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ABSTRACT
Sentiment analysis is an important task in order to gain insights
over the huge amounts of opinions that are generated in the social
media on a daily basis. Although there is a lot of work on sentiment
analysis, there are no many datasets available which one can use
for developing new methods and for evaluation. To the best of our
knowledge, the largest dataset for sentiment analysis is TSenti-
ment [8], a 1.6 millions machine-annotated tweets dataset covering
a period of about 3 months in 2009. This dataset however is too
short and therefore insufficient to study heterogeneous, fast evolv-
ing streams. Therefore, we annotated the Twitter dataset of 2015
(228 million tweets without retweets and 275 million with retweets)
and we make it publicly available for research. For the annotation
we leverage the power of unlabeled data, together with labeled data
using semi-supervised learning and in particular, Self-Learning and
Co-Training. Our main contribution is the provision of the TSen-
timent15 dataset together with insights from the analysis, which
includes a batch and a stream-processing of the data. In the former,
all labeled and unlabeled data are available to the algorithms from
the beginning, whereas in the later, they are revealed gradually
based on their arrival time in the stream.
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1 INTRODUCTION
A huge amount of opinions is generated on a daily basis referring
to essentially every subject - to products, persons, brands, events
and topics. Opinions are valuable for consumers, who benefit from
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the experiences of other consumers, in order to make better buying
decisions but also for vendors, who can get insights on what cus-
tomers like and dislike [12]. Such sort of data are freely available
nowadays, however due to their amount and complexity a proper
analysis is required in order to gain insights.

Sentiment analysis aims at characterizing the sentiment con-
tent of a text as either positive or negative (some approaches also
consider the neutral class). Most of the approaches in this area
work with supervised learning, thus presuppose full availability of
labeled instances. In reality though, it is difficult, expensive and
time-consuming to obtain labels for all these instances, as they
require experienced human annotators.

Semi-supervised learning addresses this problem by leveraging
unlabeled data, together with the labeled data, to learn classification
models. In this work, we employ two well known semi-supervised
learning approaches, Self-Learning and Co-Training, in order to
annotate a huge collection of tweets.

Our contributions are summarized below:
• We create TSentiment151, a collection of 228 Million tweets with-
out retweets and 275 Million tweets with retweets, collected from
Twitter using its public streaming API which spans the whole
year 2015.
• We extensively evaluate the performance of Self-Learning and
Co-Training and how it is affected by the amount of labeled data,
the amount of unlabeled data and the confidence threshold.
• We process the data in two different ways: as a batch, where both
labeled and unlabeled data are available to the algorithm from
the beginning and as a stream, where both labeled and unlabeled
data are gradually available to the algorithms as they arrive from
the stream. We show that streaming achieves a comparable to
the batch approach accuracy, while being more efficient.
The rest of the paper is organized as follows: Related work is

presented in Section 2. In Section 3, we describe our dataset and
how we derived our ground truth for learning. The semi-supervised
learning approaches are described in Section 4. Our experiments
are described in Section 5, conclusions and outlook in Section 6.

2 RELATEDWORK
Our related work comes from different areas: semi-supervised learn-
ing, large scale annotations and sentiment analysis.

Nigam et al. [16] propose an algorithm for learning from labeled
and unlabeled documents based on Expectation -Maximization(EM)
and Multinomia Naive Bayes(MNB). The algorithm first trains a
classifier using the available labeled data, and probabilistically labels
the unlabeled ones. It then trains a new classifier using the labels
of all the documents, and iterates until convergence. This basic
algorithm was improved by two extensions: a weighting factor to

1Available at: https://l3s.de/%7Eiosifidis/TSentiment15/
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modulate the contribution of unlabeled data and by using multiple
mixture components per class, instead of a single one. Su et al [19]
propose a semi-supervised extension of MNB, SFE, that uses the
estimates of word probabilities obtained from unlabeled data and
class conditional word probabilities learned from the labeled data, to
learn the MNB parameters. Lucas et al. [13] introduced MNB-FM a
method that extendsMNB to leveragemarginal probability statistics
of each word, computed over the unlabeled data. The marginal
statistics are used as constraints to improve the class conditional
probability estimates for the positive and negative classes. Zhao
et al. [25] proposed MNB-WSC, which preserves reliable word
estimations, as extracted from a fair amount of labeled data. We
use MNBs as our based model. Despite their unrealistic conditional
independence assumption, they are known to perform moderately
and in some cases, it has been reported that their performance for
short texts is equal or superior to other more complex models [23].

