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ABSTRACT
Smartwatch has become one of the most popular wearable
computers on the market. We conduct an IRB-approved
measurement study involving 27 Android smartwatch users. Using
a 106-day dataset collected from our participants, we perform in-
depth characterization of three key aspects of smartwatch usage “in
the wild”: usage patterns, energy consumption, and network traffic.
Based on our findings, we identify key aspects of the smartwatch
ecosystem that can be further improved, propose recommendations,
and point out future research directions.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile
devices;

1. INTRODUCTION
Wearable devices are weaving computing into our daily lives.

Among diverse wearables, smartwatches are probably one of the
most popular gadgets. According to a recent CNET article [10],
smartwatch sales are expected to jump from 30 million in 2015 to
50 million in 2016 and then to 67 million in 2017. Smartwatches
offer great convenience to end users through a wide range of
features such as receiving push notifications, issuing voice control,
monitoring fitness, and interacting with 3rd-party apps. Despite
their popularity, smartwatches are still relatively new to the
commercial mobile device family, and the research community
lacks a thorough understanding of the smartwatch ecosystem.

This paper bridges the above gap by conducting an IRB-
approved crowd-sourced measurement study of smartwatches
involving 27 users. We first demonstrate it is feasible to build
a self-contained and comprehensive measurement data collector
on today’s off-the-shelf Android smartwatches. The collector
transparently collects a wide range of usage data, network traffic,
and system events in realistic usage scenarios, with very low
runtime and energy overhead incurred (§3). We then provide each
of the 27 users with a state-of-the-art smartwatch instrumented with
the data collector. Using a 106-day dataset collected from our
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participants, we conduct an in-depth characterization of three key
aspects of smartwatch usage “in the wild”: usage patterns, energy
consumption, and network traffic characteristics. This is to our
knowledge the most comprehensive and in-depth crowd-sourced
study of smartwatches. Our key measurement results consist of
the following.

• We characterize the smartwatch usage patterns. An Android
watch can stay in one of the four states with diverse power
characteristics: fully awake, dozing (with dimmed watch face
display and restricted system activity), sleeping (screen further
turned off), and charging. We find that smartwatch’s wake-up
period accounts for only 2% of the overall usage period among
the four states. The wake-up sessions are not only short, but
also frequent (72 times per day on average). We then analyze
their triggering factors, which help us identify key usage scenarios
of a watch: short “flick and look” sessions (the most common
interaction type that the OS needs to be optimized for), push
notifications, longer interaction sessions, and unintended wake-up
(§4.1).

• A key usage scenario of smartwatches is to receive push
notifications. In our dataset, more than 200 apps send push
notifications to the watch through either the OS-provided Android
Wear service or custom data channels between phone-side and
watch-side apps. Push notifications are dominated by instant
messaging and emails. Despite a potential lack of long-term
predictability, push notifications’ arrival exhibits a strong bursty
pattern, with a median inter-arrival time of only 49 seconds. Also
there is room for the OS to improve push notification delivery, by
strategically determining whether to push and how to push (§4.2).

• We also investigate how smartwatch applications (apps) behave.
We find smartwatch app execution is dominated by short but
frequent background services, whose total duration is more than
50 times longer than that of full-screen activities, which users
seldom launch due to a watch’s small form factor making full-
fledged interaction challenging. The services, together with the
OS infrastructures (e.g., the push notification and card management
subsystems) should therefore be the optimization focus for OS and
app developers (§4.3).

• We derive comprehensive and accurate power models for two
popular Android smartwatches (§5.1). We then apply the power
models to the user study data to quantify the energy consumption
of smartwatches in the wild. We made several interesting
observations. More than half of the smartwatch energy is consumed
by the dozing state (56%) due to its long duration. Meanwhile, the
awake state also plays an important role in energy consumption
(27%) despite its very short usage duration (2%). Due to the
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§ Topic Key Results
§4.1 Device states Dozing dominates the usage (50.6%); wake-up accounts for 2% of usage period; wake-up sessions are short

but frequent (72 per day on average) with various root causes such as “flick and look” and push notifications.
§4.2 Push notifications Push notifications are used by 200+ apps, dominated by IM/emails, and exhibiting bursty arrival patterns.
§4.3 Smartwatch apps A wide spectrum of watch apps are observed; their execution is dominated by short background services.
§5.1 Power models Accurate and comprehensive power models for two popular watches. The models have error rates <6%.
§5.2 Energy utilization Dozing and wake-up account for 56% and 27% of overall energy respectively. At component level, CPU

(29%) and display (30%) dominate the energy consumption. Network consumes only 3.4% of the energy.
§5.3 Energy optimization “What-if” analysis over real data for improving energy efficiency; impact of state machine on battery drain.
§6 Network traffic Watches are paired with phones during 84% of the daytime; most flows are small, short, slow, and bursty.

Table 1: Key results and findings of our study.

big power consumption gap between awake and dozing/sleeping,
a small increase of the wake-up duration will be “amplified” from
the battery draining perspective, thus shortening the standby time of
the watch. The top-2 energy-hungry components on smartwatches
are the same as those on smartphones: CPU and display. Despite
smartwatches’ small screen sizes, display still contributes to 30.2%
of the overall energy. CPU accounts for 29.3% of the overall
smartwatch energy. Network interfaces, however, consume a
very small fraction of energy on smartwatches without a cellular
interface (§5.2).

• We investigate how to make smartwatches more energy-efficient
using combined approaches of trace-driven “what-if” analysis
and controlled in-lab experiments. Our results suggest that
the energy efficiency can be further improved through a wide
range of optimization strategies such as optimizing the display,
bundling delay-tolerant push notifications, and dynamically
configuring CPU’s online cores and frequencies. Also the watch’s
state machine (Figure 1) and its associated timers affect the
energy consumption and need to be strategically determined, as
demonstrated by our “what-if” analysis (§5.3).

• We conduct a first measurement study of smartwatch network
traffic. We find that watches are paired with phones during 84%
of the day time, making Bluetooth traffic account for 91% of
the overall smartwatch traffic. Smartwatch traffic is dominated
by downlink traffic (from phone/Internet to the watch). The vast
majority of network flows are small, short, slow, and bursty,
with the flow size and rate being very well correlated. Our
characterizations provide hints and knowledge for improving the
network protocol stack for future wearable devices (§6).

Overall, our findings suggest that in many aspects (user
behaviors, app execution patterns, energy consumption, network
traffic, etc.), smartwatches exhibit characteristics that are different
from those of smartphones, which have been extensively studied in
the literature. Our quantitative measurement results complement
the qualitative smartwatch app design guidelines published by
major vendors [4, 11, 8]. Our key findings are summarized in
Table 1. To summarize, our contributions consist of the following.

• We develop a self-contained and lightweight measurement data
collection system for Android Wear smartwatches, and conduct a
real deployment on 27 users.

• We derive accurate and comprehensive power models for two
commodity Android Wear watches.

• We perform systematic measurements of smartwatches’ usage
patterns, energy consumption profiles, and network traffic charac-
teristics using a 106-day dataset collected from 27 users. Based on
our findings, we identify key aspects in the smartwatch ecosystems
that can be further improved, and propose recommendations and
future research directions.

