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ABSTRACT
Mosquito-borne illnesses such as dengue, chikungunya, and Zika
are major global health problems, which are not yet addressable
with vaccines and must be countered by reducing mosquito popula-
tions. �e Sterile Insect Technique (SIT) is a promising alternative
to pesticides; however, e�ective SIT relies on minimal releases of
female insects. �is paper describes a multi-objective convolutional
neural net to signi�cantly streamline the process of counting male
and female mosquitoes released from a SIT factory and provides a
statistical basis for verifying strict contamination rate limits from
these counts despite measurement noise. �ese results are a promis-
ing indication that such methods may dramatically reduce the cost
of e�ective SIT methods in practice.

CCS CONCEPTS
•Applied computing→Mathematics and statistics; Imaging;

KEYWORDS
image modeling, quality assurance, counting from images

1 INTRODUCTION
Mosquitoes kill over a million people per year and sicken hundreds
of millions more [22, 23]. Aedes aegypti alone is the primary vector
for dengue and can additionally transmit Zika and chikungunya.
Currently, their populations are usually controlled via pesticides
and tedious elimination of standing water. �e Sterile Insect Tech-
nique (SIT) is a promising approach in which an overwhelming
number of sterile insects are released to compete with the wild pop-
ulation for mates and ultimately reduce the rate of new o�spring
[2, 4, 7, 8, 12].

Only female mosquitoes bite and transmit disease, so it is impor-
tant for SIT implementations to minimize the number of released
females and to accurately measure the female contamination rates
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Figure 1: A petri dish of male and female immobilized
mosquitoes from which we expect our model to count the
total number of insects and localize females.

of their releases. �erefore robust procedures for correctly classify-
ing mosquito sex are paramount to the success of this technique.

Existing methods for sex sorting in mosquito SIT trials include
mechanical separation by pupal size, insecticide laced bloodmeals,
genetic sexing, and manual separation. �ality assurance is gener-
ally a manual process [4, 7, 8, 19].

�is paper presents a quality assurance system for measuring
the female contamination rate of an Aedes aegypti SIT factory using
a machine-learned image model to assist a human technician with
counting immobilized male and female mosquitoes in petri dishes.

A�er detailing the model and its training data, we report results
under various hyperparameter se�ings and describe the metrics
we use to quantify a model’s quality. In Section 7 we analyze our
model’s quality relative to theoretical limits and interpret them
with respect to practical considerations. Speci�cally, we investigate
the limitations of patch-based detection, derive a statistical basis for
performing validation, and derive bounds on statistical power with
which we evaluate the e�ect of imperfect detection on minimum
sample sizes.

2 QUALITY ASSURANCE PROCESS
�e proposed QA procedure entails imaging petri dishes of immo-
bilized mosquitoes and counting from these images. An example
image is depicted in Figure 1. Our model estimates mosquito counts
and detects females on small image patches. It aggregates these
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counts into a total count and provides approximate female local-
izations. A human technician is then responsible for counting any
detected females. By only leaving female counting to the techni-
cian, we minimize the risk of miscounting females while expending
minimal human e�ort.

�ese tallies enable one to infer the factory’s contamination rate.
Since technicians are not expected to inspect non-�agged petri dish
regions, the detection model’s sensitivity is crucial for generating
accurate female counts.

3 BACKGROUND
As summarized in [14], contemporary approaches to counting from
images usually employ counting by detection or regression.

Detection-based solutions a�empt to localize all instances of the
relevant object and yield the number of such detections. �is usually
entails predicting a con�dence map over the image and applying
a combination of thresholding and non-maximum suppression to
isolate individual items. However, other detection approaches,
such as semantic segmentation of distinct items, can be similarly
employed [9, 17]. While these methods o�er more interpretability,
they can struggle with images with overlapping items as is the case
in our petri dishes of mosquitoes.

Counting by regression skips localization and simply learns a
mapping from the image to the number of visible objects. �ese
methods vary in training annotations (e.g. bounding boxes or point
localizations from one or more raters) and regression targets, which
may simply be the integer count of wholly contained items as in
[18], or the sum over a density map. �ese density maps represent
fractional counts over a region of the image. For example, [5]
used bounding box annotations and de�ned a density map with
counts uniformly distributed over those boxes, while [14] and [24]
employed a sum of Gaussian kernels. On a dataset with noisy point
localizations, [3] de�ned a density map that distributed each item’s
count over a region de�ned by multiple noisy point annotations.