A comprehensive survey of semi-supervised learning approaches
for Twitter is provided in this recent survey [18]. Similarly to us,
they found that Co-Training performed better with limited labels,
whereas Self-Training is the best choice when a significant amount
of labeled tweets is available. In contrast to the existing small scale
datasets they used for evaluation, we report on a huge collection
covering the whole year 2015. Dasgupta et al. [5] experimented
with a large variety of algorithms for semi-supervised sentiment
classification, including active learning, spectral clustering and en-
semble learning. Cross-domain sentiment classification is proposed
in [1], where the authors exploit a small number of labeled and a
huge amount of unlabeled data using EM.

Closely related to semi-supervised learning is self-learning [6].
The central idea behind self-learning is that we can expand the
training set by using the confident predictions of the classifier. Self-
learning might cause error propagation as the predictions of the
classifier are then used for its training [10, 26]. To deal with these
issues Co-Training was introduced in [4] which combines different
views of the data in two classifiers, which are then used for the
expansion of the training set. The intuition behind this approach is
that different classifiers will make different errors and therefore one
classifier can learn from the other instead of just learning by itself
as in self-learning. In [11] the authors study class imbalance for
semi-supervised classification. They use under-sampling in order to
generate multiple balanced training sets and during the iterations of
the semi-supervised process they dynamically change the classifiers
by varying the feature space. In a recent work [24], the authors
use the negations and antonyms to generate an opposite view of
the training data; the original and the opposite view are exploited
afterwards via Co-Training.

TSentiment [8] is a dataset of 1.6 million tweets from the time
period between April 6, 2009 to June 25, 2009, which are annotated
as positive and negative through distant supervision. The training
set consists of tweets with emoticons, which serve as noisy labels.
To the best of our knowledge this is the largest Twitter dataset for
sentiment analysis and is used extensively also in stream mining
due its temporal aspects [3, 22]. HSpam14 [17] is a dataset of 14
million tweets in English which are annotated with spam and ham
(or, non-spam) labels. The annotation process consists of four steps:
a heuristic-based selection of tweets that are more likely to be spam,

a cluster-based manual annotation, a reliable ham tweet detection
and finally, EM-based label prediction for the rest of the unlabeled
tweets.

3 DATASET DESCRIPTION
Our dataset, the preprocessing we applied and its effect on the
dataset are described in Section 3.1. In Section 3.2 we describe how
we derive the training set, i.e., labeled instances for the classification
task. In Section 3.3 we describe the distribution of labeled and
unlabeled data over the course of the monitoring period.

3.1 Data collection and preprocessing
We collected data from Twitter using its public streaming API2,
which provides a random selection of tweets (about 1% of all tweets);
our monitoring period is the whole 2015.

In total, 1.9 billion tweets were crawled, in all different languages
(English, Japanese, Spanish, Greek, etc.). We selected only the Eng-
lish tweets which were not re-tweets (as flagged by the API); the
filtered dataset consists of 384 millions tweets (20%), which generate
269 million distinct words.

We applied several preprocessing steps whose effect is depicted
in Figure 1:
• Slang words replacement: We mapped slang words to normal
expressions using a slang word dictionary3. For example, “lol"
was mapped into “laughing out loud". This resulted in a slight
increase of the words.
• Links andmentions: Links andmentions, e.g., “https://example.com",
“@bbc", were removed.
• Negation handling:We consider negations on verbs and adjectives.
For the former, we concatenated to a single verb, e.g., ”don’t
work"’ → ’not_work". For the later, we replaced the negation
with its antonym, e.g., ”not bad"→ ”good", using available lists.
• Special character removal: We removed punctuation and numbers.
We removed the symbol ’#’ from hashtags and we treated them
as normal words. We replaced repeated letters occurring more
than two times in a row with two letters; e.g., ”huuuungry"→
”huungry".
• Removal of emoticons: We also removed the emoticons from train-
ing data, aiming at classifiers that can learn from the word fea-
tures. In general, we removed all non ascii characters most of
which were special types of emoticons. But, we use the emoticons
to derive the labels for the training set (c.f., Section 3.2).
• Stopword removal: We removed stopwords using Weka’s stop-
words list 4.
• Stemming: We applied Porter stemmer.
• Removal of rare words: We removed rare words from the corpus,
using a frequency of 10 as the cut-off value.
• Removal of short tweets: Finally, we removed those tweets with
less than four (<4) words after preprocessing, similarly to [20].
After preprocessing the tweets are represented on average with

less words. In overall, the preprocessing resulted in a 41% reduction
of the corpus (from 384M to 228M tweets). The distinct words were
reduced by 99,5% (from 269M to 1,17M distinct words).
2https://dev.twitter.com/streaming/overview
3www.noslang.com
4http://weka.sourceforge.net/doc.dev/weka/core/stopwords/Rainbow.html
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Figure 1: Preprocessing effects

3.2 Ground truth for learning
In the absense of human labels, we derive our ground truth for
learning by considering two options: i) an emoticon-based approach
and a sentiment lexicon approach (using SentiWordNet5). Our idea
is to consider as groundtruth those tweets for which both emoticons
and SentiWordNet agree in their labelings.