2. RELATED WORK
Understanding Mobile Devices “in the Wild”. Researchers

have carried out numerous crowd-sourced measurements of
smartphones [28, 20, 52, 7, 46, 49, 39, 14]. While they partially
motivate our user trial, much fewer efforts have been made for
wearable devices. Among them, Gouveia et al. studied how users
engage with activity trackers [22]. Lazar et al. interviewed 17
participants to study the incentives of using and abandoning smart
devices [29]. Lyons studied usage practices of traditional dumb
watches by conducting a user survey [34]. Min et al. characterized
smartwatch battery use based on online survey and a user study
involving 17 users [37]. They studied users’ satisfaction toward
smartwatch life, charging behaviors, and interaction patterns. In
a recent extended abstract [44], Poyraz et al. also described their
smartwatch user study involving 32 users for 70 days. Using the
collected data, they analyzed the watches’ power consumption and
characterized user activities. While the detailed data collection and
measurement methodologies were not fully documented, many of
their findings such as the active state’s high energy contribution
compared to its short usage duration are qualitatively similar to
ours. Compared to [37] and [44], we instead investigate a
much wider spectrum of characteristics such as push notification,
app usage, and network traffic by leveraging a much richer set of
data items collected in Table 2. We also make our power models
publicly available.

Wearable System, Energy, and Applications. LiKamWa et
al. characterized the energy consumption of Google Glass [30].
Huang et al. proposed a fast storage system for wearables
based on battery-backed RAM and offloading [25]. Santagati et
al. designed an ultrasonic networking framework for wearable
medical devices [50]. Miao et al. investigated the implications
of smartwatches’ circular display on resource usage [36]. Ham
et al. proposed a novel display energy conservation scheme for
wearables [24]. There also exists a large body of work from the
mobile computing, sensing, and HCI community. These studies
focus on novel wearable applications [51, 40, 35], wearable user
interface design [15, 43], and wearable security [53, 33]. In
contrast, our measurement focuses on characterizing wearable user
behavior, application usage, energy consumption, and network
traffic – all in the wild.

Characterizing Android Wear OS. Recently, Liu et al.
analyzed the execution of Android Wear OS and presented a
series of inefficiencies and OS implications [32, 31]. Compared
to its in-lab, controlled experiments, this paper contributes the
understanding of real-world wearable usage as well as the entailed
design implications – backed by more solid evidence. Furthermore,
our study characterizes key system aspects that were missing in the
prior work, most notably power modeling and network behaviors.
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Collected Data Item Method∗ Source
Wi-Fi packet trace E tcpdump
Bluetooth packet trace E BT Snoop Logger
User input events E /dev/input/
Voice control input event E Android Wear log
Device wakeup/doze/sleep E Android Wear log
Device charging E Android Wear API
Card post E Android Wear API
App activity/service state E atrace
Installed apps list P (1 hour) /data/app/
Screenshot P (30 sec) screencap
CPU utilization P (1 sec) /proc/stat
Screen brightness level P (5 sec) Android Wear API
∗E = event triggered callback; P (interval) = periodical polling

Table 2: Types of data collected in the user study.

3. THE SMARTWATCH USER TRIAL
We launched an IRB-approved user study at Indiana University

Bloomington. We made the study open to students, faculty, and
staff members on our campus, and recruited 27 participants from
more than 200 applicants. In our selection process, we tried to
maximize the participants’ diversity in terms of the occupation
(student vs. non-student), gender, age, etc. An eligible participant
must have an Android smartphone that can be paired with the
watch. The selected voluntary participants consisted of 18 students
(6 Ph.D. and 12 master students), 4 IU faculty members, and 5
staff members. 7 out of the 27 participants were female. Each user
was provided with an LG Urbane watch, a high-end smartwatch
as of early 2016 (cost ∼$250 USD). It is equipped with a quad-
core Cortex A7 processor, 4GB storage, 512MB memory, Wi-Fi,
Bluetooth, and various sensors. The watch runs Android Wear OS
1.3, which is based on Android 5.1.1. Android Wear is a version of
Android OS tailored to small-screen wearable devices. Compared
to an Android smartphone app, an Android Wear app has a different
UI, but its developers still largely follow Android’s programming
paradigm. The wearable apps are written in Java and run on top of
the managed Android Runtime [32]. Note that although our data is
collected from Android Wear 1.3, when presenting the results, we
do consider relevant new features to be added to Android Wear 2.0,
the next version Android Wear (in its development preview stage at
the time when this paper was written).

We face two challenges in deploying the study. The first
challenge is, despite being very familiar with smartphones and
conventional watches, many users had no or limited experience of
using smartwatches. Ideally we do not want to collect data from
a user who is still learning to use her smartwatch. We took two
measures to address this. First, all users were required to attend
an orientation session where we walked through all features of the
watch and demonstrated popular smartwatch apps. Second, we
started the actual data collection for this study at least two months
after giving the watches to the users. This gives more than enough
time for users to learn the watch usage and to develop their usage
habits.

The second challenge is to build for the watches a data collector
that is reliable, lightweight, and energy-efficient. Despite several
mobile data collection systems having been developed in the
literature [28, 20, 52, 46, 14], none of them was designed for
smartwatches and was able to collect smartwatch-specific data such
as card posts and push notifications. We therefore developed our
own, which collects a wide range of data listed in Table 2 in the
background. The data collector was written in Java and native
C/C++ with about 6,500 LoC. Note the collector only runs at
the watch side (the watch is rooted) and does not require any
change on users’ smartphones (which are usually not rooted).

The collected data is automatically uploaded to our secure server
over Wi-Fi at night when the watch is being charged. The data
collection and upload processes are completely transparent to users.
As listed in Table 2, most data items are collected using event-
triggered callbacks, including network traffic (both packet header
and payload), user input, card post1, device status, application
states, etc. In addition, the data collector performs periodic polling
for a limited amount of other information, with the polling intervals
being carefully chosen to balance between the runtime overhead
and data collection frequency.

The data collector incurs very low runtime and energy overhead.
We have measured that in common usage scenarios, its CPU and
energy overhead (measured using Monsoon power monitor [5])
are less than 3%. The low overhead can be explained by several
reasons. Although the collector captures many types of data, most
types have low data rate and low arrival frequency. In particular, as
to be measured in §6, the data rate of the network traffic is very low.
We also strategically perform various system-level optimizations
and polling interval tuning to reduce the collector’s resource and
computational footprint. It is also worth mentioning that compared
to regular Android, the Android Wear OS enforces more aggressive
sleeping policy for battery saving. During most of the time,
the watch stays in “dozing” or “sleeping” mode where network
and CPU-intensive services are suspended (see §4 for details).
Therefore, our data collector is largely paused by the OS when the
watch is dozing/sleeping so no periodical data is collected during
that time. This brings little impact on the completeness of our data,
because most data items collected periodically in Table 2 largely
remain unchanged when the watch is dozing/sleeping. Meanwhile,
the aggressive sleeping policy ensures the data collector incurs
almost zero overhead during most of the time. Also the CPU
periodically wakes up during the dozing/sleeping states and its
utilization will be captured by the collector during that time.

We launched incremental deployment of the user study in spring
2016. Due to the incremental nature of our deployment, different
users had different learning periods (at least two months) before we
started the actual data collection. In this paper we analyze a 106-
day dataset collected from 8/17/2016 to 11/30/2016. About 37 GB
of data was collected during this period.