Most modern approaches to counting from images use deep
convolutional neural network architectures [3, 5, 9, 24]. Deep con-
volutional neural networks have shown tremendous success in a
number of computer vision tasks, including image classi�cation
[13, 21], video classi�cation [10], object-detection [20], and seman-
tic segmentation [15]. In a convolutional neural network, successive
layers of small tunable �lters are trained to extract relevant features
from an image. At each layer, a number of �lters are applied in a
convolutional manner across the spatial dimensions of the image
and their outputs are pooled and nonlinearly transformed before
being passed to the next layer. In contrast to machine learning sys-
tems that use carefully engineered image descriptors such as HOG
[6] and SIFT [16], convolutional neural networks learn relevant
features as part of the supervised learning task.

Since overlapping insects are common in our dataset, we opted
to count by regression. Speci�cally, our model predicts the sum of
(possibly fractional) line-segments present in each patch that makes
up the complete image. We also supply the CNN with additional
surrounding pixels for context and an indicator mask to clarify
the boundary between the context region and region of interest.
A similar context region (without an indicator mask) was used to
count cars from overhead imagery in [18].

4 TRAINING DATA
Our dataset consists of 500, 8000 × 8000 pixel petri dish images
containing approximately 200 mosquitoes each at a male:female
ratio of approximately 10:1. �is ratio is much lower than will be
the case in practice, but the more balanced class ratio is helpful to
provide su�cient information value during training.

We collect ground-truth annotations for training using two
phases of human labeling. In the �rst phase, raters localize mosquitoes
with two endpoints — one at the head and another at the end of
the abdomen. �is localization is veri�ed by another rater before
proceeding to phase two (else it returns to the �rst phase for correc-
tion). In phase two, we ask multiple raters to classify each localized
mosquito as male, female, or unknown from image crops centered
around the localization.

Female mosquitoes are distinguished by larger bodies and li�le-
to-no feathering on their antennae; these features are easily visible
in Figure 2. In cases where raters could not determine a mosquito’s
sex, we err on the side of caution and treat those instances as
females.

5 MODEL
Since we wish to produce counts and approximate localizations,
we employed a patch-based CNN to make predictions on small
square patches with dimensions R ×R. To generate fractional count
labels for each patch, we linearly interpolateM points between each
annotated segment and sum the number of these points contained
in the focus region. �e detection label is positive if any of these
points corresponding to a female mosquito is contained in the focus
region. We also support assigning distinct interpolation sizes for
counting (Mctr) and detection (Mdet).

To avoid confusing the model with images of small fractions of
mosquitoes that are insu�cient for sex determination, we pad the
input image with a context region ofC additional pixels surrounding
the R ×R focus region; the total input with dimensions S × S (where
S = R + 2C) will be referred to as the model window. We convey the
boundaries between the focus and context regions to the model by
concatenating a context vs. focus indicator-mask to the window’s
color channels.

Our network is an instance of the InceptionV3 architecture [21]
trained from scratch with randomly initialized parameters and �lter
bank sizes scaled by 0.3, yielding a shared hidden layer from which
we make two predictions: (1) Female detection: true if any portion
of a female mosquito is present in the focus region. (2) Counting:
the sum of fractional mosquitoes contained in the focus region. To
train the model, we minimize the sum of L2 losses from counting
predictions 1 and logistic loss from female detection. We observed
the two loss values to be relatively comparable (within one or
two orders of magnitude), so neither objective overwhelmingly
dominates shared parameter optimization.

At inference, we run the model on S ×S-sized patches with stride
R. Counts are summed across all patches, and detection predictions
exceeding a con�gured threshold alert a human operator who will
inspect the patch and update the females count if appropriate.

1Subsequent experiments suggest that count predictions from so�max classi�cation
similar to that employed by [18] are more accurate than counts from minimizing L2
loss.
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Figure 2: Le�: Two input exampleswith gridlines surrounding the focus-region and red and green interpolated points denoting
ground-truth female and male localizations. Right: An example detection.

Figure 3: A �ow chart depiction of the model and its training data annotation process. Human labelers begin by localizing
each mosquito with two endpoints, and each localized insect is then cropped and sent to multiple raters for male/female
classi�cation. Random, dynamically extracted image patches are generated at training and labeled according to the contents
of the focus region. At serving, the female detections assist human technicians by localizing female insects to count.