Deriving labels from emoticons. Using a list of positive6 and neg-
ative7 emoticons we identify tweets with clear sentiment; those are
tweets with only positive or only negative emoticons, which we
then classify accordingly. This approach is similar to [9].

In our 220M tweets dataset, only 10,1M (4.4%) contain emoticons.
Out of 10.1M tweets with emoticons, 3,8M (37%) were classified as
clear positive (those with only positive emoticons), 1,5M (15%) as
clear negative (those with only negative emoticons), 4,8M (48%) as
mixed cases (both positive and negative emoticons). Only tweets
with clear emoticon-based sentiment, a total of 5.3 million tweets,
were used for building the ground truth.

Deriving labels from SentiWordNet. SentiWordNet [2] is a dictio-
nary of words and their associated sentiment. The words might
appear multiple times as different part of the speech (POS). There-
fore we first find the POS of each word in a tweet using Stanford’s
POS tagger [21] using the whole tweet to derive the context. Then,
we calculate for each tweet its overall score by aggregating the
scores of its component words from SentiWordNet; for the aggre-
gation, each word is weighted with a harmonic series [7].

Building the ground truth. The results of juxtaposing the emoticons-
and SentiWordNet- based labels are displayed in the confusion ma-
trix in Table 1. We considered as our ground truth the true positives,
i.e., tweets where emoticon-based and SentiWordNet-based labeling
agree. Our final ground truth dataset consists of 2,527,753 tweets.

5http://sentiwordnet.isti.cnr.it/
6Positive emoticons : c ) =] :] :} ; > :>) :∧ ) : D =) ; ) :) 8) (: (; : o) : −) : P < 3 : 3
∧_∧
7Negative emoticons : −c : [ : { :< : −( : / : −[ : c : − < : ( :′ { >: [

From these 2,5M tweets, 87.47% are positives (2,211,091 tweets) and
the rest 12.52% (316,662 tweets) are negatives.

Table 1: Confusion Matrix: Emoticon-vs SentiWordNet-
based labels

SWN. Pos. SWN. Neg. SentiW. Neutral
Emot. Pos. 2,211,091 840,787 807,887
Emot. Neg. 1,032,536 316,662 157,322

3.3 Temporal distribution of the dataset and
the labels

The temporal distribution of our dataset is depicted in Figure 2 in-
cluding both labeled tweets (according to Section 3.2) and unlabeled
ones.

Figure 2: Dataset distribution on a monthly basis

As we can see, the amount of unlabeled tweets is vast compared
to the amount of labeled tweets and this holds across the time-
line. On monthly average, the unlabeled set is 82 times larger than
the labeled set. For the labeled tweets, the negative class is miss-
represented comparing to the positive class; the average ratio of
positive to negative tweets per month is 3. Finally, there are no gaps
in the monitoring period, i.e., we have both labeled and unlabeled
tweets for each month.

4 LEARNINGWITH LIMITED LABELS
In our application, we have a small number of labeled instances,
L, and a huge number of unlabeled instances U ; this is a typical
scenario in many real life applications as despite the huge amounts
of data nowadays, only a small fraction of this data is labeled and
therefore can be directly used for (supervised) learning.

To deal with this issue, several approaches exist which except
for the labeled data also leverage unlabeled data. In this work, we
investigate two popular semi-supervised learning approaches: Self-
Learning and Co-Training, described hereafter.
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4.1 Self-learning
The main idea in Self-Learning [6] is to use the labeled set L to build
a classifier, then iteratively apply the model to the unlabeled corpus
U and in each iteration, expand the training set with instances from
the unlabeled corpus which were predicted with high confidence,
according to a threshold δ , by the classifier. The pseudocode of the
Self-Learning algorithm is shown in Algorithm 1.

The initial training set is the labeled set L. The training set is
expanded in each iteration, by including confident predictions from
U and is used for building a new classifier. The procedure continues
until U is empty or after a certain number of iterations or, if no
further expansion is possible.