4. SMARTWATCH USAGE PATTERNS
In this section, we leverage our dataset to study how real users

interact with the watch. We first provide some background of
different states of an Android smartwatch. As shown in Figure 1,
a watch can be in one of four states: dozing, sleeping, awake, and
charging. During most of the time when a user wears a watch,
the watch stays in the dozing state where user applications are
suspended [6]. The user only sees a simplified watch face (e.g.,
without the second hand) with low brightness, thus incurring very
low power consumption (§5). Periodically, the watch exits dozing
for a very short period of time (called “maintenance window”) to let
apps complete their deferred activities. The transition from awake
to dozing is usually through an inactivity timer of a fixed duration
(measured to be 5 seconds by default). The transition from dozing
to awake is triggered by either user interaction or other external
events (e.g., the reception of a push notification). Also, if the
watch is not worn (e.g., left on a desk), it will enter from dozing
to sleeping after a long timeout (measured to be about 35 minutes).
In the sleeping mode, the display is further turned off. Note the
watch does not sleep when it is worn unless the battery level is

1A card is a UI element in Android Wear. It shows a piece of
information (e.g., an incoming text message) to the user.
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Figure 1: Device states for an Android smartwatch.
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Figure 2: Distributions of the total daily duration of the four states
that a watch stays at.

critically low. The transition to (from) the charging state is done by
attaching the watch to (detaching it from) the charging dock.

4.1 Watch States and Basic Usage Patterns
We begin with understanding how long a watch stays at

each state depicted in Figure 1. We calculate the daily
awake/dozing/sleeping/charging duration across 24 hours starting
from every midnight. As shown in Figure 2, the 25-th, 50-th,
and 75-th percentiles of daily wake-up duration are 5.1, 11.6, and
19.6 minutes, respectively. In sharp contrast, the daily dozing
duration tends to be much longer, with the 25-th, 50-th, and 75-
th percentiles being 89, 460, and 711 minutes, respectively. The
daily sleeping and charging time are also long. Table 3 shows
the overall time breakdown for the four states. For half of the
time, the watch is dozing while the wake-up time only accounts
for 2% of the overall usage period. Despite this, the awake state
is still very important due to two reasons. First, it is the key state
where the user is actively interacting with the watch so providing
good user experience is critical. Second, as shown in Table 3, the
awake state contributes 27.2% of the overall energy consumption
(to be characterized in §5), making its energy optimization also
important.

Characteristics of Wake-up Sessions. Figure 3 plots the
distribution of wake-up session duration across all users. A wake-
up session starts when the watch wakes up, and ends when it
dozes. As shown, the vast majority of wake-up sessions are
short. The 5-second duration corresponds to the default inactivity
timer for dimming the screen. We find that the wake-up sessions
are not only short, but also frequent: the 25-th, 50-th, and 75-
th percentiles of the number of wake-up sessions per user per
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Figure 3: Wake-up session length distribution.

State Awake Dozing Sleeping Charging
Duration 2.0% 50.6% 24.7% 22.8%
Energy 27.2% 56.0% 16.8% N/A

Table 3: Overall usage duration and energy breakdown. The energy
breakdown will be discussed in §5.

day are 34, 72, and 120, respectively. As to be studied shortly,
wake-ups are triggered by different reasons and not all of them
are noticed by the user. Note that prior measurements indicate
smartphone interaction sessions are much longer: tens of seconds
reported by [20] and even longer as measured recently by [48].
Such a striking difference between watches and phones can be
explained not only by smartwatches’ wearable nature enabling easy
and ubiquitous access for users, but also by their tight coupling with
smartphones that may frequently push notifications (chat, email,
etc.) to watches. A recent study involving 17 smartwatch users also
found that people interact with their watches very frequently but
for a short time [37]. Despite their qualitatively similar findings,
their reported numbers are a bit different from ours: in [37], users
interact for an average of 20.6 minutes per day and the average
session lasts for 13.0 seconds. Several factors such as users, watch
type, and timeout settings may contribute to such quantitative
differences.

Wake-up Root Cause Analysis. We next investigate which
factors trigger a watch’s wake-up by correlating each wake-up
event w with an external event e, which can be either a user input
event (e.g., gesture, screen touch, side-button press) or notification
event. Doing so can help identify the watch’s key usage scenarios.
Let T (x) be the timestamp when event x occurs. If T (w) − δ ≤
T (e) ≤ T (w), then we assume w is triggered by e. Based
on controlled experiments, we set the detection window size δ to
1000ms while changing it to 500ms and 750ms yields qualitatively
similar results. As shown in Table 4, 26.3% of wake-up sessions
are triggered at the sleeping state when the watch is not worn. Such
wake-ups are likely not seen by the user. For the remaining 73.7%
of the sessions triggered at the dozing state (recall that at the dozing
state, the watch is worn except during the 35-minute timeout),
we classify all wake-up sessions into three categories. Category
(a) consists of sessions that are triggered by user input and have
the same session length as the timeout period (we use 6s instead
of 5s to tolerate the duration of the user input itself). In other
words, the user takes no further action after waking up the watch.
Accounting for 43.5% of all sessions, this category corresponds to
the watch’s major usage scenario. We find such short sessions are
mostly triggered by the “flick and look” action: 80.3% of sessions
within Category (a) (35% of all sessions) are triggered by wrist
gesture (as opposed to other user input types): when the user turns
the watch toward herself to look at the watch face, the watch will
wake up. It is likely that these short sessions are for a simple usage
scenario: users take a quick glance at the watch to see the time, to
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Type %
Median

Len (sec)
Triggered when sleeping 26.3% 5.0
Triggered when dozing 73.7%
.... (a) by user interaction, duration < 6s .... 43.5% 5.0
....... by wrist gesture ........ 35.0% 5.0
....... by other user input types ........ 8.5% 5.0
.... (b) by user interaction, duration ≥ 6s .... 19.7% 11.9
.... (c) by notification .... 10.5% 6.1

Table 4: Breakdown of wake-up sessions.
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Figure 4: User interaction level during different hours.

check for notifications that she might have missed, or to see other
information (e.g., weather, temperature, or fitness records) that is
directly displayed on the watch face (Figure 14). Also, although
difficult to quantify, based on users’ feedback, some of such “flick
and look” sessions are unintended i.e., due to the inaccuracy of the
gesture sensing algorithm.

Category (b) in Table 4 consists of user-triggered sessions that
are longer than the timeout period. Typical examples include
browsing cards (recall a card is an Android Wear UI element),
voice control, and interacting with smartwatch apps, which will
be characterized in §4.3. Category (c) are those triggered by
notifications. Upon the reception of a notification, the watch wakes
up and pops up a card (Figure 9 left). We analyze push notifications
in §4.2.

Diurnal Usage Pattern. We also investigate when our
participants use the watch. The methodology is as follows: for
each user, we discretize the timeline using fixed-length slots (e.g.,
10 seconds), and mark a slot if at least one user input event
(touch, gesture, or voice) occurs within that slot. Figure 4 plots
the user interaction level in terms of the normalized number of
marked slots during different hours, across all users. As shown
in Figure 4, despite the apparent diurnal pattern, there still exist
some differences from smartphones’ diurnal usage pattern. During
daytime (9am to 9pm), the smartwatch usage is more uniformly
distributed compared to that of smartphones [54, 20]. This is again
explained by smartwatches’ wearable and ubiquitous nature, as
well as their function as an “on-wrist extension” of the phone.

4.2 Push Notification
This section characterizes push notification, an important

application on smartwatches. We begin with explaining how an
Android watch communicates with its paired phone. There are
two ways as explained in Figure 5. For a smartphone app that
does not have its watch version, when the app posts a notification2,
the phone-side Android Wear service will automatically and

2In Android, a notification is a message that can be displayed
outside of an app’s normal UI. It first appears as an icon in the

Category %
Instant messenging 43.3%
Email 25.6%
Google Search box 15.0%
Social media 2.5%
Text message 3.9%
Other 9.8%

Table 5: Application breakdown of push notifications.

