image

Predictions

Figure 6: Runtime interleaving of convolutional and FC layers

Figure 6 depicts the overview of the runtime interleaving for
an example case of five deep models. As indicated before, we
first segregate all model layers into two pools, namely convolu-
tion layers and fully-connected layers. We next spawn two threads,
namely convolution-execution thread and data-loading thread. In
the convolution-execution thread, the convolution filter parameters
of all models are loaded into the memory and the convolution op-
erations begin on the pre-processed input data for each model. We
take advantage of the underlying BLAS numeric library used in
our implementation (detailed in § 4.2) to perform efficient multi-

threaded numerical operations (e.g., convolutions) – as such we do
not spawn separate convolution-execution threads for each model.
Instead we adopt a FIFO queue based execution strategy for the
convolutional layers across models. For example, as shown in Fig-
ure 6, three layers of convolution operations for red model are car-
ried out by this thread, which are followed by two layers of yellow
and three layers of the grey model. The data-loading thread which
is spawned in parallel with the convolution thread is responsible
for loading the FC layer parameters for all models into the mem-
ory, again in a pipelined manner (i.e., one model after the other).

The objective of the convolution-execution thread is to perform
all convolutions on the input image, and pass the results of the final
convolution layer of each model to the data-loading thread. When
the data-loading thread finishes loading the FC layer parameters for
a model, it can use the pre-computed convolution outputs from the
convolution-execution and proceed to obtain the final classification
results.

The latency gain G from runtime interleaving can be computed
as:

G =
tconv + tfc_load

max{tconv, tfc_load}
(1)

where, tconv represents the time taken to load the convolution
filters and execute the convolution operations for all models, and
tfc_load represents the time taken to load all FC layer parameters
into the memory. As such, the numerator in Equation 1 corresponds
to the baseline case where convolution execution and loading of
FC layers is done in series, while the denominator corresponds to
the interleaved execution where the total time is the maximum of
both threads’ execution times. Note that the eventual execution of
FC layers on the output generated from the convolutional layers
in common in both series and interleaved approaches – as such, it
is not accounted for while calculating the latency gain (G) due to
interleaving.

The denominator of equation 1 can be simplified using the fol-
lowing equation which expresses the maximum of two numbers in
terms of their sum and difference:

max{a, b} = 1

2
(a+ b+ |a− b|) (2)

By substituting (2) in (1), we get:

G =
2

1 +
|tfc_load−tconv|
tfc_load+tconv

=
2

1 + λ

(3)

where λ =
|tfc_load−tconv|
tfc_load+tconv

stands for the interleaving factor
and captures the difference between tconv and tfc_load. As λ in-
creases, the interleaving gain G decreases – and when λ = 0 (i.e.,
time taken to load the FC layers is the same as time taken to run
the convolutions), the gain G is maximized to 2x. In § 5, we exper-
iment with different values of λ to showcase interleaving gains in
multiple scenarios.

Caching of Memory-Heavy Layers: For continuous-sensing ap-
plications and devices such as DeepEye, caching of layer parame-
ters into the memory could be potentially useful, as it saves signifi-
cant time required to load thousands of parameters into memory for
each inference. As loading the parameters for fully connected lay-
ers is one of the main time-consuming operations in the inference

72

process, the idea strategy would be the keep all parameters of these
FC layers into memory. However, the limited runtime memory on
the embedded devices becomes a bottleneck to load all the layer
parameters, more so in the case of executing multiple deep models.

DeepEye adopts a greedy approach for caching the layers param-
eters of the FC layers to maximize memory utilization. It monitors
the available runtime memory and caches the k largest FC layers
from the model pool that can fit into the memory. In case the avail-
able memory cannot fit all k layers, it caches k − 1 largest layers,
and again greedily repeat the process to cache the second-largest
layers into the remaining memory. As layer caching effectively re-
duces the total load time for the FC layers (tfc_load), it is likely to
reduce the value of λ and increase the latency gains by interleaving.

Model Compression: In addition to layer caching, another poten-
tial approach to reduce the load times of the memory-heavy FC lay-
ers is to employ model compression techniques. The goal of model
compression techniques is to reduce the size and execution latency
for a single deep model, at the expense of some accuracy loss. In
our work, we use the SVD-based layer factorization approach pro-
posed in the DeepX toolkit [25, 27] to compress the FC layers of
all deep models. The SVD-factorization technique takes the weight
matrix containing the matrix multiplication parameters for two ad-
jacent FC layers, and factorizes it into two matrices which together
contain lesser parameters than the original matrix. As a result of
this factorization, the total number of parameters in the FC layers
are reduced, which in turn lowers the load time of the FC layers
(tfc_load). This also reduces the value of λ (as the difference be-
tween tfc_load and tconv reduces), and hence increases the latency
gains (G) from interleaving. However, it is interesting to note that
if too much compression (C) is applied to the FC layers such that
tconv > C ∗ tfc_load i.e., if the convolution execution time starts
dominating the FC loading operation, then the gains due to com-
pression will no longer be observable.

Pre-empt using Hashing: In continuous image capture systems
such as DeepEye, it is likely that consecutively captured images
are similar in their content – this situation often arises in everyday
life logging, for e.g., when the wearer is stationary or the capture
device is kept on a table. If the system can identify such similar im-
ages, it need not run the entire inference pipeline on the image, and
a significant amount of computations and energy could be saved
over time. Although, stationary conditions can be adequately de-
tected by inertial sensors like accelerometer, in this work we rely on
an image-based hashing technique to detect image similarity. More
specifically, we apply a perceptual hashing algorithm [26] on the
input images and store hash values of the last five images along with
their predictions. Perceptual hashing functions are widely used to
establish the perceptual similarity of multimedia content – this is
done by extracting a series of features from the content (i.e., the
raw image) and applying a hash function on those features. Deep-
Eye uses the Radial Variance Based Hash function as implemented
in [26]. When a new image is captured, we first compute the hash
of the image and then calculate its hamming distance to all five
previously stored hashes. If the hamming distance is found to be
smaller than a predefined threshold, we then pre-empt execution of
all deep models and return the classes stored for the image with
smallest hamming distance. In our implementation we use a dis-
tance threshold of 26, which is suggested by the developers of the
hashing algorithm.