5.1 Training
We trained the model using distributed TensorFlow with AdamOp-
timizer for gradient descent [1, 11]. Each training worker dynami-
cally extracted random patches and employed a shu�ing queue to
avoid correlations within minibatches. Per conventional practice
with deep CNNs, we applied dropout and random image distor-
tions including random �ips and random adjustments to brightness,
contrast, hue and saturation.

6 RESULTS
Simple quality metrics of per-patch prediction accuracy do not
easily translate to actionable interpretations and are not comparable
between some hyperparameter se�ings. We begin by describing
the quality metrics we will use to compare models and proceed to
report results from experiments studying the e�ects of the context
mask as well as focus-size and the number of interpolation points
used to represent insects for patch labeling.

Models in these experiments used a �xed context size ofC = 150
as this roughly corresponds to the length of a mosquito in pixels.

Other experimental parameters varied between the studies and are
noted in Appendix A.

6.1 Model�ality Metrics
To quantify counting quality, per-plate counting accuracy will suf-
�ce, but translating patch detections into plate-level counting met-
rics is less obvious.

We propose scoring each mosquito according to the maximum
detection probability assigned to patches containing any part of
its corresponding segment and evaluate those scores according to
speci�city-at-�xed-sensitivity. �is metric is intended to capture
the performance of female counting when coupled with a human
technician since we expect the technician to inspect each insect
touching a positive patch.

One implication of this metric is that speci�city is bounded by
the resolution enabled by the model’s focus size (R) as patches
that touch both male and female mosquitoes can confound perfect
scoring. We investigate this e�ect in detail in Section 7.1.
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6.2 Context Region
As described in Section 5, we include C pixels of padding around
the focus region to enable the model to distinguish between male
and female mosquitoes without identifying features (i.e. antennae)
contained in the focus region. Additionally, we concatenate to the
input image patches a fourth color channel with {0,1} indicators
denoting which pixels belong to focus vs context.

We studied the e�ect of this complexity by training three oth-
erwise identical models: one without a context region, one with a
context region, and one using both a context region and context
mask channel.

Models in these experiments �xed focus size at R = 200, and
interpolation sizes at Mctr = 10 and Mdet = 1. Each model trained
for 4 million steps

�e results, summarized the table below, suggest that the context
bu�er is useful for both counting and detection, but the context
mask o�ers minimal improvement at best.

model speci�city @ 95% sensitivity RMSE
no context 93.61% 22

with context 94.67% 14
with context & mask 94.60% 12

6.3 Focus size and interpolation size
To tune model quality, we ran a hyperparameter grid search over R
(focus size) and M (interpolation size).

�e tables below lists per-mosquito speci�cities at 95% sensitivity
for the female detector:

R = 200 R = 300
M = 1 91.3% 87.1%
M = 2 89.7% 83.7%
M = 10 90.1% 82.9%

and root-mean-squared-error for the counting model:

R = 200 R = 300
M = 1 15.4 n/a
M = 2 6.1 5.0
M = 10 2.9 1.7

�e R = 300, M = 1 case uniformly predicted zero counts, which
presumably indicates that �nal hidden layer activations became
stuck in the �at domain of the ReLU output activation function. For
study details, see Appendix A.2.

We observe from these experiments that the larger focus size (R =
300) improves counting accuracy but harms detection sensitivity.
Counting accuracy also favors larger interpolation sizes; while the
pa�ern for detection is less obvious, single point representations
perform best.

7 ANALYSIS
In this section, we analyze our model quality results relative to the-
oretical limits and interpret them with respect to practical consider-
ations. We begin by comparing the female-detector’s sensitivity to
theoretical limits imposed by using a model on �xed size patches.

Next, we proceed to analyze the implications of our model’s
quality on its viability as a statistically sound tool for quality as-
surance. First, we introduce notation and the underlying dynamics

we assume to govern factory contamination and our model’s obser-
vations. In Section 7.3, we describe how to use our system’s noisy
counting measurements to prove that a factory is operating below
a maximum contamination rate. From this validation policy and
the dynamics model, we can derive bounds for our system’s type I
error probability, from which we can bound our system’s sampling
overhead compared to the sampling requirements of a hypothetical
counting system with perfect accuracy.

