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ABSTRACT 
In this work, we develop an analytic and visualization system for 
citizens and government agencies to understand, track, and predict 
the construction dynamics in an urban area. The presented system 
consists of three major functions. First, we provide an interactive 
data visualization interface that allows various users to easily 
investigate the relationships among different construction types, 
geographical regions of interest, and the duration of construction 
over time. Second, the system enables the users to discover 
functional areas and identify possible urban construction problems 
by automatically grouping regions (i.e., villages) that share similar 
characteristics of construction requests. Third, a regression-based 
prediction model is devised to forecast the future numbers of 
construction requests for a certain construction type of interest 
and a specific region of interest. The one-year construction 
request data collected from Taipei City open data platform is used 
in our system. Our system is general-purposed for other data with 
similar schema, with a case demonstration in the urban 
construction data in this work. Researchers will be allowed to use 
our system to analyze other request data such as New York City 
311 calls.  

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Database Applications – Data 
Mining, Spatial databases and GIS. H.5.2 [Information Systems]: 
Information Interfaces and Presentation – User Interfaces. 

General Terms 
Measurement, Performance, Design, Human Factors. 

Keywords 
Construction requests, interactive visualization, urban computing, 
open data, regional analysis, clustering, regression 

1. INTRODUCTION 
With the maturity of information and communication technology, 
the government agencies of modern cities choose to build various 
online request platforms that are developed for either citizens or 
governors. The New York City 311 calling service1 is created for 
citizens to reflect any problem they encountered in the urban 
environment. The Taipei Road Dig and Construction platform2 is 

                                                                 
1 http://www.nyc.gov/311 
2 http://www.dig.tcg.gov.tw/tpdig/ 

established for governors (e.g. different government departments 
and the companies of electronics/gas/water) to enable a more 
effective management of construction requests in urban areas. The 
requests are usually diversified with different types, and contain 
rich information of citizen/governor needs. Being a subcategory 
of urban requests, the road construction requests in Taipei are 
collected by the Public Works Department3 and made public by 
the Taipei City Government. When a road section is subjected to 
closure due to certain reason, it will be applied and logged to the 
database after governmental approval. These logs reflect the needs 
of citizens at detailed space and time, including urgent repair (e.g. 
sudden water-pipe bursts) and scheduled construction (e.g. 
building a draining infrastructure). That says, the city construction 
request records can collectively depict urban construction events 
through not only their geographical and temporal dynamics of 
construction requests but also the corresponding labeled causes of 
construction events. These data can be analyzed by dynamically 
grouping regions that have the similar patterns of construction 
requests. For example, we might be able to identify some regions 
that both the powerline and water pipeline related constructions 
play the dominant cause of construction requests. 

 
Figure 1: A snapshot of our system. 

The analysis might also help to unveil the underlying problems of 
infrastructures or services. For example, the relatively high 
frequency of reporting in water-pipe burst in a certain region 
might hint aging or structural weakness of the water pipeline in 
that area. The prolonged durations of construction might indicate 
inefficient constructions. In addition to the visual presentation and 
analytics, the urban construction request data also offer some 
potentials to be used to build a predictive model that estimates the 
future construction requests of certain types in any urban area of 
interest. 
                                                                 
3 http://pwd.gov.taipei/ 
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In this work, we aim to develop a novel system for presenting and 
analyzing the construction request data in Taipei City. Our system 
consists of three components. The first is Interactive Data 
Processing and Visualization, which not only prune noise data of 
construction requests but also provide an interactive manner for 
users to investigate the construction request data from various 
spatial and temporal granularity levels and different purposes of 
construction requests. The second is Clustering-based Region 
Exploration. We apply a clustering method to group geographical 
regions that share similar features of construction dynamics in the 
construction request data. From the results of clustering, users are 
expected to have insights about the city functions, the potential 
unsolved problems, and the distribution of requests in terms of 
construction dynamics. The third is Construction Request 
Forecasting. Based on the historical numbers of construction 
request data and some regional properties (e.g. the numbers of 
stations of Metro and bus), we aim at forecasting the number of 
construction requests for any region of interest so that the 
government agency is able to have a more effective and efficient 
resource management and deployment of urban construction. 