4. EMBEDDED IMPLEMENTATION
In this section we describe the hardware implementation of Deep-

Eye with a quad-core Qualcomm Snapdragon 410 processor. We

Figure 7: DeepEye Hardware Prototype

also describe our current software implementation designed to run
multiple deep models on DeepEye using the Torch framework.

4.1 Hardware Prototype
DeepEye is powered by a quad-core Qualcomm Snapdragon 410

processor on a custom integrated carrier board, and includes a 2400
mAh LiPo battery. We intend to open-source the design of Deep-
Eye hardware soon to help other researchers build similar wearable
devices.

Snapdragon 410 Series APQ8016. The DeepEye wearable cam-
era consists of a System On Chip (SOC) mounted on a carrier board
as shown in Figure 8. The SOC has a quad core ARM proces-
sor (Snapdragon 410 Series APQ8016 from Qualcomm), a Qual-
comm Adreno 306 GPU, 8GB of flash storage and 700MB of us-
able RAM. The carrier board allows the SOC to be plugged in and
provides ports for a Camera Serial Interface (CSI) camera, a UART
for programming and debug, i2C and SPI GPIOs for connecting
sensors.

Figure 8: DeepEye Qualcomm SoC and Custom Integrated Carrier Board
Custom Integrated Carrier Board. The carrier board is powered
by a 3.7v LiPo battery. The SoC provides power management and
recharging circuitry while the carrier board provides a micro usb
connector for charging. The DeepEye wearable runs a custom build
of Linaro Debian linux based on the 4.3 Linux kernel. The custom
build adds driver support of high-speed CSI camera and removes
unused devices (HDMI bridge, DSI panel, USB hub) by using a
custom Linux kernel and device tree. The camera module uses a 5
Megapixels Omnivision OV5640 camera sensor.

The DeepEye wearable has a small form factor (44 X 68 X 12
mm), and includes a 2400mAh LiPo battery. The device weights
24gm without the battery, and 60 gm with the battery attached to it,
thus making it practical for everyday use.

4.2 Software Implementation
Our current software implementation for DeepEye uses an op-

timized version of the Torch deep learning framework for doing
inference on the embedded device. The motivations for using Torch
were the availability of state-of-the-art vision models for this frame-
work, and its excellent portability to embedded platforms. By re-
moving non-essential components from the Torch framework, we
were able to keep these benefits while also reducing the overhead of
the framework relative to a custom C++ runtime. We now discuss
the major components of our implementation:

73

BLAS Runtime. While executing deep model inferencing, the
main computational load remains in performing matrix multipli-
cations [28, 25, 27]. In our current implementation of DeepEye we
use the highly optimized BLAS library [29] for running the convo-
lutions and the matrix multiplications needed in the fully-connected
layers. In the current implementation we use Torch as our deep
learning inferencing engine, which supports multi-threading for deep
model execution. The Torch framework loads the model layers into
the memory and send them to the BLAS library for computation.
Thereafter, BLAS distributes the actual computational tasks across
the CPU or GPU cores as specified by the model. Note that Deep-
Eye is agnostic to the underlying deep learning framework and can
be easily integrated with other engines supporting multi-threaded
execution, e.g., TensorFlow and Theano.

Control Subsystem. We implement the data-flow runtime as de-
scribed in §2 in the following manner. DeepEye camera captures
an image every 30 seconds, and saves it to the disk. This image is
then loaded in the Torch framework and a number of pre-processing
operations are done on it. Although these operations are specific to
each deep model, they broadly include cropping, resizing and mean
normalization of the input image.

Next, the deep vision models are read from the storage and loaded
into the shared memory in a layer-wise manner by Torch, that is
each layer is paged-in the memory, where it operates on its input
data and generates the input for the next layer. Thereafter, the layer
is paged-out of memory and the next layer is paged-in. As de-
scribed in §3, these load/execute are done in series in the baseline
case and by applying interleaving (and other optimizations) in our
proposed approach.

DeepEye is capable of using both the CPU and GPU on Snap-
dragon 410c for running convolution operations. The Snapdragon
on-board GPU however lacks OpenCL support, therefore we imple-
mented an Open-GL based Convolution Engine (described in next
subsection) which can run convolution operations using OpenGL
shaders. When the system has to compute a convolution (which is
the dominant operation in the initial layers of a CNN), it can exe-
cute the operation on the quad-core CPU (using Torch) or on the
GPU (using the Open-GL engine).

Open-GL Convolution Acceleration. OpenGL is a 3-D draw-
ing specification which allows applications to accelerate graphics
using an accelerated rendering pipeline implemented in the GPU.
Recently a subset of OpenGL, named OpenGL ES, has made it pos-
sible for other computational algorithms to execute on the GPU, if
they could map their data into graphical objects, such as bitmaps,
textures and vertex buffers. In the case of deep learning models,
our key idea is to represent the input to a convolution layer as a
bitmap object, then apply an OpenGL Shader to it to convert it to
another bitmap, which is then fed to the subsequent layers.

5. EVALUATION
In this section, we first benchmark the performance of various

optimization techniques described in §3 viz. layer interleaving,
layer caching, and model compression against the baseline approach
of executing deep models in a layer-wise fashion. Next, we present
two case studies inspired by real-world applications of DeepEye
and highlight latency and energy gains achieved by our proposed
inference pipeline. Note that we take a CPU-centric approach in
our experiments – i.e., all experiments were conducted on the on-
board quad-core CPU of DeepEye. Later, we also discuss using
the on-board GPU for running the inference pipeline and highlight
why it does not add to any latency gains. Our main findings can be
summarized as follows:

• DeepEye can last for more than 33 hours on a single battery
charge, assuming an image is captured and analyzed by the
deep learning models every minute.

• Our proposed execution approach of layer interleaving and
layer caching results in nearly 2x gains in runtime over the
baseline method of series execution.

• The interleaved execution technique could work in tandem
with model compression, and serve as a way to offset the
accuracy losses due to compression while providing compa-
rable latency gains.

5.1 Methodology
We used the Qualcomm Dragonboard 410c, which is the develop-
ment board for the Snapdragon 410 processor to perform the ex-
periments for evaluating the performance of DeepEye and its op-
timization techniques. For energy measurements, we instrumented
the power lead of the Dragonboard 410c to connect an Ammeter to
it. We also disabled those peripherals (e.g. HDMI port, SD Card,
WiFi chip) on the Dragonboard which are not present on DeepEye
to get accurate energy measurements. As representative workload
for our experiments, we used eight state-of-the-art pre-trained deep
learning models trained for a variety of computer vision tasks. In
the next section, we present more details about the deep models
used for evaluation.