Input: L: labeled set,U : unlabeled set, δ : confidence threshold
T ←− L
while (stopping criterion) do

Φ←− train classifier on T ;
for i=1 to |U | do

if (confidence of Φ.classify(Ui ) ≥ δ ) then
T ←− T ∪Ui
MarkUi as labeled

end
end
updateU by removing labeled instances;

end
return T ;

Algorithm 1: Pseudocode of Self-Learning

The intuition behind Self-Learning is that we can use the confi-
dent decisions of the classifier to expand the training set, in some
sort of exploitation of what the classifier already knows sufficiently
well. However, since some of the these predictions might be erro-
neous, Self-Learning might cause error propagation as at the end
the training set is a mix of original labels and predictions which are
taken equally into account for learning [10, 26]. Moreover, since the
classifier mainly exploits what it already knows and expands the
training set through similar instances, it is more difficult to learn
new concepts.

4.2 Co-Training
Co-Training was introduced in [4] and it assumes that the feature
space, lets denote it by X , can be split into two parts, X = (X 1,X 2),
called “views". The Co-Training algorithm trains two classifiers
Φ1,Φ2, each working exclusively on one view, X 1,X 2, respectively.
Initially, both classifiers are trained over the labeled set L, but each
on its own view, Xi , i ∈ {1, 2}. The unlabeled data are utilized as
follows: At each iteration,Φ1 classifies a few unlabeled instances for
which he is more confident about and appends them to the training
set. Similarly for Φ2. Co-Training then updates both classifiers with
this additional “pseudo-labeled" data.

We follow a slightly different version, c.f., Algorithm 2. We ini-
tialize Co-Training as above, with Φ1,Φ2 classifiers built upon the
labeled set L but each exclusively on one view, X 1,X 2, respectively.
At each iteration of Co-Training, the most confident predictions of
each classifier are used for the expansion of the training set of the
other classifier. That is, the most confident predictions of Φ1 are
used to expand the training set of Φ2 and vice versa.

Therefore, although both classifiers start with the same training
set L, over the iterations and as one learns from the other, the
training sets of the two classifiers are different. The procedure
stops ifU is empty or after a certain number of iterations or, if no
further expansion is possible.

Input: L: labeled set, X 1,X 2: the two feature views, U :
unlabeled set, δ : confidence threshold

T1,T2 ←− L
while (stopping criterion) do

Φ1 ←− train classifier on T1 (using X1 view);
Φ2 ←− train classifier on T2 (using X2 view);
TempSet1 = ∅;
TempSet2 = ∅;
for i=1 to |U | do

if (confidence of Φ1.classify(Ui ) ≥ δ ) then
TempSet1 ←− TempSet1 ∪Ui
MarkUi as labeled

end
if (confidence of Φ2.classify(Ui ) ≥ δ ) then

TempSet2 ←− TempSet2 ∪Ui
MarkUi as labeled

end
end
updateU by removing labeled instances;
T1 ←− T1 ∪TempSet2;
T2 ←− T2 ∪TempSet1;

end
Algorithm 2: Pseudocode of Co-Training

The intuition behind Co-Training is that each classifier provides
labeled data to the other classifier, which the later can use for
learning. In contrast to Self-Learning, in Co-Training a classifier
does not learn by its predictions rather by the confident predictions
of the other learner (the first classifier might be non-confident
for those predictions). Thus the two views (classifiers) working
together manage to progress learning. The assumption is that each
view (classifier) is able to learn the target concept given enough
data, that is, each view is sufficient for learning on its own.

5 EXPERIMENTS
5.1 Experimental settings
We conduct the experiments on the Twitter dataset we introduced in
Section 3. As already mentioned, our base classifier is Multinomial
Naive Bayes (MNBs). For the implementation we used Spark’s dis-
tributed environment and its machine learning library MLlib [14].

Features for Self-Learning and Co-Training. For the Self-Learning
approach, we used unigrams (after pre-processing, as described in
Section 3).

For Co-Training, we need two different feature sets. Therefore,
except for the unigrams we also experimented with two different
setups: (i) bigrams (the feature space was extracted from the pre-
processed text, as described in Section 3), (ii) language features: we
extracted part-of-speech tags using [21]. Furthermore, we counted
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words in capital, words with repeated characters, links and men-
tions. We also employed a dictionary which contained sentimental
hashtags [15] and counted the occurrences of positive and negative
hashtags in our tweets, if any (the extraction was done over the
original text of tweets, not the preprocessed ones). We refer to this
feature space as “SpecialF".