Notification
Manager.

notify()

Phone-side Android
Wear Service

Watch-side Android
Wear Service

User App

Phone-side
User App

Wearable.MessageApi.
sendMessage()

Post a card

Other App-specific Action

Post a card

Android
Notification
Manager

Watch-side
User App

1

2
3

Figure 5: Communication between phone and watch.

transparently push this notification to the watch-side service. Since
at the time when this paper was written, most smartphone apps do
not have their watch versions, this (the red arrows in Figure 5)
is a common way for allowing one-way communication from the
phone to its paired watch. If a phone app has its watch version,
they can leverage Android Wear APIs [9] to perform two-way
communication by exchanging arbitrary data, as illustrated by the
green arrows. When the watch-side Android Wear service receives
a notification, it will post a card and wake up the watch (� in
Figure 5). The watch-side app may either post a card (�) or take
other app-specific actions (�). Note the above scheme works over
both BT and Wi-Fi. When using Wi-Fi, the watch and phone
communicate through Google’s servers.

We define push notifications as those that trigger � and � in
Figure 5. A challenge we face is that they cannot be directly
collected so we develop a robust method of extracting them from
our data. Recall in Table 2 that we capture all card posts. However,
not all cards correspond to push notifications. To capture �, we
correlate each card posted by the Android Wear service with the
network traffic by searching for a specific signature in the traffic
that we reverse engineered from controlled experiments. To capture
�, we also correlate each card posted by a watch-side app with
network traffic. This may incur some false positives but we expect
the error rate to be very low.

We now describe the results. Table 5 breaks down all push
notifications into six categories. As shown, notifications are
dominated by instant messaging (IM) and email. We identify
more than 10 IM apps and 3 email client apps in the dataset. In
particular, WhatsApp, a popular IM app, accounts for 23.8% of
all notifications. Also, the Google Quick Search Box app pushes
various notifications such as weather, traffic, news, and stock to
the watch. Other apps performing pushes include social media,
text message, phone calls, calendar, news, maps, etc. Overall, we
observe that 230 apps create notifications that are pushed to the
watch. Among them, most apps (196 out of 230) do not have a
watch-side version (i.e., belong to �).

phone’s notification area. The user can find its details in the
notification drawer [1].
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Figure 6: The number of a user’s daily received notifications.

The solid curve in Figure 6 plots the distribution of the number
of notifications received daily by each user. The number of
received notifications are diverse with the 25-th, 50-th, and 75-th
percentiles being 14, 41, and 91, respectively. We observe high
variation both across users and for the same user across different
days. To illustrate this, we compute for each user the average
number (μ) and standard deviation (σ) of notifications across days.
Across users, μ ranges from 10 to 256, and σ spans between
13 and 342. This implies the potential challenge for predicting
notifications in the long-term. Despite this, we do observe that
the arrival of notifications exhibits very strong bursty pattern: the
median inter-arrival time of notifications across all users is only
49 seconds, implying potentially good short-term predictability
for notifications. This can be explained by the bursty pattern of
instant messages that dominate the push notifications. We further
observe that if a posted notification card is not removed, it may
be constantly updated by the phone-side app. A representative
example is turn-by-turn navigation in Google Maps. If such
updates are also included in notification counting, the total number
will increase by 2.4x, as plotted in the dashed curve in Figure 6.

We have also identified two possible improvements for
notifications. First, notifications are often delay-tolerant. Delaying
their push and piggybacking them with other notifications or watch
wake-up events can lead to significant energy savings, as will be
demonstrated in our controlled experiments in §5.3. Second, we
find that most (if not all) phone apps today employ very simple
logic to determine whether or not to push a notification. For
example, in its vehicular navigation mode, Google Maps keeps
sending turn-by-turn updates to the watch – this is unnecessary
and may distract the driver if the phone is already mounted to the
dashboard for navigation. In another example, WhatsApp performs
push if and only if the phone-side chat window is not in the
foreground. This however may cause both false positives (i.e., the
user is interacting with the phone but the message is still pushed to
watch3) and false negatives (e.g., the user leaves the phone on her
desk with the chat window open but the message is not pushed
to watch). Ideally, in most use cases, an app should perform
pushes only when the user is not interacting with the phone. One
possible improvement is thus to introduce an API that intelligently
determines whether to push or not to push by leveraging diverse
types of information sources such as the user interaction level, the
application type, and even the physical distance between the watch
and the phone.

3The phone will always show the message in its notification area
so if the user is looking at the phone, usually there is no need to
push.
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Figure 7: The number of installed vs. used apps per user, across all
users.

Apk Name Description
com.google.android.keep Note taking
com.tencent.mm WeChat messenger
com.google.android.deskclock Clock
com.google.android.apps.fitness Fitness tracker
com.google.android.apps.maps Map
com.callpod.android_apps.keeper Passwd manager
com.appfour.wearmessages Messenger
com.appfour.wearmail Email

Table 6: A list of popular apps in our dataset (based on their overall
execution duration).

4.3 Application Usage
Compared to a traditional watch, a unique feature of

a smartwatch is its capability of running diverse 3rd-party
applications (“apps”). We first note that as for now, smartwatch
apps are still much less popular than smartphone apps: in 10/2016,
we crawled the top-500 free and paid apps on Google Play Store,
and found only 2.8% of free apps and 3.4% of paid apps have their
watch versions. Despite this, a trend we believe is that more and
more apps will be shipped with their wearable stubs giving the
increasing maturity of the wearable ecosystem [10].

The solid line in Figure 7 plots the distribution of installed apps
across users (as of 11/14/2016). An average user has 18 apps
installed on her watch. We include built-in apps such as Google
Maps but exclude system processes that users cannot interact with.
Within the installed apps, how many of them are actually used?
The dashed line in Figure 7 plots the distributions of the apps that
have been used at least twice. We find that users do use diverse
apps on their watches: Table 6 lists the most popular used apps in
our dataset; they include messengers, email clients, maps, activity
trackers, and note taking software.

Figure 7 also reveals that many installed apps are almost never
used on watch. This is because a smartwatch app usually has
its smartphone counterpart, and both versions (phone-side and
watch-side) are bundled together in a single installation package.
When the phone version is installed, the watch version will be
automatically pushed to and installed on the watch. As a result,
a user may only use the app on the phone despite its watch
version being automatically installed. We noticed that this issue
is addressed in the Developer Preview version of Android Wear 2.0
where the user can choose to only install either the phone-side or
the watch-side app [3].

Activity and Service are two important components of Android
apps. An activity represents a visible user interface, whereas a
service runs in the background without a user interface. Almost
all smartphone apps contain one or more activities, and some may
run services. Figure 8 plots ranked total running time of activities
and services for each watch app in our dataset. We make two
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duration.

Duration d ≤ 1s 1 < d ≤ 10s 10 < d ≤ 60s d > 60s
% Services 71.8% 12.7% 5.3% 10.1%

Table 7: Distribution of services’ duration.

observations. First, despite a large number of lightly used apps,
a small fraction of apps (e.g., those listed in Table 6) dominate
the usage, a phenomenon also observed for smartphone apps [54].
Second, a more unexpected finding is that the background service
execution is 55.8 times longer that of full-screen activities (we
filtered out core OS services and the service of our data collector).
One may explain this using the common sense that services may
continuously run in the background for a long time, as is often the
case for smartphone apps. This is however not always the case on
Android watches. Table 7 shows the distribution of the lifetime of
services. The vast majority of them are very short (less than 1s).