Deep Models: In total, we used eight CNN models of varying sizes
and computational complexities that are representative of common
vision tasks. All these models are pre-trained and available as open-
source models from Torch or Caffe framework websites. A sum-
mary of these models is also presented in Table 2.

FaceNet [30]: Face detection is a popular task for any image cap-
turing system, and is a necessary step for algorithms which aim to
detect smile or emotions in an image. Here, we use a face detection
CNN model that can detect faces in a wide range of orientations.

AgeNet and GenderNet [31]: AgeNet and GenderNet models aim
to predict the age (8 categories) and gender (2 categories) of a per-
son from an input image. The models have been trained using
around 20K images.

EmotionNet [32]: This model aims to recognize the emotion on
a person’s face by analyzing the input image. The input to this
model is a cropped RGB image of the face, and it outputs confi-
dence scores for 8 different emotions: angry, disgust, happy, sad,
surprise, fear and neutral. The authors of this model also offer addi-
tional emotion recognition models, all of which when used together
offer state-of-the-art performance – however, for the sake of exper-
imentation - we only use the model that operates on RGB values.

SalientNet [33]: This model aims to compute the saliency of an
input image, by predicting the existence and the number of salient
objects in a given scene. Models such as SalientNet could be par-
ticularly useful to filter out non-salient images from the lifelog out-
puts.

ObjectNet [34]: Detecting various objects present in an image is of
utmost importance to both our representative use-cases. For this,
we consider a popular CNN model named VGG which supports
more than 1000 object classes (e.g., dog, car).

MemNet [35]: The aim of this model is to determine how memo-
rable an image is (with actual output being a ”memorability score”).
Experiments indicate MemNet has the ability to select images that

74

Scenario Model Size Architecture
Lifelogging SceneNet 240MB c:8ı; p:3‡; fc:3?

Lifelogging MemNet 233MB c:8ı; p:3‡; fc:3?

Lifelogging SalientNet 233MB c:8ı; p:3‡; fc:3?

Vision Support AgeNet 46MB c:3ı; p:3‡; fc:3?

Vision Support GenderNet 46MB c:3ı; p:3‡; fc:3?

Vision Support EmotionNet 419MB c:5ı; p:3‡; fc:3?

Both FaceNet 230MB c:8ı; p:3‡; fc:3?

Both ObjectNet 553MB c:13ı; p:5‡; fc:3?

ıconvolution layers; ‡pooling layers; ?fully connected layers

Table 2: Representative deep models and scenarios used for evaluating
DeepEye

are memorable with similar success to those of human labelers.
This model could also be potentially useful to assist lifeloggers in
browsing through the thousands of images captured by DeepEye.

SceneNet [36]: A total of 476 scene types are recognized by this
model. Example scenes include: bedrooms, kitchens, forests.

Scenarios. We logically group the deep models into two scenarios
to illustrate practical use-cases of DeepEye, namely i) lifelogging,
and ii) vision support. Lifelogging, i.e. capturing and archiving
our everyday lives, has been a primary use-case for camera-based
wearable devices such as the Microsoft SenseCam and Narrative
Clip. For demonstrating a lifelogging scenario with DeepEye, we
use models which can detect objects, places, faces in an image,
along with inferring the saliency and memorability of the image.
Another important application for camera wearables could be to
support users with visual impairment, in that the wearable can ana-
lyze the captured images and provide non-visual (e.g. audio or hap-
tic) feedback to the user. For demonstrating this scenario, we chose
models that could detect the faces or object in an image, along with
inferring the age, gender and emotion of people in the image. Both
scenarios along with the models associated with them are summa-
rized in Table 2.

5.2 Interleaving Analysis
Here we evaluate the impact of layer interleaving on the overall
inference time of deep models. We first show the gains achieved
in inference time by using layer interleaving in both application
scenarios mentioned earlier. Then we empirically validate the sen-
sitivity of interleaving gains as shown in Equation 3, by varying
the value of the interleaving factor λ.

Setup. To evaluate the benefits of interleaving, we run the five
deep models in each scenario in both series (baseline) and inter-
leaved manner. No other optimization (e.g., caching, compression)
is applied to the models. Next, in order to explore the sensitivity
of interleaving as per Equation 3, we constructed model pipelines
of various sizes in both scenarios. For example, in a scenario with
5 models, there are 5C2 possible pipelines of 2 models in it, 5C3

pipelines of 3 models and so on. In total, we generated 52 different
pipelines for both scenarios, with each pipeline having a different
length and combination of models. We executed each pipeline in
the baseline Series condition and calculated the value of interleav-
ing factor λ for it. Then we ran each pipeline in an interleaved way
and calculate the inference time gain over the baseline condition.
Below we present our findings for both the experiments.

Results. Figure 9 illustrates the reduction in inference time in the
interleaved case for both scenarios. We clearly observe a reduction
in inference time in both scenarios (1.29x in Lifelogging scenario
and 1.4x in the Vision Support scenario), although the magnitude
of reduction is different. To explore it further, in Figure 10, we plot

Series Interleaved
0

5

10

15

R
un

 T
im

e
(s

) 1.29x

(a) Scenario: Lifelogging

Series Interleaved
0

5

10

15

R
un

 T
im

e
(s

)

1.40x

(b) Scenario: Vision Support

Figure 9: Latency comparison between series and interleaved execution.
The values on the bars show the latency gains due to interleaved execution.

0.0 0.1 0.2 0.3 0.4 0.5
Interleaving Factor (λ)

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

La
te

nc
y

ga
in

Lifelogging

Vision Support

Figure 10: Latency gain under different values of λ

the latency gain (due to interleaving) against 10 different values of
λ obtained from executing various combination of model pipelines.
We can observe that as the value of λ increases, the latency gains
due to interleaving decrease. As λ is proportional to the difference
between execution time of convolution layers and load time of FC
layers, this implies that if both these times are of the same order,
the interleaving gains are maximized. For example, the Lifelogging
scenario has a higher value of λ than the Vision Support scenario
(due to the choice of models in them), and therefore exhibits lower
latency gains.