Therefore we have two alternative Co-Training setups:
• Co-Training1[unigrams-bigrams]
• Co-Training2[unigrams-SpecialF]

5.2 Performance of batch annotation
5.2.1 Experimental settings. We split our ground through (2.5

million tweets) in 10 folds, 1 of which is used for testing and the
rest, together with unlabeled data predictions, are used for training.
In each iteration of the 10-cross-validation process, the test set is
fixed, the training set however is expanded through the addition of
(unlabeled) tweets that were predicted with high confidence by the
classifier. We report the averaged results of 10-fold cross-validation
in terms of classification accuracy for both Self-Learning and Co-
Training, under different confidence thresholds δ that determines
which of the classifier predictions are incorporated in the training
set.

5.2.2 Self-Learning-based batch annotation. In Figure 3 (top) we
display the accuracy of the Self-Learning approach under different
confidence thresholds δ , in the range [65%-100%] and how, the ac-
curacy changes as the algorithm iterates through the remaining
unlabeled tweets set. We stop at 5 iterations as the algorithm man-
ages to annotate almost all unlabeled tweets within those iterations.
We also show the accuracy in the initial training set, i.e., before
expansion.

The accuracy of Self-Learning drops comparing to the accuracy
of the initial model (trained in the initial labeled set); this is to be
expected as the training set is expanded through predictions. The
drop is more drastic in the first iteration. The reason is that the
1st iteration results in the largest expansion of the training set as
a large number of predicted instances is added to the training set
therefore affecting the extracted models. The expansion depends
on the threshold δ , as higher values are more selective and there-
fore result in smaller expansion. The training set expansion under
different δ thresholds and over the iterations is shown in Figure 3
(bottom). At δ=65%, for example, the expanded training set is about
8,100% larger than the original training set L.

The accuracy drops with δ . The decrease is directly related to
the amount of expansion of the training set. For the low δ values,
the decrease is very small after the first two iterations; the reason
is that the bulk of predictions was already added to the training
set in the first two iterations and therefore the new predictions
additions do not really influence the classifiers. For larger δ values
(90%-95%) though, the accuracy drops faster as the corresponding
training set expands more gradually. The only exception is δ =
100%; the accuracy does not change because the training set is
hardly influenced, as this threshold is very selective and therefore
not many predictions can satisfy it.

The annotated dataset is depicted in Table 2: for different δ we
report the amount of positive, negative and unlabeled tweets, i.e.,
tweets that remained unlabeled after the fifth iteration. As we can

Figure 3: Batch annotation with Self-Learning: accuracy and
labeled set growth under different δ values while the algo-
rithm iterates through the remaining unlabeled set.

Table 2: Batch annotationswith Self-Learning: Annotated re-
sults per class for different confidence values δ .

δ positive predictions negative predictions unlabeled
65% 201,860,127 (88.46%) 26,315,605 (11.53%) 1.13%
70% 200,212,418 (88.49%) 26,033,446 (11.50%) 1.97%
75% 198,296,101 (88.59%) 25,525,791 (11.40%) 3.02%
80% 196,017,401 (88.78%) 24,757,934 (11.21%) 4.34%
85% 193,134,363 (89.06%) 23,720,362 (10.93%) 6.03%
90% 189,271,805 (89.49%) 22,217,878 (10.50%) 8.36%
95% 183,012,328 (90.21%) 19,843,802 (9.78%) 12.10%
100% 650,450 (99.86%) 877 (0.13%) 99.71%

Initial Model 2.211.091 (87,47%) 316.662(12,52%)

see the more selective δ is the more tweets remain unlabeled, with
the extreme case of δ = 100% where almost all tweets (99.71%)re-
mained unlabeled.

We report the amount of positive and negative annotations over
the labeled set and not over the complete dataset, in order to high-
light the class distribution of the predicted labels. In the last row
of the table we also report the class distribution in the original
training set, i.e., before expansion. The majority of the predictions
refers to the positive class, on average 88% of the predictions are
positive and 11% negative. As the confidence threshold increases,
the positive class percentage in the predictions also increases. The
higher percentage of positive class predictions (99,86%) is mani-
fested with a threshold of 100%, implying that the classifier is more
confident about the positive class and therefore the training set is
augmented with more examples of the positive class.

5.2.3 Co-Training-based batch annotation. Figure 4 demonstrates
the accuracy of Co-Training for two confidence levels (δ = 65% and
δ = 95%) and how the accuracy changes as the algorithm iterates
through the remaining unlabeled tweets set. We stopped at four
iterations since after the 3rd iteration the number of unlabeled
tweets that are labeled given the specific δ is very small.