Overall, we find that short but frequent background service
executions dominate the Android watch app usage. Based on our
controlled experiments, we find many short services are caused
by push notification or short message exchanges between watch
and phone. We use WeChat, a popular instant messenger app, as
an example. When the phone pushes a notification containing a
new message to the watch, the watch will be woken up, and a
notification card will be displayed (Figure 9 left, following � in
Figure 5). There are several possible actions that a user can then
take: (a) take a glance of the message and ignore it; (b) open the
WeChat app on her phone to reply to the message; and (c) directly
reply to the message on her watch by swiping the card and tapping
“reply”; in that case the watch version of the WeChat app (with an
activity) will be launched. As indicated by the short notification-
triggered wake-up session duration shown in Table 4, users seldom
take Action (c), very likely due to the watch’s small form factor
making full-fledged user interaction difficult. As shown in the right
side of Figure 9, The watch version of WeChat only allows replying
to a message by voice, sticker icons, or pre-defined text. On the
other hand, Action (a) and (b) only involve short-lived services. For
each notification of WeChat, we observe three ephemeral services
invoked by WeChat and some other short-lived services started by
the system processes managing the card and push notification. We
observe similar patterns for other popular apps.

5. ENERGY CONSUMPTION
Smartwatches have very limited battery capacity. Our LG

Urbane watch has a battery of only 410 mAh, much smaller than
that of a typical smartphone battery (2K to 3K mAh). Charging a
watch requires special charging dock making it difficult for users
to charge the watches during the day. Understanding watches’

Figure 9: Left: a WeChat card showing at the bottom of the screen.
Right: reply to a message using the WeChat app on watch.

battery usage can greatly facilitate the development of new power
management solutions.

5.1 Smartwatch Power Models
A prerequisite for fine-grained energy analysis is a power model,

which is a function E( �A) that maps �A, system activities and
events directly measurable on the device, to their incurred energy
and power consumption. In the literature, numerous studies have
derived energy models for smartphones [55, 47, 26, 42, 41, 38,
16]. Nevertheless, to our knowledge, no power model is publicly
available for smartwatches whose energy consumption profiles are
quite different. To fill this gap, we empirically derive accurate
power models for today’s off-the-shelf smartwatches.

To measure the watch’s energy, we extract a compatible battery
interface, which is used as a connector between the watch and
the Monsoon power monitor [5], from a same-vendor smartphone.
Our modeling approach follows the high-level methodology for
smartphone power modeling [55, 16, 38]. When measuring a
component, we keep other components offline (e.g., Wi-Fi, BT,
display) or at a steady power state (e.g., CPU) whose power
consumption is then subtracted from measured power value.
For components involving parameters (e.g., CPU utilization), we
programmatically change them and use regression to derive an
empirical model as a function of the parameters. We repeat each
experiment 10 times and use the average power for modeling. The
overall watch power is then estimated as the sum all components’
power consumption.

We study two commercial smartwatches: LG Urbane (used in
our user study) and LG Watch R. LG Watch R has a similar
configuration compared to LG Urbane except that it does not have
built-in Wi-Fi. Table 8 presents our derived power models for the
two watches. We first highlight our findings for the LG Urbane
watch. The power consumption of each state (awake, dozing, and
sleeping) consists of an almost-constant base power plus power
consumption of other components such as CPU, display, and
network interfaces. (1) At the dozing state, the overall device power
consumption is low (24.3 mW). The watch face display power
accounts for about half of the overall dozing power. Since the
watch face display has low brightness and mostly dark colors, its
power can be modeled using a constant value (about 12.2 mW). (2)
At the sleeping state, the power consumption is even lower since
the display is turned off. Also note that the watch is equipped
with a low-power movement sensor and a microphone, whose
power consumption is included in the base power. Since they run
in an “ambient” manner (i.e., always-on), it is difficult for us to
separate their individual power contributions. (3) The watch is
equipped with a 1.3 inch 320x320 P-OLED display, whose power
is determined by the brightness level and the pixel colors [17,
19] when the watch is awake. We find that blue is the most
energy-consuming color component, followed by green and then
red. Note our model does take into account the circular shape of
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Component
Power Consumption (mW)

LG Urbane (user study) LG Watch R
Dozing base + display 24.3 (base 12.1 + display 12.2) 22.7 (base 10.7 + display 12.0)
Sleeping base 14.5 17.6
Wake-up base 47.1 54.9
CPU 214.0u, u ∈ (0,1]: CPU util. 216.2u, u ∈ (0,1]
Wake-up display power =

∑
(cr · r + cg · g + cb · b+ C)/K, Per-pixel r, g, b ∈

[0, 255], K = 320*320. Values of {cr , cg , cb, C} are listed below.
Wake-up brightness 1 {.023, .060, .084, 67.2} {.014, .036, .092, 60.6}
Wake-up brightness 2 {.034, .071, .129, 67.2} {.027, .060, .126, 60.6}
Wake-up brightness 3 {.041, .092, .167, 67.2} {.029, .077, .159, 60.6}
Wake-up brightness 4 {.055, .120, .201, 67.2} {.044, .096, .210, 60.6}
Wake-up brightness 5 {.058, .144, .236, 67.2} {.065, .127, .255, 60.6}
Wake-up brightness 6 {.076, .179, .303, 67.2} {.077, .163, .325, 60.6}
BT Tail 4.77 sec, Power: 34.1 4.00 sec, Power: 13.88
BT Data (∼ 0.5m) Tx: 111.5, Rx: 117.2 Tx: 103.0, Rx: 104.6
BT Data (∼ 5m) Tx: 132.9, Rx: 116.2 Tx: 121.5, Rx: 97.3
BT Data (∼ 10m) Tx: 130.8, Rx: 113.9 Tx: 120.9, Rx: 98.2
BT Scan 146.0 155.1
Screen touch/swipe 198.9 182.3

Table 8: Derived power models for LG Watch Urbane and LG Watch R.

Component Power (mW)
Wi-Fi Tail 0.18 sec, Power: 121.2
Wi-Fi Promotion 0.30 sec, Power: 242.5
Wi-Fi Data (-42 dBm) Tx: 669.1, Rx: 378.5
Wi-Fi Data (-55 dBm) Tx: 672.8, Rx: 343.0
Wi-Fi Data (-65 dBm) Tx: 840.7, Rx: 341.8
Wi-Fi Scan 252.3

Table 9: Wi-Fi power model for LG Urbane.

Use Case
Trace Energy Consumption (μAh)

Length Measure Model Err.
Check time 11 sec 206 196 4.7%
Google map over BT 60 sec 1881 1792 4.7%
Fitness tracking 30 sec 773 730 5.5%
Web browsing over Wi-Fi 60 sec 2407 2513 4.4%
Hangout Chat over BT 30 sec 893 876 1.9%
Push notify. over BT 65 sec 1378 1437 4.3%
Push notify. over Wi-Fi 65 sec 1933 1920 0.7%

Table 10: Power model validation for LG Urbane.

the watch display [36] since only the displayed pixels are counted.
(4) The CPU power is determined by three factors: the number
of online cores, the frequency of each core, and the utilization of
each core. The LG Urbane watch is equipped with a quad-core
Qualcomm Cortex A7 processor. However, three of the cores are
forced to be offline by the OS, and the clock of the only online
core is fixed at 787 Mhz. This is a common practice on Android
smartwatches [32]. Therefore, the only factor affecting the power
is the CPU utilization, and we find both are linearly correlated. (5)
The Bluetooth state machine consists of an idle and an active state.
The state promotion takes negligible time, while the demotion from
the active to the idle state is triggered by an inactivity timer (“tail
time”) of 4.77s. (6) We find that the capacitive touch input also
incurs non-negligible power consumption. (7) Table 9 measures
the Wi-Fi power model for LG Urbane. The Wi-Fi state machine
is similar to that of smartphones [16, 38], except that we observe a
non-trivial state promotion delay of 0.3s. Also, we find when the
RSSI is lower than -70dBm, likely due to its small built-in antenna,
the watch has difficulty associating with the AP. For LG Watch R,
as shown in Table 8, its power model is qualitatively similar to that
of LG Urbane except that it does not have a Wi-Fi interface.
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Figure 10: Component-level energy breakdown across all users.