To sum up, we found the interleaved execution provides a way
to maximize the resource usage on the device, and provides latency
gains without any loss in inference accuracy.

5.3 Interleaving Meets Model Compression
Our findings from interleaving analysis shows that although inter-
leaving outperforms the baseline series execution, its latency gain
has an upper bound of 2x when tfc_load equals tconv (Equation 3).
However, this is difficult to achieve in practice as the loading times
of FC layers are higher than the execution times of the convolution
layers as shown in the model profiles in Figure 4. In this section, we
investigate if model compression techniques proposed in the litera-
ture can reduce the load times of the FC layers, thereby increasing
the latency gains in the interleaved execution.

Setup. For studying model compression, we choose four deep
models from our model pool, namely SceneNet, MemNet, Salient-
Net, and FaceNet. On each model, we apply four levels of com-
pression using the SVD-based weight factorization scheme pro-
posed in prior literature such as the DeepX toolkit [25, 27, 37].
The SVD-based compression approach reduces the total parameters
(and operations) in a fully-connected layer by factorizing it into two
smaller layers, with some loss in overall inference accuracy. Our
experiments apply four levels of compression (10%, 20%, 70%,
80%) to all FC-layers of the deep models, and we report the la-
tency gains in each compression setting. The motivation to apply
high compressions (70%, 80%) is to empirically show that the com-
pression gains peak at a certain point, after which compression does
not provide any additive gains to the interleaved execution.

Results. In Figure 11, we compare the performance of interleaved
execution approach against series baseline and model compression

75

10% Compression
0

2000

4000

6000

8000

10000

12000
R

un
 T

im
e

(m
s)

1.3x

1.1x

1.4x

20% Compression
0

2000

4000

6000

8000

10000

12000

1.3x
1.2x

1.6x

70% Compression
0

2000

4000

6000

8000

10000

12000

R
un

 T
im

e
(m

s)

1.3x

1.9x 2.1x

80% Compression
0

2000

4000

6000

8000

10000

12000

1.3x

2.4x
2.1x

Series
Interleaved

Compression
Interleaved+Compression

Figure 11: Performance of layer interleaving in combination with model
compression approaches. The values on the bars show the latency gain in
each case over the baseline Series execution approach.

for our selected 4-model pipeline. There are three key insights that
emerge from Figure 11: firstly, as the compression ratio increases,
the latency gain also increases for both compression-only approach
and compression+interleaving, with the latter outperforming the
other techniques. For example, in the 20% compression scenario,
applying interleaving with compression provides a latency gain of
1.6x, as opposed to 1.2x provided by compression alone. Secondly,
we observe that when the amount of compression applied to the
model is too high (e.g., 80%), the interleaved execution no longer
benefits from it, because the convolution execution starts dominat-
ing the overall runtime in the interleaved case. Finally, it is evident
that interleaving can be used as a tool to offset against the accu-
racy loss caused by model compression. For example, we found
that with 30% compression applied to the models, the pipeline can
run 1.4x faster in the baseline case (not represented in the figure).
However, the same 1.4x speedup can be achieved by applying 10%
compression and interleaving the execution of layers as shown in
Figure 11. As such, interleaving provides a way to get same latency
gains with lesser compression and lesser accuracy losses.

5.4 Caching Analysis
In this section, we explore the benefits of caching memory-heavy
layers on the overall runtime of the deep model pipeline. For con-
tinuous sensing wearables, caching of memory-heavy layer param-
eters into the memory could be potentially useful, as it saves sig-
nificant time required to load thousands of parameters into memory
for each inference.

Setup. For this experiment, four deep models from the Table 2
namely SceneNet, MemNet, SalientNet, and FaceNet are chosen as
the workload. Although DeepEye has roughly (5̃70 MB) of avail-
able runtime memory, other low-end wearable devices often have
much less runtime memory. As such, for a detailed evaluation of
the caching approach, we simulate three more cases with runtime
memory of 150MB, 300MB, and 400MB. In each case, we adopt
a greedy approach to cache the n largest FC layers from the model
pool into the memory. In case the available memory cannot fit all
n layers, then we cache n − 1 largest layers, and again greedily
repeat the process to cache the second-largest layers into the re-
maining memory. In the following, we compare the latency gains
by layer caching in series and interleaved execution approaches.

150MB 300MB 400MB 570MB
 (DeepEye)

Cache Size

0

2000

4000

6000

8000

10000

T
im

e
(in

 m
s)

1.37x 1.44x 1.50x

2.41x

1.05x 1.08x 1.11x

1.51x

Series
Caching + Series
Caching + Interleaved

Figure 12: Performance of layer interleaving in combination with layer
caching. The values on the bars show the latency gain in each case over the
baseline Series execution approach.

Scenario Latency per inference Estimated
Battery Life

Lifelogging 10.10s (1.74x gain) 33 hours
Vision Support 8.23x (1.88x gain) 43 hours

Table 3: Performance of DeepEye in the two application scenarios

Results. Figure 12 shows that as the runtime memory available on
the device increases, we are able to cache more FC-layer param-
eters into the memory and hence achieve higher latency gains for
both series and interleaved caching scenarios. For example, with
570MB available memory (as is the case on DeepEye), the caching-
series execution approach gives a 1.51x latency gain whereas the
caching-interleaved execution provides a 2.41x speedup over the
baseline. Interestingly, it is worth noting that the interleaved-caching
approach is able to provide a similar speedup (1.5x) with 400MB
of runtime memory, whereas the caching-series approach would
need an additional 170MB runtime memory to achieve the same
speedup. As such, constrained devices with limited runtime mem-
ory can benefit by implementing the interleaved-caching mecha-
nism for deep model execution.

The findings from the above experiments highlight the gains in in-
ference latency on applying the various optimization techniques
used by DeepEye. In the next section, we will present two case
studies where we apply these optimizations on two real-world ap-
plications of continuous camera capture devices.

5.5 Case Studies
In this section, we evaluate the performance of DeepEye on the
two scenarios described in previous section, namely i) lifelogging,
and ii) vision support. Each scenario consist of five deep learning
vision models as summarized in Table 2. We begin by presenting
the overall performance when these scenarios are run on DeepEye,
and then present detailed latency and energy results.