The best performance is achieved when we learn from unigrams
(1st classifier) and bigrams (2nd classifier), i.e., by Co-Training1[unigrams-bigrams].
Hereafter we use this classifier for the comparison and we refer to it
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Figure 4: Batch annotation with Co-Training: accuracy for
δ = 65%, δ = 95% while the algorithm iterates through the
remaining unlabeled set. The accuracy is displayed for each
Co-Training classifier-member.

Table 3: Average accuracy of Co-Training1[unigrams-bigrams]
members under different δ .

δ Unigrams Bigrams
65% 90.65% 90.71%
70% 90.76% 90.66%
75% 90.81% 90.57%
80% 90.82% 90.51%
85% 90.78% 90.41%
90% 90.69% 90.28%
95% 90.50% 90.02%
100% 93.16% 89.03%

Initial Model 93.07% 88.52%

as Co-Training. We show the accuracy of this model under different
thresholds δ in Table 3. We also show the accuracy of the initial
model, i.e., before the training set expansion; the expansion results
in accuracy loss (around 2%). As we increase δ , there is a small
improvement for values in the range 65%-80%, but the performance
slightly drops with higher values in the range 85%-95%. The only
exception (which outperforms the initial model) is δ = 100% which
is not affected that much as the training set is not much expanded
due to the very selective δ . Moreover, as we can see in Table 4,
such an expansion refers mainly to instances of the majority class
(positive).

How the performance varies over the different iterations and
for different thresholds δ and what degree of original training set
expansion is achieved is shown in Figure 5 (top). The picture is
similar to Self-Learning, the first two iterations produce the largest
amount of confident predictions, especially for lower δ values.

The annotated dataset is depicted in Table 4. Similarly to what
we observed for Self-Learning, the more selective δ is the more
tweets remain unlabeled, at δ = 100% almost all tweets (99.44%)
remained unlabeled. Moreover, the amount of unlabeled tweets is
smaller comparing to the Self-Learning case 2. Regarding the class
distribution of the predictions, the positive class is still predicted
more often. However and on the contrary to Self-Learning, the
negative class is better represented in this setting. The explanation

Figure 5: Batch annotation with Co-Training: accuracy and
labeled set growth under different δ values while the algo-
rithm iterates through the remaining unlabeled set.

Table 4: Batch annotation with Co-Training: Annotated re-
sults per class for different confidence values δ .

δ positive predictions negative predictions unlabeled
65% 175,704,567 (76.64%) 53,547,361 (23.35%) 0.66%
70% 178,361,861 (78.26%) 49,544,295 (21.73%) 1.25%
75% 180,646,395 (79.90%) 45,419,649 (20.09%) 2.04%
80% 182,180,488 (81.52%) 41,287,186 (18.47%) 3.17%
85% 182,758,504 (83.04%) 37,300,375 (16.95%) 4.65%
90% 182,707,849 (85.06%) 32,069,200 (14.93%) 6.93%
95% 179,527,239 (87.43%) 25,810,993 (12.56%) 11.02%
100% 1,281,748 (99.60%) 5,116 (0.39%) 99.44%

Initial Model 2.211.091 (87,47%) 316.662(12,52%)

Table 5: Batch: Self-Learning vs Co-Training, average accu-
racy for different δ

δ Self-Learning Co-Training (Unigrams)
65% 91.30% 90.65%
70% 91.11% 90.76%
75% 90.93% 90.81%
80% 90.75% 90.82%
85% 90.55% 90.78%
90% 90.31% 90.69%
95% 90.03% 90.50%
100% 93.38% 93.16%

Initial Model 93.07% 93.07%

lies on the fact that in Co-Training classifiers learn from each other,
rather than only from their predictions.

5.2.4 Self-Learning vs Co-Training. In Table 5 we report the aver-
age (over all iterations) accuracy of Co-Training and Self-Learning
for different δ values (for the Co-Training, we report here on the
performance of the best classifier member, i.e., the one built upon
unigrams).