Power Model Validation. We conduct thorough validation
for our models for both watches at the component level and
device level. Table 10 shows the in-lab device-level validation
results for LG Urbane. We study seven diverse use cases.
The “measure” and “model” columns correspond to the device-
level energy consumption measured from the power monitor and
computed from our model, respectively. The error rates, defined
as |E(Model)−E(Measure)|/E(Measure), are less than 6%. For
LG Watch R, the device-level error rates are less than 5% for these
usage scenarios (table not shown).

5.2 Energy Consumption in the Wild
We now apply the LG Urbane power model to our user study

dataset, to quantify the energy consumption of smartwatches in
realistic settings. Our dataset contains all information needed by
the power model except the following limitations. First, we are
not able to obtain the BT signal strength using Android Wear API,
so we use the 0.5m BT power model. Second, to ensure the data
collector itself incurs very low overhead, we capture a screenshot
every 30 seconds (§3). Such an interval may lead to less accurate
display energy estimation (in our validation we use an interval of 1
second). Note this is already more accurate than prior smartphone
display modeling approaches that do not consider the displayed
content [14] or sample the pixels every several minutes [55]. We
also want to remind readers that the results below are relevant to
the specific brand of the watch used in our study (LG Urbane),
and other types of watches may possibly exhibit different energy
consumption profiles.

Recall that Table 3 shows the energy breakdown among the
three states: awake, dozing, and sleeping. More than half of
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the overall energy is consumed by the dozing state due to its
long duration despite its low power. But somewhat unexpectedly,
despite the very short duration of the awake state (2%), its energy
contribution is as high as 27.2%. Figure 10 shows a more fine-
grained energy breakdown. Within the dozing state, the energy
consumed by the base, display, and CPU are roughly 1.6:1.6:1.
Despite its low brightness, display is still a key factor of battery
drain when the watch is dozing. The dozing CPU energy comes
from the maintenance window (§4) that periodically wakes up the
CPU. Within the awake state, display and CPU also dominate the
energy consumption, accounting for 34.9% and 44.5% of the wake-
up energy, respectively (or 9.5% and 12.1% of the overall energy
respectively). The network incurs very small energy footprint
(3.4%). About 22% of the Wi-Fi energy and 9% of the Bluetooth
energy are spent at the awake state (not shown in Figure 10).

From Table 8 and Figure 10, we compute the average power
consumption at the wakeup, dozing, and sleeping state to be
309.8mW, 31.9mW, and 14.5mW, respectively, across all users.
Note that the average dozing power (31.9mW) includes the base,
the display, and the CPU power. By weighing them using the usage
duration breakdown listed in Table 3, we can further compute the
smartwatch’s average power consumption to be 25.9mW across all
states and users. Assuming that, a fully charged watch (with a
battery capacity of 410 mAh for LG Urbane) can last for about
41.7 hours.

Comparison with Smartphone. We next compare our results
with smartphone energy consumption profiles reported in the
literature. We pick [14], a recent crowd-sourced smartphone energy
study, to facilitate the discussion. We highlight three observations.
First, the authors of [14] report that on a smartphone, the top
two energy consumers are CPU (30.6%) and display (27.4%).
This is also true for smartwatches: CPU accounts for 29.3%
of the overall energy; more interestingly, despite smartwatches’
small screen sizes, display still contributes to 30.2% of the overall
energy. Second, networking is very power-hungry on smartphones:
cellular and Wi-Fi consume 26.4% and 8% of the overall energy,
respectively. But networking (Wi-Fi and Bluetooth) is responsible
for only 3.4% of the overall smartwatch energy. Besides an
apparent reason that most watches do not have a cellular interface,
such a disparity is also caused by the different traffic patterns
between a watch and phone as well as the fact that Bluetooth
dominates the smartwatch network usage, as to be studied in §6.
Third, [14] reports that an average smartphone spends about 2
hours every day on the screen-on state, which incurs about 59%
of the overall energy consumption. The smartwatch case is very
different: an average user’s watch wakes up for only about 10
minutes every day, corresponding to about 27% of the energy
(Table 3). Meanwhile, smartwatches are more energy-efficient in
non-awake (i.e., dozing and sleeping) states where user application
and system activities are strictly restricted (§4).

Diversity across Users. We equally divide the 27 users into
three groups: light (“L”), medium (“M”), and heavy users (“H”),
based on users’ average daily awake duration. The left side of
Figure 11 plots the duration breakdown for each group where
“W”, “S+D”, and “C” correspond to awake, sleeping/dozing, and
charging, respectively. The three groups exhibit similar patterns
except that the heavy users spend a little more time on the
awake and charging states. The right side of Figure 11 plots
the corresponding energy breakdown, where the wake-up energy
consumption is significantly higher for heavy users. The results
again indicate that smartwatch’s active usage time is unanimously
short across users. However, due to the big power consumption
gap between awake and dozing/sleeping, a small increase of the
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Figure 11: Usage duration and energy consumption diversity across
three user groups: Light, Medium, and Heavy users.
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Figure 12: Tuning the Awake → Dozing Timer.

wake-up duration will be “amplified” from the battery draining
perspective, thus shortening the overall standby time of the watch.

5.3 Improving Smartwatch Energy Efficiency
We study five methods for improving the smartwatch energy

efficiency. Note that although some of them have been applied to
smartphones, our contributions here are two-fold: we study them
in the context of smartwatches; we also perform “what-if” analysis
on our dataset to reveal their impact on real smartwatch workloads
(or doing controlled experiments if a trace-driven analysis is not
feasible).

1. Tuning the Awake→Dozing Timer. We consider tuning
the inactivity timer that controls the transition from awake to
dozing. Recall in Figure 1 that its default value is 5 seconds. We
develop a trace-driven simulator that takes as input the original
user study trace, the smartwatch power model, and a new timer
setting. The simulator computes the energy consumption in the
new setting: if the timer is reduced to x < 5 seconds, we turn the
last 5−x seconds within an original wake-up session into dozing by
changing its power consumption accordingly. Figure 12 plots the
energy reduction in the “what-if” scenario where the timer is set
to 1 to 4 seconds. Doing so leads to energy savings between 17%
and 38% for the awake state. The overall energy saving, however,
ranges from only 4% to 9%, which is equivalent to 1.7 to 3.8 hours
of average usage time (assuming 41.7 hours of battery capacity
as computed in §5.2). Note that a more intelligent approach the
OS may take is to dynamically determine when to doze. This has
already been partially implemented in Android Wear 2.0, which
uses user’s gesture (i.e., moving the wrist away) as a signal to dim
the watch in addition to using a regular timer. Although more
sensing techniques can be developed (e.g., dimming the watch
when it is covered by a sleeve), the overall energy saving brought
by this scheme is limited.