DeepEye Performance: We applied layer caching, compression,
and interleaving to the pool of deep model layers and calculated
the latency and energy consumed for performing one inference.
Battery life is estimated from the per-inference energy consump-
tion, assuming that an inference will be made every 1 minute. In
Table 3, we show the per-inference latency and battery life of Deep-
Eye when it executes each of the application scenarios. We observe
the DeepEye provides at least 1.74x latency gain for both applica-
tion scenarios, and the estimated battery life for the device is more
than 33 hours.

76

Execution time: Here we provide a detailed breakdown of the in-
ference execution time for both the scenarios. For each scenario,
we compare the baseline Series execution approach against the in-
terleaved execution approach, with various optimizations (caching,
compression) added to it. For scenario #1 (Lifelogging), we cached
the largest fully connected layers of FaceNet, MemnNet and Salient-
Net into the memory, while for use-case #2 (Visual Impairment
Support), we stored in memory the first fully-connected layers of
VGG, GenderNet and AgeNet. As for model compression, we ap-
plied a 20% compression to each FC layer by using the SVD-based
factorization approach discussed earlier.

In Figures 13a and 13b, we plot the total time taken to run the
two model pipelines on the DeepEye CPU in four different execu-
tion conditions. The results are averaged over 10 iterations. We ob-
serve that the baseline approach of loading and running the layers
in series without caching has the worst runtime performance – the
time taken to run the entire inference pipeline being 17.57 seconds
(in Scenario 1) and 15.51 seconds (in Scenario 2). On the con-
trary, layer interleaving in combination with caching and compres-
sion outperforms all other approaches – the runtime for the model
pipeline in Scenario 1 and Scenario 2 are 10.10 seconds (~1.74x
faster than baseline) and 8.23 seconds (~1.88x faster than baseline)
respectively.

S I C-I C-C-I
0

5

10

15

R
un

 T
im

e
(s

) 1.29x
1.57x 1.74x

(a) Scenario: Lifelogging

S I C-I C-C-I
0

5

10

15

R
un

 T
im

e
(s

)

1.40x
1.62x

1.88x

(b) Scenario: Vision Support

Figure 13: Latency comparison when executing the scenario pipelines on
DeepEye. S = Series, I = Interleaved, C-I = Caching+Interleaved, C-C-I =
Compression+Caching+Interleaved

S I C-I C-C-I
0

1

2

3

E
ne

rg
y

(J
)

1.08x
1.23x

1.43x

(a) Scenario: Lifelogging

S I C-I C-C-I
0

1

2

3

E
ne

rg
y

(J
)

1.11x
1.26x

1.51x

(b) Scenario: Vision Support

Figure 14: Energy comparison when executing the scenario pipelines on
DeepEye. S = Series, I = Interleaved, C-I = Caching+Interleaved, C-C-I =
Compression+Caching+Interleaved

Energy Performance. We measured the average current flow dur-
ing each execution of a model pipeline, and used it to calculate
the total energy consumption. In Figures 14a and 14b, we plot
the energy consumed to run the two scenarios on DeepEye in var-
ious experiment conditions. Our findings show that by applying
caching and compression in the interleaved execution case, Deep-
Eye requires nearly 1.43x less energy than the baseline approach.
Although the observed energy saving for one single execution may
not be considered significant, these savings get compounded over
time and can result in few additional hours of battery life as we will
discuss next.

In Figure 15, we show the effect of image capture frequency
on the expected battery life of DeepEye. These calculations were
done by adding the energy consumption during idle time, energy
cost of taking a picture, and the cost of one execution of the model

pipeline. We observe that in the case of an image being captured
and analyzed every 30 seconds, DeepEye’s battery will last 16.85
hours for the Lifelogging scenario and 21.6 hours for the Vision
Support scenario using our proposed optimization techniques. In
a more reasonable case of an image being captured and analyzed
every 1 minute, the battery lasts for 33 hours (9 hours more than
the baseline) for Lifelogging and 43 hours (12 hours more than
baseline) for the Vision Support scenario.

Hashing Performance. Now we present the findings of apply-
ing the perceptual hashing technique (discussed in §3) on a dataset
of 18,735 egocentric images as described in §5.6. We chose a
window-size of 5, that is we compute and store hash values of five
recent images in the workload. For each new image, we compute
its hash and calculate its hamming distance to all previously stored
hashes. With a distance threshold of 26 (as suggested by the de-
velopers of the hashing algorithm), we found that for roughly 18%
of all images in the dataset, we could pre-empt the execution of all
deep models and return the classes stored for the image with small-
est hamming distance. This approach eventually results in signifi-
cant energy savings, and increases the battery life of the device.

30 60 90 120
Image Capture Frequency (s)

0

20

40

60

B
at

te
ry

 L
ife

 (
ho

ur
s) Baseline

DeepEye

(a) Scenario: Lifelogging

30 60 90 120
Image Capture Frequency (s)

0

20

40

60

80

B
at

te
ry

 L
ife

 (
ho

ur
s) Baseline

DeepEye

(b) Scenario: Vision Support

Figure 15: Comparison of estimated battery life of DeepEye assuming dif-
ferent image capture frequencies. This does not include energy gains from
perceptual hashing, which will increase the battery life of DeepEye.

GPU execution. Finally, we evaluated the runtime of our model
pipelines by running them on both CPU and GPU. While execut-
ing the models on a GPU, we observed a 1.6x gain in execution
of the convolution layers over CPU-only approach. However, as
the CPU and GPU have a shared memory on the Snapdragon 410c,
the loading time of fully connected layers into the memory remains
the primary bottleneck. As such, even with faster convolution op-
erations on the GPU, we do not gain much in terms of the overall
inference time due to the bottleneck of loading fc layer parameters
into the memory – moreover, using the GPU consumes additional
energy which reduces the battery life of the wearable. Therefore, in
the current version of DeepEye, we only employ the CPU for doing
model computations.

5.6 Inference Accuracy
In this subsection we discuss the accuracy of the deep learning

models used in our experiments on egocentric images. Note that the
deep models used in our experiments were pre-trained on a wide
variety of images, not specifically on egocentric images captured
from a wearable. As such, we would like to understand how well
these models perform on egocentric images, and whether they need
extensive re-training in the future.