We believe the developed system can provide three-fold benefits 
for various user sets. First, for citizens, the system can allow them 
to not only understand the true needs or the construction problems 
of their regional community, but also track and supervise the 
government agency in charge of the construction progresses. 
Second, for the city governors or public service providers, through 
the interactive exploration, they can figure out the underlying 
construction problems in regions, disclose the potential drawbacks 
of the current policies, and have a better construction management 
by having the knowledge of the expected cost of future 
construction requests. Third, for researchers are allowed to have a 
platform to investigate more complex urban dynamics through 
introducing heterogeneous urban information (e.g. traffic flow, 
check-in data, and user opinions and sentiments in social media) 
into our system. Our system can be accessed via the following 
link: http://junipertcy.info/urbcomp/index.html , and a snapshot of 
our system is shown in Figure 1. 

 
Figure 2: System Framework. 

2. SYSTEM FRAMEWORK 
The system framework of this paper is shown in Figure 2. First, 
the construction request data collected from an open data platform 
is used as the input data of our system. The construction request 
data, which is daily updated, contains a collection of construction 
requests. Each construction record contains the reason, the 
geographical location, and the time and duration of a construction. 
In addition to the construction request data, we also obtain the 
data of administrative regions, i.e., villages, which are treated as 
the basic geographical units of our system. Each region/village is 
also associated with three regional information, including the 
numbers of Metro and bus stations, and the historical water-drone 

areas. In the following, we will briefly introduce the three 
components of our system, along with the corresponding outputs. 
The first is to preprocess the raw data for providing a fundamental 
interactive data visualization and exploration system. We will 
show how to rule out improper data. In the system, users are 
allowed to specify (a) a particular year/month, (b) the time 
duration, (c) the type of construction requests, and/or (d) a 
specific region of interest, and then the corresponding data 
distribution as well as the geographical map visualization will be 
reported in a dynamic manner. Second, we group regions that 
share similar patterns of types of construction requests. An 
administrative village is considered as the basic unit of the 
geographical analysis, because its area, population, and 
functionality best represent “community” in general perception. 
Each construction request record is assigned to the corresponding 
village according to the geographical location. We perform K-
means clustering algorithm on villages, and each output cluster 
contains a set of villages. Users are allowed to specify two feature 
options for clustering, (a) the number of construction requests in a 
region/village, and (b) the time duration of the construction. Third, 
we forecast the number of construction requests for a particular 
region of interest. We propose a generalized linear model to 
achieve the goal. For each region/village, the features are used to 
build the predictive model, including the time series of historical 
construction requests, the types of construction requests, the 
population data, the numbers of bus or Mass Rapid Transition 
stations, and the historical water-drone areas. We will report and 
analyze the error under the proposed predictive model. 

3. DATA PREPROCESSING 
The data used in this study comes from the Data.Taipei4 platform, 
a governmental open data platform launched by the Taipei City 
Government in September 2011. Each public construction 
proposed by an associated governmental office or an executive 
company in Taipei City is required to apply through the Taipei 
City Office. After the application is approved, each construction 
will be asked to upload the GPS locations and pictures that reflect 
the daily construction work via a mobile app. All these 
construction application data were recorded and pushed to the 
Data.Taipei platform. We aim to analyze the dataset collected 
containing 19,882 records from June 23, 2014 to May 15, 2015. 
Each record includes the longitude and latitude of a location, an 
address, a date of initiation and accomplishment, a governmental 
office or company applying for the construction, and reasons of 
construction. Two records were deleted because of the abnormal 
coordinates, and 15 records were deleted because their reasons of 
constructions were absent. There were 19,865 records included in 
the analysis at last. 

The 19,865 records were categorized to 14 construction types to 
characterize the major objective of construction and the urgency 
of construction, since the urgent repair of objects might reflect the 
different needs of the scheduled constructions. Categorization is 
input manually by the application department according to (1) 
reason of construction, which in the dataset were semi-categorized 
textural descriptions and (2) governmental office or company 
applying for the construction. The 14 construction types are listed 
in Table 1. In non-urgent constructions, most records (61.9%) 
were pipeline, powerline, and telecom cable related and few were 
associated with draining, road infrastructure or other 
developmental construction (11.68%). The proportion of “urgent 

                                                                 
4 http://data.taipei 



repairmen” is 26.19%, and the “water pipeline” is the most 
common object. 