As we can see, Self-Learning accuracy decreases with δ much
faster than the accuracy of Co-Training; both achieve improvements
at 100%. As we can see from Tables 2, 4, Co-Training produces more
labels than Self-Learning and better class balance.
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Thus far we expand the training set based on the confidence
threshold δ , which however results on an uncontrolled expansion
(in terms of number of instances) of the training set. To evaluate
the effect of the magnitude of dataset expansion, we performed a
controlled experiment where we gradually expand the training set
by adding classifier predictions. In particular, we built an initial
model in the original training set which we then used to annotate
the unlabeled set. From this set we then randomly selected [10%-
100%] predictions/instances which we used for dataset expansion.
The results are depicted in Figure 6. As we can see the accuracy
drops as we further expand the dataset, for all methods. As the ratio
of predicted to labeled instances increases, Co-Training (bigram’s
model) experiences a faster drop in its performance.

We also evaluated the effect of labeled data, by varying the
amount of labeled data and using a 10% sample of the unlabeled set
for predictions (which scores the best performance in Figure 6). The
results are depicted in Figure 7. As we can see, when the number
of labels is small Co-Training performs better than Self-Learning.
With 40% of labels or more Self-Learning is marginally better.

5.3 Performance of stream annotation
5.3.1 Experimental settings. For the stream approach we pro-

cess the data on a monthly basis and we evaluate how the tem-
poral processing affects our methods. Let Li be the labeled data
(ground truth) for month i and let Ui be the corresponding unla-
beled set. Our complete dataset therefore is a sequence of the form:
((L1,U1), (L2,U2), · · · (L12,U12)) covering the whole year 2015.

We evaluate two variants:

• without history: we learn our models (Self-Learning, Co-
Training) on each month i based on the labeled data of that
month Li and also by including confident model predictions
from the corresponding unlabeled dataset Ui . We evaluate
those models with the ground truth for the next month Li+1.
• with history: for a month i , the labeled set upon which we
build our model consists of all labeled instances up to month
i , i.e.,

∑i
i=1 Li . Similarly, for the expansion we consider all

unlabeled instances up to month i , i.e.,
∑i
i=1Ui and we add

to the training set those that were predicted with high confi-
dence by the model.

That is, we differentiate on whether we use historical data from
the stream to build our models or we just use data from the current
timepoint (month).

In the above scenario all labeled data are used for training and
testing, as each month is tested with the labeled data of the next
month. We refer to this as prequential evaluation. We also consider
a holdout evaluation: we split the original dataset into a training
and a testing set. The evaluation procedure is similar to prequential
evaluation, the only difference is that we use for training (testing)
only data from the training (testing, accordingly) set. That is not all
labeled data are used for training/testing, rather a sample of them
according to the initial split.

5.3.2 Self-Learning vs Co-Training. The holdout evaluation is
depicted in Figure 8, the prequential in Figure 9; the performance
is similar for both evaluations. For both Co-Training and Self-
Learning, history improves the performance. For the models with

history, Co-Training is better in the beginning but as the history
grows its performance decreases and Self-Learning results in best
performance. So Co-Training is more effective with less labels;
this is also evident in the non-history models, where we see that
Co-Training outperforms Self-Learning for almost all months.

From the above experiment it is clear that history improves
performance. To evaluate the effect of history’s length, we run
the same experiment with a sliding window of three months; for
example, we used the labeled instances of months [1-3] for building
an initial model, we expand the training set including predictions for
unlabeled instances in months [1-3] and we use the derived model
to score the next month, month 4. The results are depicted in Figure
10. As we can see, Self-Learning is better for almost all months.
Again, we denote that Co-Training works better with limited labels.

Comparing to the full-history case, in the sliding window ap-
proach we have a small decrease in the performance (less than 2.0%)
but on the other hand much more light models and therefore better
efficiency (time, memory). The amount of data for each approach is
depicted in Figure 11: labeled set is the original labeled data, train-
ing set is the expanded dataset of labeled instances and confident
classifier predictions that was used for training.

As we can see, when we consider historical data, the amount
of labeled and training instances is increasing over time, whereas
for the non-history version these amounts are not changing that
much over time. A similar behavior occurs for the sliding window
version.

The class distribution of the predictions is shown in Figure 12,
for all different window models: without history, with full history
and with a sliding history of 3 months. For all window models,
most of the predictions for both Co-Training and Self-Learning
refer to the positive class. Co-Training produces on average less
positive instances than Self-Learning. This is evident in the with-
history and sliding-window approach: Self-Learning produces more
positive predictions than Co-Training. This is due to the fact that
Self-Learning is biased towards what it knows best (the positive
class in this case). On the contrary, Co-Training is less biased as
the two classifiers learn by each other.

To conclude the stream approach, Co-Training achieves the best
performance with limited labels; as the amount of labeled data
increases, Self-Learning surpasses its performance. Self-Learning is
more biased to its own predictions comparing to Co-Training and
therefore results in more positive predictions.