Dataset. For our evaluation, we used the egocentric image dataset
from the authors of [23], which consists of a total of 18,735 images
captured by 7 users wearing a Narrative Clip for 20 days. The Nar-
rative Clip has the same camera resolution as DeepEye, therefore
its images are representative of what will be captured by DeepEye.
The dataset is rich in diversity, as the users were wearing the Nar-
rative Clip in different contexts: while attending a conference, on

77

Figure 16: Examples of egocentric images captured from a Narrative Clip

FaceNet

ObjectNet

SceneNet

SalientNet

AgeNet

GenderNet

EmotionNet
0

20

40

60

80

100

A
cc

ur
ac

y

 16%
 26%

 34% 23%

 21%

 19%

 23%

State-of-the-art accuracies
Accuracy on egocentric images

Figure 17: Accuracy of the pre-trained deep models on egocentric images.
Numbers on the bars represent accuracy loss compared to the state-of-the-
art accuracies, which happes because the models are not fine-tuned for ego-
centric images.

holiday, during the weekend, and during the week. A sample of the
images in the dataset is shown in Figure 16.

Ground Truth Collection. The dataset from [23] is largely unla-
beled for evaluating the models used in our experiment, with the
exception of face labeling. For a subset of 4912 images in the
dataset, the authors have labeled whether the image consists of a
’face’ or not. As such, these images could be used to evaluate the
accuracy of FaceNet in our experiments. To collect the ground truth
for evaluation of other models, we ran two crowdsourcing tasks on
Amazon Mechanical Turk.

In the first task, we asked workers to choose labels for the face
images (extracted from the original dataset) viz. their age (8 age
categories), gender (male/female) and emotion (7 categories). The
label choices were the same as the output classes in AgeNet, Gen-
derNet and EmotionNet. In the second task, we asked workers to
label 4000 different images from the dataset viz. the number of
salient objects in them (for evaluating SalientNet), objects seen in
the image (for evaluating ObjectNet) and the places seen in the im-
age (for evaluating SceneNet). While the original ObjectNet and
SceneNet models consist of 1000 and 205 classes respectively, we
only asked the workers to choose from object and scene classes that
are expected to be captured in routine life (e.g. laptop, office, home,
building, cup, fruit). We did not evaluate the accuracy for MemNet
as it was difficult for crowd workers to label the memorability of an
image captured by somebody else.

Results. Before presenting the results, it is worth pointing that
none of the models used in our experiments were fine-tuned for
egocentric images. Egocentric images typically have poor lighting
conditions, multiple objects in them and they may even have the
object or person of interest occluded by other objects – thereby
making it challenging to get an accurate inference.

In Figure 17, we plot the accuracy of the models as observed

on the egocentric image database. For ObjectNet and SceneNet,
we present the top-5 accuracies, that is the ground-truth category is
within the top-5 predicted categories. For other models, we present
the top-1 accuracy. We observe that the face-based models, such
as FaceNet, AgeNet, GenderNet, and EmotionNet have lower ac-
curacies drops (numbers shown on top of the bars) as compared to
the state-of-the-art accuracies. On the other hand, models which
aim to analyze the scene (e.g., SceneNet or ObjectNet) reported
much higher accuracies drops. Specifically for SceneNet, images
captured indoors (e.g. at home in the evening) had a high num-
ber of misclassifications – we believe that the poor indoor lighting
conditions made it challenging for the classifier to infer the loca-
tion. Overall, these results suggest that fine-tuning the pre-trained
models on egocentric images is required to achieve their reported
accuracies.

6. DISCUSSION
We now discuss a key set of issues related to the design and

evaluation of DeepEye.

Beyond Just Vision-based Deep Models. We believe the op-
timization techniques described will operate successfully even in
models that are not image based. Our design of DeepEye and the
optimizations we discover exploits characteristics of layers (such as
fully-connected feed-forward layers in relation to other layer types)
that should be suitable for other mobile platforms that target other
uses of deep learning. For example, audio understanding and emo-
tion recognition.

Relevance of Deep Learning Specific Accelerators. Existing
accelerators such as [38, 39] are not able to execute multiple deep
models as DeepEye is able to. While their performance for individ-
ual models we use (such as AlexNet and VGG based models) may
execute more efficiently on this purpose-built hardware, how they
will support multiple model situations remains unstudied.

Complementary to Many Existing Optimizations. Because
model-centric techniques that use sparse-coding [27], SVD [40],
node pruning [41] alter the layers of deep models themselves they
are compatible with scheduling and caching approaches we develop
here. As we show in the evaluation when the proposed methods
and such model compression techniques are combined, the perfor-
mance impact with respect to the accuracy trade-off can be impres-
sive and better than the trade-offs possible with the original tech-
nique itself.

User Trials of DeepEye. Currently DeepEye has not yet been
deployed. The focus of this work has been the development of
hardware and software techniques that at this stage are evaluated
through a trace-dataset. However, we will begin deployments of
these devices for limited periods of time moving forward.

Improving Deep Model Accuracy. In this work we report
some of the first observations of deep models running against ego-
centric first-person images as are captured by wearable cameras
like DeepEye. To our knowledge, our work along with [15] has
evaluated the accuracy of these techniques on such image work-
loads. We reported that the inference accuracies for all models
drop when they are applied on egocentric images. These reported
accuracy numbers are expected to improve when techniques such
as fine-tuning are applied to these models using the training images
captured by DeepEye.

Privacy Concerns. Like any wearable camera, with Deep-
Eye there are significant potential privacy concerns that must be
respected. For this reason DeepEye never retains any images at any
stage. Only inference results are kept. This is quite unlike most
wearables that perform heavy image processing that will most of-

78

ten rely on the cloud. Users also benefit from a very simple mental
model of where their data is and is not. They can assure themselves
that data never leaves DeepEye unless they install an application
that does so.

7. RELATED WORK
DeepEye follows in a line of wearable and mobile vision sys-

tems that have been prototyped for decades. Relatively recent ex-
amples include SenseCam [1], Gabriel [2] and ThirdEye [3]. A
central difference to these systems is that DeepEye performs im-
age processing using deep learning models; this is significant be-
cause this brings state-of-the-art models for various image task to a
wearable platform, rather either simplified alternative learning al-
gorithms executing locally or complex models running remotely.
While few mobile systems (such as smartphones [42, 43]) and vir-
tually no wearable systems (i.e., those with a smaller form factor)
use a single deep learning for local processing, in contrast Deep-
Eye integrates multiple concurrently executing models. DeepEye
explores an area that is only just emerging (cloud-free deep learn-
ing for mobile vision), and more than that leaps beyond existing
systems with single models to study what we believe will be a im-
portant upcoming step; specifically, how these systems can cope
with (and benefit from) multiple executing deep learning models.