2. Improving the Dozing→Sleeping Mechanism. Recall in
Figure 1 that the current policy adopted by Android Wear is to enter
the sleeping state after an idle period of 35 minutes only when the
watch is not worn. We consider a more energy-efficient scheme

393



Dozing Sleeping Timer (
5 6 7 8 9 10

En
er

gy
 (%

)
5

10

15

20

25
Doze+sleep
Overall
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Figure 14: An example of power-saving color transformation.

where even when the watch is worn, it enters the sleeping state
after a timeout. Our dataset suggests that almost all (98%) dozing
sessions (including those when the watch is worn) are shorter
than 35 minutes, implying the current timeout is too conservative
if applied to our scheme. In Figure 13, we simulate our new
scheme by applying a shorter dozing→sleeping timer (regardless
of whether the watch is worn or not) to our dataset. On one hand,
changing the timeout to 5 to 10 minutes brings no effect on most
(80% to 88%) dozing sessions, so the impact on the user experience
is marginal: when the user looks at the watch face, it is still on as
before. On the other hand, this very simple tuning leads to a decent
amount of energy savings: 13% to 19% of the non-awake energy
or 9% to 13% of the global energy (equivalent to 3.8 to 5.4 hours
of average watch usage time).

3. Power-saving Color Transformation. A wide range of
smartwatches today use OLED display where different colors incur
different power consumption. We apply the power-saving color
transformation technique that was proposed in [18] and was applied
to smartphone web browsing in [19]. Its high-level idea is to map
a display’s color histogram to a more energy-efficient one while
satisfying human perception constraints in a color space (CIELAB)
designed to mimic human vision. We apply the algorithm (using
the “Color64” scheme in [18]) to all wake-up screenshots in
our dataset, and find that for most screens, the algorithm yields
recognizable display despite the colors becoming less perceptually
pleasing to humans (an inherent limitation of this approach as
illustrated in Figure 14). Nevertheless, color transformation results
in 41.4% reduction of the overall wake-up display energy across
all users. This provides incentives to develop energy-efficient user
interfaces for wearables with OLED display.

4. Bundling Delay-tolerant Push Notifications. Recall in §4.2
that many push notifications are delay-tolerant. We conduct
controlled experiments to quantify how much energy can be
potentially saved when delay-tolerant notifications are bundled
together. We wrote a phone-side app that performs push using
Method � in Figure 5. The app employs three schemes (S1

to S3) to push n notifications, each containing a short message,
in t=5 minutes: in S1, the notifications are equally spaced with
inter-arrival time (IAT) of t/(n − 1); (2) in S2, they are pushed

S1 S2 S3

n = 5 100% 74% 46%
n = 10 100% 66% 34%
n = 20 100% 58% 19%

Table 11: Normalized energy consumption when bundling delay-
tolerant push notifications. n is the number of notifications and S1

to S3 are three delivery schemes.

CPU Config. C1 C2 C3 C4

# Cores 1 1 2 2
Freq. each core 787 Mhz 384 Mhz 787 Mhz 384 Mhz
W1: app launch 265, 7.6s 278, 9.8s 175, 4.4s 161, 4.5s
W2: push notif. 46, 1.8s 64, 2.9s 61, 1.8s 49, 1.9s

Table 12: Balancing the energy-QoE tradeoff for two workloads
using four CPU configurations. In each cell, the first number is the
energy consumption (in μAh), and the second number is the QoE.
All cells are averaged over 3 runs with standard deviation < 10%.

one-by-one with an IAT of 3 seconds to allow the user to read
each message; (3) in S3, all messages are packed into a single
notification pushed to the watch. Table 11 lists the normalized
overall energy consumption for the three push schemes with n set
to 5, 10, and 20. The results suggest that bundling effectively
decreases the energy consumption by reducing the overall wake-
up period. Designing a full-fledged delay-tolerant-aware push
notification system for wearables is our future work.

5. Workload-aware CPU Configuration. Recall in §5.1 that
on a quad-core watch, Android Wear forces three cores offline and
fixes the frequency of the only online core. We conduct controlled
measurements to explore the performance-energy tradeoff incurred
by different CPU configurations under diverse workloads. We
consider four CPU configurations: C1 uses one core at the default
frequency (787 Mhz); C2 employs one core at a lower frequency
(384 Mhz); C3 and C4 use two cores at 787 Mhz and 384 Mhz,
respectively. We study their performance under two common
workloads: W1 for launching the Google Maps app and W2

for receiving/posting a push notification. Table 12 measures the
(Energy, QoE) for the 8 combinations of CPU configuration and
workload. The energy consumption is measured by the power
monitor at the device level, and the QoE metric depends on the
workload: app launch time for W1 and the notification delivery
time for W2 (from the reception of the first byte to the notification
being posted). As shown, the CPU configuration yielding the
best energy-QoE tradeoff depends on the workload: C4 for W1

and C1 for W2. The results imply that using multiple cores can
potentially improve both the QoE and the energy efficiency for
common smartwatch workloads such as app launching.

6. NETWORK TRAFFIC
Many smartwatches (including our user study watches) are

equipped with Bluetooth and Wi-Fi interfaces. Per Android Wear
OS, if the watch is paired with a phone over Bluetooth (BT), Wi-
Fi is turned off for saving energy and the watch uses the phone as
a “gateway” to access the Internet. If the phone is not present, the
watch can directly access the Internet using TCP/IP over Wi-Fi. We
now provide a first-of-its-kind measurement of smartwatch traffic.
Our characterizations provide hints for improving the network
stack for future wearable devices.

We first answer an important question: how often does the
watch pair with a phone? Using our dataset, we find that during
most of the time (80%), the watch and phone are paired. This is
somewhat expected as we usually carry phones with us. During
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Figure 15: The BT protocol stack of Android smartwatch.
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Figure 16: Smartwatch traffic volume breakdown.

the daytime (9am to 9pm), the percentage is slightly higher (84%),
likely because some users turn off their phones at night.

Before presenting detailed characterization, we give some back-
ground of the BT protocol stack used by Android smartwatches4

shown in Figure 15 [23, 13]. The controller resides on a BT chip,
which performs lower-layer functions such as (de)modulation,
physical channel management, and peer discovery. The host
realizes higher-layer protocols in software (OS or device driver).
The Logical Link Control and Adaptation Protocol (L2CAP)
provides multiplexing of upper layer protocols such as SDP and
RFCOMM. The Service Discovery Protocol (SDP) allows to
discover services provided by nearby BT devices. RFCOMM [12]
is the data-plane protocol allowing multiple application streams to
be multiplexed. Between the controller and host lies the Host-
Controller Interface (HCI), which is our data collection point. We
build a tool (in ∼1,300 LoC) that processes the collected BT traces.
It parses HCI signaling messages and L2CAP/SDP/RFCOMM
packets, and outputs assembled and demultiplexed RFCOMM
streams carrying the application data. Note non-smartwatch
devices may use different upper-layer protocols over BT.

BT Traffic. Figure 16 shows the overall traffic volume
breakdown. Since smartwatches are usually paired with phones,
the vast majority (91.2%) of bytes are delivered over BT. Most
BT traffic belongs to the RFCOMM protocol that carries user data.
Also downlink BT traffic (from phone to watch) overweighs the
uplink, as a smartwatch is mostly a consumer device that receives
data from the phone.

We next investigate three key characteristics of BT traffic: flow
size, duration, and rate, which are known to be the most important
metrics for Internet flows [56, 45]. One issue we need to address
is how to define a flow for BT. Since RFCOMM streams are
usually persistent and long-lived (they may last for tens of minutes
or even hours), we employ an idle period threshold i to split a
(demultiplexed) RFCOMM stream into segments, such that the
packet inter-arrival time (IAT) within a segment is shorter than i

4We verified three Android watches: LG Urbane, LG Watch R, and
Samsung Gear. They all use the same protocol stack in Figure 15.