5.4 Performance with Duplicated Text
(retweets)

Thus far, we reported on English tweetswithout redundancy (retweets).
To evaluate the impact of redundancy on the aforementioned meth-
ods we repeat all our experiments with retweets. Due to lack of
space, we report here on some of the results.

In Table 6, same setup as Table 5, we report on the performance
of the redundant dataset. As we can see, the accuracy values are
lower comparing to the non-retweets case. Moreover, the drop in
the performance as δ increases is higher.

The effect of redundancy on the class imbalance of the predicted
labels is shown in Table 7, where we display the negative:positive
class ratio for different δ values, for Self-Learning and Co-Training
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Figure 6: Batch: Effect of predicted instances used for
dataset expansion Figure 7: Batch: Effect of labeled set

Figure 8: Stream: Holdout

Table 6: Batch: Self-Learning vs Co-Training, average accu-
racy for different δ using Retweets

δ Self-Learning Co-Training (Unigrams)
65% 87.09% 87.24%
70% 86.73% 87.09%
75% 86.42% 86.91%
80% 86.09% 86.68%
85% 85.75% 86.39%
90% 85.31% 86.04%
95% 84.71% 85.43%
100% 92.79% 91.25%

Initial Model 92.92% 92.92%

for the dataset with retweets and the dataset without retweets. It is
clear that the class imbalance is dramatically affected by duplicates.
For both methods, the predictions are more balanced for the dataset
with retweets. A possible explanation is that by eliminating the

Figure 9: Stream: Prequential

Table 7: Class Ratio (negative:positive) of the predictions for
different datasets and methods

δ Self-Learning
noRts

Co-Training
noRts

Self-Learning
with Rts

Co-Training
with Rts

65% 1:8 1:4 1:2 1:2
70% 1:8 1:4 1:2 1:3
75% 1:8 1:4 1:2 1:2
80% 1:8 1:4 1:2 1:2
85% 1:8 1:5 1:2 1:2
90% 1:9 1:6 1:2 1:2
95% 1:9 1:7 1:2 1:2
100% 1:741 1:248 1:2 1:14

retweets, the negative class which was already a minority (75%-25%
in the dataset with retweets) became even more underrepresented
(87%-13% in the dataset without retweets). Since, we didn’t explicitly
handle the imbalance in the dataset, it manifested in the predictions
of the MNB classifier.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1830



Figure 10: Stream: Sliding (3 months)

Figure 11: Stream: Prequential evaluation - cardinality of la-
beled, training, testing sets.

6 CONCLUSIONS AND FUTUREWORK
Wepresented how to annotate large scale collectionswith sentiment
labels. Our case study is TSentiment15, 228 million tweets dataset
with no retweets and 275 million tweets with retweets, for the
whole year 2015 which we annotated using Self-Learning and Co-
Training, using batch- and stream- processing. The motivation for
this work is the lack of large scale labeled datasets that span large
periods of time, especially important for stream mining research.

Figure 12: Stream: Class distribution of the annotated tweets
over time

Despite the annotated datasets (with andwithout retweets) which
we make available to the community, our analysis resulted in inter-
esting insights:
Co-Training performs better than Self-Learning with limited labels.
Although both Self-Learning and Co-Training benefit from more
labeled data, after a certain point (40% labeled data, c.f., Figure 7)
Self-Learning improves faster than Co-Training. Both approaches
result in more positive predictions (c.f., Tables 2 and 4), thus fa-
voring the majority class. Self-Learning moreover propagates the
original class imbalance to the successive iterations (c.f., Table 2).
This is not the case for Co-Training (c.f., Table 4). For streaming,
(full) history helps with the performance. A sliding window-based
history performs almost equally well, while employing less data,
thus offering a good trade-off. The batch approach is better than
streaming in terms of accuracy, however the later is much more
efficient.

In this work, we didn’t investigate the nature of the predictions;
we plan to analyze the derived labels through crowd-sourcing to
gain insights on the errors and success of the different methods.
We will also investigate the disagreement between Emoticons- and
SentiWordNet-based labelings (c.f., Table 1); SentiWordNet might
be outdated, sentiment labels though might be noisy.
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Moreover, we plan to investigate other ways of expanding the
labeled set, like by constructing antonymous tweets of the opposite
class from existing labeled tweets [24] or by grouping similar tweets
into clusters and labeling the clusters [17]. We also plan to further
investigate the issue of bias propagation in Self-Learning. As we
saw, the original class imbalance is becoming more severe as the
classifier learns by its predictions.
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