More importantly, DeepEye contributes significantly as a enabler
of experiments to study these issues because all hardware and soft-
ware will be open-sourced. In the area of mobile vision, perhaps the
central systems question has been how these systems can be made
to be energy (and more broadly resource) efficient [12, 14]. The
DeepEye wearable and its cloud-free focus allows us to further un-
derstand when and if the cloud should be incorporated especially
in relation to multiple deep model scenarios. Few studies of this
type currently exist into the performance of deep models on mobile
hardware; those that do exist (such as [28]) have not yet examined
the multi-model problem, and more importantly have not made the
type of observations for future optimizations in this area that we
have done in this paper (see earlier section). SDKs for using mo-
bile GPUs and deep models are starting to arrive (such as [11]).
In contrast, other directions being take start at a more algorithmic
level and consider how the models themselves can be different to-
wards being more efficient [13, 44]. But interestingly most of
the understanding of mobile and optimized deep learning currently
exists in commercial settings (such as [42]) although software ap-
proaches to cloud offloading [9] and device-side acceleration [45]
are arriving. The experiments we report here are some of the first
to focus specifically on large deep models designed for image pro-
cessing on a wearable. Examples of deep learning on wearables
form-factors are very rare up to this point and have not considered
the CNN architecture needed for images; in comparison work like
[46] and [47] consider LSTM and RBMs respectively.

Finally, a key part of the future of deep learning on mobiles and
wearables undoubtedly will include consideration of custom hard-
ware. Such hardware options are evolving in research [48][39]
and in industry [38]; DeepEye contributes to this examination by
exploring the limit of conventional hardware through the combi-
nation of a conventional processor and custom supporting daugh-
ter board. Interesting ideas in co-design involving low-level ML
components and sennsor array are also emerging towards more
efficicent vision processing systems [10]. But because DeepEye
leverages a general-purpose hardware its observations will more
easily translate into other more popular SoCs, than deep learning
specific hardware options. Furthermore, the observations for re-
thinking and optimizing the software-based inference pipeline is
just as needed as any hardware innovations because, as we high-

lighted here, many optimization opportunities exist within the in-
ference algorithms available.

8. CONCLUSION
In this paper, we empirically study two key areas pertaining to

mobile vision systems moving forward. First, the raw feasibility,
and overall system performance, of wearable form-factor devices to
meet the needs of cloud-free deep learning-based vision processing
of periodically captured images. We study this within the context of
a powerful conventional small form-factor processor, and purpose-
built daughter board, under a real-world image workload of≈4000
images collected from a user trial with actual commercial wearable
device. Second, we focus on a key aspect of execution support
for these models – namely, the challenges presented by simulta-
neous inference of multiple models on the same image. This will
be a building block behavior of vision systems as most applica-
tions require multiple types of analysis (i.e., multiple models) to be
performed on a single image. We highlighted the core bottlenecks
with executing multiple deep models on constrained devices, and
proposed methods to manage these issues in the inference process
when concurrent images are processed. We believe our techniques
will be of broad interest for mobile systems and vision researchers
at large, and will lead to more research in this space.

9. REFERENCES
[1] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan,

A. Butler, G. Smyth, N. Kapur, and K. Wood, “Sensecam: A
retrospective memory aid,” in UbiComp 2006: Ubiquitous
Computing. Springer, 2006, pp. 177–193.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan, “Towards wearable cognitive
assistance,” in Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’14. New York, NY, USA: ACM, 2014, pp.
68–81. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594383

[3] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N.
Padmanabhan, and L. Qiu, “Enabling physical analytics in
retail stores using smart glasses,” in Proceedings of the 20th
Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’14. New York, NY, USA:
ACM, 2014, pp. 115–126. [Online]. Available:
http://doi.acm.org/10.1145/2639108.2639126

[4] “Google Glass,”
https://developers.google.com/glass/distribute/glass-at-work.

[5] “Narrative Clip 1,” http://getnarrative.com/narrative-clip-1.
[6] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:

Closing the gap to human-level performance in face
verification,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[7] T. Weyand, I. Kostrikov, and J. Philbin, “Planet - photo
geolocation with convolutional neural networks,” CoRR, vol.
abs/1602.05314, 2016. [Online]. Available:
http://arxiv.org/abs/1602.05314

[8] A. Khosla, A. S. Raju, A. Torralba, and A. Oliva,
“Understanding and predicting image memorability at a large
scale,” in International Conference on Computer Vision
(ICCV), 2015.

[9] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “Mcdnn: An execution framework for
deep neural networks on resource-constrained devicesg,” in

79

Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, 2016.

[10] M. Philipose, “Efficient object detection via adaptive online
selection of sensor-array elements,” in Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
ser. AAAI’14. AAAI Press, 2014, pp. 2817–2823.
[Online]. Available:
http://dl.acm.org/citation.cfm?id=2892753.2892942

[11] L. N. Huynh, R. K. Balan, and Y. Lee, “Deepsense: A
gpu-based deep convolutional neural network framework on
commodity mobile devices,” in Proceedings of the 2016
Workshop on Wearable Systems and Applications, ser.
WearSys ’16. New York, NY, USA: ACM, 2016, pp.
25–30. [Online]. Available:
http://doi.acm.org/10.1145/2935643.2935650

[12] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and
P. Bahl, “Energy characterization and optimization of image
sensing toward continuous mobile vision,” in Proceeding of
the 11th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’13.
New York, NY, USA: ACM, 2013, pp. 69–82. [Online].
Available: http://doi.acm.org/10.1145/2462456.2464448

[13] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy, “Fast
video classification via adaptive cascading of deep models,”
arXiv preprint arXiv:1611.06453, 2016.

[14] P. Bahl, M. Philipose, and L. Zhong, “Vision: cloud-powered
sight for all: showing the cloud what you see,” in
Proceedings of the third ACM workshop on Mobile cloud
computing and services. ACM, 2012, pp. 53–60.