7.1 Limitations of patch-based detection
�e per-insect speci�city-at-sensitivity metric described in Sec-
tion 6.1 is naturally a�ected by focus-size R and by the number of
points we use to represent each mosquito’s line segment M . Larger
focus-sizes and larger M imply more overlap between mosquitoes
corresponding to each detection prediction. For example, a female
insect for which each relevant patch is also occupied by a male
mosquito is impossible to classify without some loss to sensitivity
or speci�city. Furthermore, by framing our model’s learning task
to predict positive detection when any part of a female is present
in a patch, we further limit the its ability to optimize this metric
directly.

To study this e�ect, we evaluated speci�city of patch scores
directly derived from ground-truth annotations where patches con-
taining a female mosquito point are positive and patches without a
point corresponding to a female insect are negative. �ese results
are listed in the table below.

R = 100 R = 200 R = 300
M = 1 99.8% 97.6% 93.0%
M = 2 98.0% 91.4% 84.1%
M = 3 97.6% 90.8% 83.6%
M = 10 97.1% 90.5% 83.2%

We also evaluated a more �ne-grained patch scoring function
that assigns a score proportional to the number of female insect seg-
ment points observed in each patch. �e table below lists measured
speci�cities at 90% sensitivity.

R = 100 R = 200 R = 300
M = 1 99.9% 97.7% 94.3%
M = 2 98.1% 93.1% 87.4%
M = 3 97.4% 92.2% 91.5%
M = 10 98.9% 95.6% 91.9%

As expected, larger patches have lower resolution with which to
identify female insects without �agging false positives. Without
�ne-grained scoring, fewer points also naturally improves resolu-
tion as at most one positive patch is assigned per female, but when
we allow non-binary scores, additional points enable one to select
a be�er threshold.

�ese speci�cities represent upper bounds on our detection
model’s quality, but since the male:female ratio in our dataset is
much lower than we expect to see in practice, we can expect the
speci�city loss that results from limited resolution to reduce in
practice.

7.2 Modeling the QA process
Our validation and statistical power calculations assume the fol-
lowing underlying dynamics model.

We begin by listing some notation.
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• k is the number of measured petri dishes with an average
ofm mosquitoes per dish

• n and nobs are the true and measured number of sampled
mosquitoes respectively

• f and fobs are the true and measured number of female
mosquitoes

• σ 2
d is the per-plate mosquito count variance

• σ 2
m is the counting model’s mean squared error

• s is the detection model’s sensitivity
• r is the factory’s contamination rate

�e following process describes our assumptions of the system’s
underlying dynamics

(1) n ∼ N (km,kσ 2
d ) — Each plate consists of a normally dis-

tributed number of mosquitoes, so the total number of
insects is also normally distributed with variance propor-
tional to the number of petri dishes.

(2) nobs ∼ N (n,kσ 2
m ) — We assume the counting model’s

measurement error is Gaussian with variance σ 2
m per plate.

(3) f ∼ Binomial(n,r ) — Each sampled mosquito is female
with probability determined by the factory’s contamination
rate.

(4) fobs ∼ Binomial( f ,s ) — Each female is observed with prob-
ability corresponding to our model’s per-mosquito sensi-
tivity.

For simplicity, we exclude the model’s counting predictions from
our analysis, so we assume that total counts are derived only from
the number of sampled plates. In practice, we can take advantage
of the model’s more accurate count measurements to yield a more
e�cient procedure.

7.3 Validating a factory from measurements
In this section we derive conditions for validating a factory as
having contamination rate below some maximum r∗ such that the
probability of misclassifying a non-compliant factory (type II error)
is at most ϵII.

Given that we con�rmed a count of fobs females from k petri
dishes, we will compare fobs to a threshold female count f ∗ such
that the probability of observing fewer than f ∗ female mosquitoes
from a factory with an excessive contamination rate is less than ϵII.

Perr II = P ( fobs < f ∗ |r > r∗) ≤ ϵII

First, observe that type II errors are most probable at minimal
r , so P ( fobs < f ∗ |r > r∗) ≤ P ( fobs < f ∗ |r = r∗). We then
marginalize over the true sample count, n ∼ N (km,kσ 2

d ), spli�ing
the domain of integration into n below and above nlo, and bounding
the probability of commi�ing a type II error in the lower domain
by 1.