Table 1: Types of construction requests. 
Type Major object of construction # records

1 Gas pipeline 1111 (5.59%)
2 Powerline 3388 (17.06%)
3 Water pipeline 3660 (18.42%)
4 Telecom cable 4138 (20.83%)
5 Drainage infrastructure 738 (3.72%)
6 Road 773 (3.89%)
7 Other developmental construction 792 (3.99%)
8 Non-governmental construction 18 (0.09%)
9 Urgent repair of gas pipeline 936 (4.71%)
10 Urgent repair of powerline 65 (0.33%)
11 Urgent repair of water pipeline 3894 (19.60%)
12 Urgent repair of telecom cable 210 (1.06%)
13 Urgent repair of drainage infrastructure 93 (0.47%)
14 Urgent repair of other objects 4 (0.02%)

In addition to the construction categories, these records were also 
categorized to five groups according to the time duration of 
constructions. The five groups were “Very short” (less than 1 day), 
“Short” (1-2 days), “Median” (3-18 days), “Long” (19-76 days), 
and “Very long” (above 76 days). Each group contains 20.17%, 
21.45%, 19.68%, 19.34%, and 19.36% of total data, respectively, 
and all proportions were approximating to 20%. 

After data pruning, all records were allocated to 465 villages in 
the Taipei City by their locations. A demonstration website 
( http://junipertcy.info/urbcomp/index.html ) was created to show 
the summary of duration and major objectives of construction and 
urgent repair with interactive visualization. Citizens could easily 
identify the details of construction work in which village they 
lived during the past year. 

4. METHODOLOGY 
4.1 Interactive Exploratory Visualization 
We selected some dimensions from the pruned data for interactive 
visualization; specifically, the date the request was posted, the 
target village it took construction, the type and duration of the 
construction. These are the main variables for the user to get a full 
picture of the request data. To build a web-based site, these key 
dimensions were filtered with the dc.js5 library for the front-end 
visualization. Many questions can be addressed and visualized 
using this tool, such as, what is the administrative village that has 
the most type of gas pipeline construction throughout the year? 
What about that within winter? What kind of constructions 
usually takes more time to complete? This tool could interest 
individuals or organizations who are concerned about the 
construction request data. Since the interactive visualization only 
shows some dimensions of the request pattern, we take a step 
further and ask whether these patterns could be similar in either 
adjacent or distant villages. For example, are there villages prone 
to have some same of their road infrastructures broken? What may 
the request pattern indicate? 

4.2 Clustering-based Region Exploration 
In order to investigate the coherent hidden patterns of construction 
needs across different regions, we formulate the problem as 
finding clusters in the request number space. Specifically, we 
consider that the construction pattern of a region is characterized 
by various types of construction requests. Those regions sharing 
                                                                 
5 https://dc-js.github.io/dc.js/ 

similar distribution of types of construction requests may either 
exhibit similar urban functions or suffer from similar urban 
construction problems. We use the clustering technique to group 
regions. Each region/village is represented by an m-dimensional 
vector, where m is the number of request types in the data. Each 
element in the vector is the number of a request type that is 
accumulated in the corresponding village. 

We use the k-means clustering algorithm to find clusters of 
villages. Specifically, the number of needs over the 14 request 
types is considered as feature values for each village. There are 
456 points representing villages to be clustered. A mined cluster 
contains a set of villages that share similar request patterns in 
terms of request types. To enable data exploration from clustering, 
our system allows two degrees of freedom in manipulating the 
analysis. The first one is the size of the region to be selected so 
that users are allowed to explore the construction dynamics under 
various geographical granularity levels. The second one is the 
type of request label to be clustered so that users will be able to 
target at only the request types of interest. By default, we choose 
the village as the minimum region of interest, and we labeled the 
data using the types of requests and the duration that the 
construction took. 