[15] D. Castro, S. Hickson, V. Bettadapura, E. Thomaz,
G. Abowd, H. Christensen, and I. Essa, “Predicting daily
activities from egocentric images using deep learning,” in
Proceedings of the 2015 ACM International Symposium on
Wearable Computers, ser. ISWC ’15. New York, NY, USA:
ACM, 2015, pp. 75–82. [Online]. Available:
http://doi.acm.org/10.1145/2802083.2808398

[16] P. Kelly, A. Doherty, E. Berry, S. Hodges, A. M. Batterham,
and C. Foster, “Can we use digital life-log images to
investigate active and sedentary travel behaviour? results
from a pilot study,” Int J Behav Nutr Phys Act, vol. 8, no. 44,
p. 44, 2011.

[17] A. Grimes, M. Bednar, J. D. Bolter, and R. E. Grinter,
“Eatwell: sharing nutrition-related memories in a
low-income community,” in Proceedings of the 2008 ACM
conference on Computer supported cooperative work.
ACM, 2008, pp. 87–96.

[18] R. Sarvas and D. M. Frohlich, From snapshots to social
media-the changing picture of domestic photography.
Springer Science & Business Media, 2011.

[19] I. Li, A. K. Dey, and J. Forlizzi, “Understanding my data,
myself: supporting self-reflection with ubicomp
technologies,” in Proceedings of the 13th international
conference on Ubiquitous computing. ACM, 2011, pp.
405–414.

[20] H. Pirsiavash and D. Ramanan, “Detecting activities of daily
living in first-person camera views,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012, pp. 2847–2854.

[21] A. J. Sellen, A. Fogg, M. Aitken, S. Hodges, C. Rother, and
K. Wood, “Do life-logging technologies support memory for
the past?: an experimental study using sensecam,” in
Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 2007, pp. 81–90.

[22] L. Deng and D. Yu, “Deep learning: Methods and
applications,” Tech. Rep. MSR-TR-2014-21, January 2014.
[Online]. Available: http:
//research.microsoft.com/apps/pubs/default.aspx?id=209355

[23] M. Dimiccoli, M. Bolaños, E. Talavera, M. Aghaei, S. G.
Nikolov, and P. Radeva, “Sr-clustering: Semantic regularized
clustering for egocentric photo streams segmentation,” arXiv
preprint arXiv:1512.07143, 2015.

[24] “Autographer,” http://getnarrative.com/narrative-clip-1.
[25] N. D. Lane, S. Bhattacharya, C. Forlivesi, P. Georgiev,

L. Jiao, L. Qendro, , and F. Kawsar, “Deepx: A software
accelerator for low-power deep learning inference on mobile
devices,” in IPSN 2016.

[26] “Perceptual Hashing,” http://www.phash.org/.
[27] S. Bhattacharya and N. D. Lane, “Sparsification and

separation of deep learning layers for constrained resource
inference on wearables,” in ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2016.

[28] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and
F. Kawsar, “An early resource characterization of deep
learning on wearables, smartphones and internet-of-things
devices,” in Proceedings of the 2015 International Workshop
on Internet of Things Towards Applications, ser. IoT-App
’15. New York, NY, USA: ACM, 2015, pp. 7–12. [Online].
Available: http://doi.acm.org/10.1145/2820975.2820980

[29] “BLAS library,” http://www.netlib.org/blas/.
[30] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-view face

detection using deep convolutional neural networks,” in
Proceedings of the 5th ACM on International Conference on
Multimedia Retrieval. ACM, 2015, pp. 643–650.

[31] G. Levi and T. Hassner, “Age and gender classification using
convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, 2015, pp. 34–42.

[32] G. Levi and T. Hasner, “Emotion recognition in the wild via
convolutional neural networks and mapped binary patterns,”
in Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, 2015, pp. 503–510.

[33] J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z. Lin,
X. Shen, B. Price, and R. Mech, “Salient object subitizing,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 4045–4054.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[35] A. Khosla, A. S. Raju, A. Torralba, and A. Oliva,
“Understanding and predicting image memorability at a large
scale,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 2390–2398.

[36] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva,
“Learning deep features for scene recognition using places
database,” in Advances in neural information processing
systems, 2014, pp. 487–495.

[37] N. Lane, S. Bhattacharya, A. Mathur, C. Forlivesi, and
F. Kawsar, “Dxtk: Enabling resource-efficient deep learning
on mobile and embedded devices with the deepx toolkit,” in
Proceedings of the 8th EAI International Conference on
Mobile Computing, Applications and Services, ser.
MobiCASE’16. ICST, Brussels, Belgium, Belgium: ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2016, pp. 98–107.

80

[Online]. Available:
https://doi.org/10.4108/eai.30-11-2016.2267463

[38] “Movidius,” http://www.movidius.com/.
[39] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and

O. Temam, “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Proceedings
of the 19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM,
2014, pp. 269–284. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541967

[40] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural
network acoustic models with singular value
decomposition,” in INTERSPEECH, 2013, pp. 2365–2369.

[41] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,” in
Advances in Neural Information Processing Systems (NIPS),
2015, pp. 1135–1143.

[42] “How Google Translate squeezes deep learning onto a
phone,” http://googleresearch.blogspot.co.uk/2015/07/
how-google-translate-squeezes-deep.html.

[43] “Happy Halloween! Baidu Research Introduces FaceYou,”
http://uk.reuters.com/article/idUKnMKWYbQbJa+1ea+
MKW20151029.

[44] S. Venkataramani, V. Bahl, X.-S. Hua, J. Liu, J. Li,
M. Phillipose, B. Priyantha, and M. Shoaib, “Sapphire: an
always-on context-aware computer vision system for
portable devices,” in 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2015, pp.
1491–1496.

[45] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
L. Jiao, L. Qendro, and F. Kawsar, “Deepx: A software
accelerator for low-power deep learning inference on mobile
devices,” in Proceedings of the 15th International
Conference on Information Processing in Sensor Networks,
2016.

[46] T. Beltramelli and S. Risi, “Deep-spying: Spying using
smartwatch and deep learning,” CoRR, vol. abs/1512.05616,
2015. [Online]. Available: http://arxiv.org/abs/1512.05616

[47] S. Bhattacharya and N. D. Lane, “From smart to deep:
Robust activity recognition on smartwatches using deep
learning,” in Proceedings of the Second Workshop on
Sensing Systems and Applications Using Wrist Worn Smart
Devices, 2016.

[48] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong,
“Redeye: Analog convnet image sensor architecture for
continuous mobile vision,” in International Symposium on
Computer Architecture (ISCA), 2016.

81