Perr II ≤ En∼N (km,kσ 2
d )

[
P ( fobs < f ∗ |r = r∗)

]

≤

∫
n≤nlo

P (n) (1) +
∫
n>nlo

P (n)P ( fobs < f ∗ |r = r∗)

Note that, fobs ∼ Binom(n,r∗s ), but we can shi� this distribution
to nlo to upper bound P ( fobs < f ∗). It follows that

Perr II ≤ 1 − qII + qIIP ( fobs ∼ Binom(nlo,r∗s ) < f ∗)

where we de�ne qII = P (n > nlo).
It follows that assigning f ∗ such that

f ∗−1∑
fobs=0

Binom( fobs |n
lo,r∗s ) ≤

ϵII + qII − 1
qII

will ensure that the probability of validating a non-compliant fac-
tory is less than ϵII.

7.4 Statistical power
To evaluate our model’s viability as a QA solution, we measure
the loss to statistical power that results from its imperfect counts;
speci�cally, we will derive a bound on the probability of invalidating
a compliant factory (type I error) and use this to compute a minimal
sample size of petri dishes k that satis�es

Perr I = P ( fobs ≥ f ∗ |r < r∗) < ϵI

As in Section 7.3, we begin by marginalizing overn ∼ N (km,kσ 2
d )

and spli�ing the domain of integration.

Perr I = En
[
P ( fobs ≥ f ∗ |r < r∗)

]

≤ 1 − P (n < nhi) +
∫
n<nhi

P (n)P ( fobs ≥ f ∗ |r < r∗)

As earlier, we de�ne qI = P (n < nhi) and shi� fobs ∼ Binom(n,rs )

to Binom(nhi,rs ).

Perr I ≤ 1 − qI + qIP ( fobs ∼ Binom(nhi,rs ) ≥ f ∗ |r < r∗)

�us we can bound the probability of invalidating a compliant
factory at ϵI by selecting a su�ciently large sample size, k , that

1 − ϵI
qI

≤

f ∗∑
fobs=0

Binom( fobs |n
hi,rs )

7.5 Solving for a minimum sample size
A bound on the type I error probability has limited interpretability
and practical utility on its own. Instead, we wish to reason about
the real-world viability of our model in terms of the sample size
required to perform validations subject to �xed tolerances on type
I and II error probabilities as this sampling overhead can easily
translate to monetary or operational e�ciency costs.

Formally, we wish to compute
k∗ (r ) = min{k |∀k ′ ≥ k ,∃f ∗, P̃err II ( f

∗,k ′) ≤ ϵII, P̃err I ( f
∗,k ′) ≤ ϵI}

where P̃err II and P̃err I are the upper bounds on type I and II error
probabilities derived in Sections 7.3 and 7.4.

P̃err II ( f
∗,k ) = 1 − qII + qIIP ( fobs ∼ Binom(nlo,r∗s ) < f ∗)

P̃err I ( f
∗,k ) = 1 − qI + qIP ( fobs ∼ Binom(nhi,rs ) ≥ f ∗ |r < r∗)

and where nlo,nhi are the lower and upper con�dence bounds for
n derrived from k described above. We also de�ne the threshold
function

θ (k ) = max{ f ∗ |P̃err II ( f
∗,k ) ≤ ϵII}.

Since P̃err II monotonically increases and P̃err I decreases with f ∗

at �xed k , we can de�ne k∗ in terms of our maximal threshold
function

k∗ (r ) = min{k |∀k ′ ≥ k , f ∗ = θ (k ′), P̃err I ( f
∗,k ′) ≤ ϵI}.
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We then observe that if the maximal threshold θ (k ) satis�es Perr I ≤
ϵI, then the maximal threshold for any larger sample size k ′ > k
will at least satisfy the same type I error bound.

Perr I (θ (k ),k ) ≥ ϵI ⇒ ∀k
′ ≥ k ,Perr I (θ (k

′),k ′)

It follows that
k∗ (r ) = min{k |∀k ′ ≥ k , f ∗ = θ (k ′) = θ (k ), P̃err I ( f

∗,k ′) ≤ ϵI}.