Idle gap threshold i 5 sec 10 sec 20 sec
1. Flows initiated by phone 72.8% 68.4% 71.0%
2. Flows initiated by watch w/o UI 24.7% 28.0% 26.0%
3. Flows initiated by watch w/ UI 2.5% 3.6% 3.0%

Table 13: Origin of BT traffic (breakdown by bytes).

and IAT across segments is at least i. We then regard each segment
to be a user flow.

Figure 17 and 18 plot the distributions of BT flow size and
duration, respectively. The vast majority of flows are very small
and short compared to smartphone traffic [20, 27]: when the idle
threshold i=10 sec, 76.8% of the flows are smaller than 10KB,
and 53.1% of the flows are shorter than 1 sec. Only 0.4% of the
flows are considered to be indeed large (> 1MB), and only 0.1%
are indeed long-lived (> 100 sec). Based on manual inspection of
the payload of these “heavy-hitter” flows, we identify some of their
semantics to be the following: app download, web browsing (some
users do use the on-watch browser to surf the Internet), continuous
data download (e.g., map tiles), and synchronization of other large
data. Figure 17 and 18 also indicate that the selection of the idle
threshold i has very small impact on the measured distributions.

Figure 19 measures the BT flow rate, defined as flow size divided
by duration, using i=10 sec. In order for the computed rate to
be meaningful, we only include flows whose duration is at least
d ∈ {0.5, 1.0 sec}. Also downlink (phone to watch) and uplink
(watch to phone) rates are measured separately. As shown, the
vast majority of flows are slow, and uplink flows are even slower
than downlink: only 3.5% (21.5%) of uplink (downlink) flows
are faster than 100kbps. We also find that flow sizes and rates
are highly correlated. When d=1 sec, the Pearson Correlation
Coefficient between log(size) and log(rate) is 0.84 and 0.88 for
uplink and downlink, respectively, much higher than those for
Internet flows [45].

We next investigate the origin of BT traffic by answering the
following question: how much BT traffic is triggered by a user?
We break down all BT flows into three categories: (1) a flow
is initiated from the phone side, as indicated by the downlink
direction of the first data packet within the flow, (2) a flow is
initiated from the watch side, as indicated by the uplink direction
of the first packet, and the network activity is not triggered by user
interaction5, and (3) a flow is initiated from the watch side by user
interaction. As shown in Table 13, most of BT traffic belongs to
Category 1 (e.g., data/notification push); a small fraction of the
traffic belongs to Category 2 (e.g., periodical fitness data upload),
and only a tiny fraction of traffic falls into Category 3 (e.g., user
touches the watch and triggers some traffic). Note within Category
1, we are not able to tell the fraction of traffic initiated by a user
interacting with the phone. Nevertheless we expect that fraction to
be low, because most of the pushes and background sync are indeed
“spontaneously” incurred.

Wi-Fi Traffic plays a less important role in smartwatch. As
shown in Figure 16, more than half of the Wi-Fi traffic is
TCP, which is dominated by server port 443 and 5228. For
port 443, most server IPs point to Google that provides various
services such as push notification. Port 5228 is used by Google
Play Store. Surprisingly, due to Google’s “HTTPS everywhere”
principle, we do not observe any port 80 traffic, which still
prevails in the smartphone world today. It is therefore difficult
for a middlebox to use DPI-based approach to identify Android

5We use a 2-second window [t0-2, t0] to detect user interaction
right before a flow where t0 is the timestamp of the first data packet
of a flow. Different window sizes yield qualitatively similar results.
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Figure 17: BT flow size distributions. Figure 18: BT flow duration distributions. Figure 19: BT flow rate distributions (i=10s).

smartwatch traffic. Regarding UDP, more than 90% of the
UDP traffic is for name resolution (port 53/5355/5353), and the
remaining UDP traffic mostly relates to DHCP (port 67) and SSDP
(port 1900). Virtually no UDP traffic carries application data.
Wi-Fi flows exhibit characteristics similar to those of BT flows
observed in Figure 17, 18, and 19.

Handover between BT and Wi-Fi. Dual networks are common
on mobile devices. We are interested in how smartwatches handle
the handover between BT and Wi-Fi, a common use case that
needs to be supported when the watch moves out of or into the
phone’s BT coverage. We find that many smartwatch apps do
support handover, but oftentimes a handover takes a long time
(more than 5 seconds). This may be unacceptable for real-time
streaming between the watch and phone (e.g., Samsung Gear
S3 Frontier has a speaker, making it possible to answer phone
calls or to do VoIP on the watch). Researchers have proposed
robust and transparent handover solutions such as Multipath TCP
(MPTCP [21]). However, since BT by default does not speak
TCP/IP, it is difficult to directly apply MPTCP on smartwatches.
The potentially excessive power consumption of maintaining
multiple interfaces simultaneously is also a concern. More research
needs to be done in this direction.

7. DISCUSSION
Limitations. We discuss several limitations of our current user

study deployment.

• First, our study lacks device diversity since all participants use
the same type of watch. Although we use a popular commodity
watch (LG Urbane) with state-of-the-art hardware, we admit that
smartwatches are diverse, from basic ones with black-and-white
display (e.g., Pebble Classic) to advanced models with built-in GPS
and cellular (e.g., Samsung Gear S3 Frontier). Additional hardware
components such as GPS and cellular bring in new applications,
and may thus change user behaviors and energy consumption
profiles of smartwatches. We however believe that due to the very
nature of smartwatches (wearable, small form factors, etc.), the
basic usage patterns such as short “flick and look” wake-up sessions
and key applications such as push notification reception tend to
remain the same.

• Second, as mentioned in §4, the participants in our study have
limited diversity (faculty, students, and staff members at Indiana
University). We plan to further increase the user base and its
diversity in our future deployment.

• Third, there are other factors that might impact the user behavior
and thus the measurement results. For example, our participants do
not own the watches (in contrast, in [44], users used their personal
smartwatches). In another example, the participants were given
similar orientation sessions making them “equally” familiar with

the device. The distribution of feature usages may possibly be
different for “untrained” users than a set of users who had a good
orientation.

• Lastly, since all our data collection is performed on the watch,
we are not able to obtain information that is only collectible on the
phone. For example, it is impossible for us to tell how a smartwatch
impacts the smartphone usage, or to quantify the impact of a watch
on its paired phone’s energy consumption. We plan to expand the
data collector to phones in our future work.

Other Smartwatch OSes. The OS also plays an important role
in determining the resource consumption [32]. In this study we
focus on Android Wear Version 1.3 while other wearable OSes such
as Apple watchOS and Tizen exist. We are in particular interested
in Android Wear 2.0 that was in its developer preview stage when
this paper was written. Android Wear 2.0 provides several
new features that enhance the usability and energy-efficiency of
wearable devices. To name a few, it supports standalone wearable
apps that do not require their smartphone counterparts and that
have direct Internet access through Wi-Fi or cellular; it allows the
transition to the dozing state through a dynamic timer; it introduces
“Complications API [2]” to allow 3rd-party apps to show custom
data on a watch face; it also has new input methods including
built-in virtual keyboards. We plan to conduct an in-depth study
of Android Wear 2.0 in our future work.

8. CONCLUDING REMARKS
Through an IRB-approved user study involving 27 users for 106

days, we conducted an in-depth analysis of smartwatch usage in
the wild by answering several key research questions such as how
users interact with the watch, how smartwatch apps behave, how
push notifications look like on watches, how smartwatch energy
is consumed, and what key characteristics of smartwatch traffic
are. Our findings shed light on improving the design for wearable
systems, which indeed requires cross-layer efforts and involves
multiple entities in the wearable ecosystem.
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