Since θ (k ) is not one-to-one, no inverse exist, but we can instead
let

θ−1 ( f ∗) = max{k |θ (k ) = f ∗}

and since P̃err I (θ (k ),k ) strictly increases over the domain of k with
�xed threshold θ (k ) = f ∗,

k∗ (r ) = min{θ−1 (θ (k )) |P̃err I (θ (k ),k ) ≤ ϵI}

Finally, if we only consider the domain where k = θ−1 (θ (k )),
P̃err I (θ (k ),k ) monotonically decreases ink , so �nding the minimum
k in this domain is equivalent to �nding minimal f ∗ = θ (k )

k∗ (r ) = θ−1 (min{θ (k ) |P̃err I (θ (k ),k ) ≤ ϵI})

Note that had we not narrowed the domain for k , a simple search
for satisfactory values (e.g. with binary search) would be con-
founded by discrete jumps in f ∗ = θ (k ), which cause P̃err I (θ (k ),k )
to exhibit a sawtooth pa�ern that generally decreases while continu-
ously increasing between discontinuous drops when f ∗ increments.

7.6 Evaluation by minimum sample size
Figure 4 depicts the minimum sample size of a perfect detector as
a function of true contamination rate r as well as the sampling
overhead incurred by detectors of imperfect sensitivities. �ese
graphs assume plausible dynamics parameters with maximum con-
tamination rate r∗ = 1/20,000, qI = qII = 0.99, ϵI = ϵII = 0.95, and
σd = 50. �e relative sampling overhead cost of detectors with
sensitivity 99%, 95% and 90% are below approximately 2%, 6% and
12% respectively, which we expect to be manageable.

8 DISCUSSION & CONCLUSIONS
We demonstrate that modern image modeling techniques can con-
tribute to making SIT a viable approach for mosquito population
control by e�ciently validating that female releases are negligible.
Our experiment results and sample size calculations suggest that
achievable detection accuracies are su�cient for making statisti-
cally justi�ed decisions with respect to a factory’s contamination
rate while incurring minimal sampling overhead. Furthermore,
the fact that these calculations neglect the advantage of predicted
counts for each plate hints that predicted counts add li�le value to
the contamination rate measurement.

Experimenting with context region con�gurations leads us to
believe that the context region is worthwhile, but the corresponding
mask adds li�le-to-no value. Discarding this feature enables the
possibility of implementing our architecture as a fully convolutional
network [15] thus avoiding redundant convolutions, which are
particularly prevalent given context region overlap.

Additional experiments with focus and interpolation sizes reveal
that detection sensitivity is be�er with the smaller focus size while
counting accuracy prefers larger patches. Similarly, while counting
accuracy performs best with small focus size detections sensitivity

Figure 4: Above: Upper bound on the minimum sample size
required to satisfy type I and II error requirements with a
perfect detector model. Below: Sampling overhead incurred
by using imperfect counters are varying sensitivities tomeet
the same set of type I and II error requirements.

is optimized with single point representation. �ese experimental
results roughly correlate to our analysis of theoretical limits of sen-
sitivity under patch-based insect scoring. In most cases, measured
speci�city was within one or two percentage points from that of
optimal binary scoring.

We also examined the e�ect of patch-based detection on optimal
per-mosquito sensitivity and speci�city and observed that a �ner-
grained prediction target could lead to tighter localizations with
fewer false positives.

Finally, we note that careful analysis of our application’s re-
quirements led to unexpected observations with implications for
modeling approaches and metric interpretations.
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A EXPERIMENT DETAILS
�e context region and focus size / interpolation size studies trained
under di�ering conditions detailed below.
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A.1 Context Region
�e context region study ran training for 4 million steps and lacked
learning rate decay, batch normalization, and weight decay.

A.2 Focus size and interpolation size
�is study applied all of learning rate decay (with decay schedule
of 5% per 10K steps), batch normalization and weight decay but
only trained for approximately 1 million steps per model with
some variation between models. We list approximate �nal iteration
numbers in the table below.

R = 200 R = 300
M = 1 1.2M 1.1M
M = 2 1.3M 1.1M
M = 10 1.3M 1.1M

�e experiment also applied a recti�ed linear activation to model
predictions as counts should be non-negative and we expected this
�nal activation to make modeling a distribution with mostly zero
values easier to do.

Some con�gurations yielded somewhat miscalibrated counting
predictions, which may suggest a need to tune learning rate hyper-
parameters.

Subsequent experiments suggest so�max classi�cation yields
more accurate count predictions.
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