We explored k from 4 to 6, and found k = 4 as the final choice 
because it best fits presentation and interpretation. As shown in 
Figure 3(a), the purpose of construction requests is clustered. We 
found some villages with similar request frequency patterns across 
all request types. For example, Type B expresses some villages 
are abundant in the request of powerline and telecom cable 
construction requests. Although there may be some environmental 
correlations among these villages, such as they are old-fashioned 
ones, lower altitude, or even sharing the same geological fault, we 
have no further clues to answer this issue. Similarly, we classified 
the duration of construction into five groups, as shown in Figure 
3(b), the pattern is also clustered. It can be seen some villages are 
constantly having construction. All these coherent patterns can 
form interesting research questions to address in the future. 

Although we did not include any geographic or demographic 
information in clustering, we see definite spatial patterns. This 
indicates that there are some geographical factors that affect the 
numbers of certain types of construction requests. To capture the 
characteristics, we apply the regression technique to model the 
relationship between the number of requests and the neighborhood 
factors, and obtain a formula to weekly predict the number of 
certain request types in a region in the future. 

 
(a) Types of construction (b) time duration of construction

Figure 3: The results of the clustered regions/villages. 



4.3 Regional Predictive Analysis 
Next, we aim to build a model to predict the upcoming numbers 
of every construction request type in a region/village of 
interest.  Finite distributed lag model was taken into account.[7] 
The lagged data are the data from one week, two weeks, and three 
weeks before the time interval of prediction. Since the clustering 
analysis revealed geographical regions which are dominant in 
certain request needs, suggesting these requests are affected by 
non-stochastic regional characteristics. For example, higher 
requests of road construction in some region/village might be 
associated with its regional characteristics, such as population, 
traffic situation or road condition. To capture those characteristics, 
we collected some other data from Data.Taipei platform depicting 
regional characteristics and potentially affect the number of 
certain request. The data include (1) number of bus stations, (2) 
number of MRT stations, (3) area of historic water-drone regions, 
(4) district population. These data were preprocessed using feature 
scaling technique by dividing each kind of regional features data 
according to its standard deviation. 

We take advantage of the Generalized Linear Poisson Regression 
[8] to predict the future request number of each region/village. A 
generalized linear Poisson model relates a dependent variable, in 
our case, the amount of construction requests per request type, 
with a set of independent variables (i.e., time and the 
neighborhood characteristics) through an exponential function. To 
put these together in a formal form, by denoting ܻሺݐሻ  as the 
number of construction requests for a particular construction type 
for week ݐ in a given region/village, we can have the formulation 
of generalized linear Poisson model as follows: ܻሺݐሻ	~	exp	ሺߠሺݐሻሻ ߠሺݐሻ ൌ ߙ  ߮ଵ ∙ ݐሺߠ െ 1ሻ  ߮ଶ ∙ ݐሺߠ െ 2ሻ  ߮ଷ ∙ ݐሺߠ െ 3ሻ  መߚ ∙  ොݔ
where is the intercept or the mean value of theta, ߮ଵ, ߮ଶ, and ߮ଷ 
are autoregressive coefficients, ݔො  is a sequence of numerical 
regional features, namely: number of bus stations, number of 
MRT stations, area of historic water-drone regions, and district 
population. ߚመ  is a sequence of weights, one for each of the above 
regional features. 

Table 2: The parameter values learned in our model. 
Parameter Coefficient p-value Description 0.000 0.0543 ߙ Intercept or global mean ߮ଵ 0.0264 0.000 Number reports previous week  ߮ଶ -0.0025 0.743 Number reports two weeks before ߮ଷ -0.0259 0.001 Number reports three weeks before ߚመଵ 0.1043 0.000 Standardized number of bus stations ߚመଶ 0.2185 0.000 Standardized number of Metro stations ߚመଷ 0.2610 0.000 Standardized number of population ߚመସ 0.0472 0.000 Standardized area of water-drone regions

Fitting this model to our data means finding the values of each 
coefficient so that the relation expressed by the model is as close 
as possible to the observed data over a time span in a specific 
region/village. We take the Shih-lin district in Taipei as an 
example. The request type we want to model is the urgent repair 
of water pipeline data (label 11) over a 47 weeks-long time span. 
We use Root Mean Square Error (RMSE) of the testing data and 
predictive data as our evaluation metric. The definition of RMSE 

is given by: ܴܧܵܯ ൌ ටଵ∑ ሺݕ െ ොሻଶୀଵݕ  , where ݕ is the ground-

truth value, ݕො  is the predicted value, and ݊  is the number of 
instances. For time series data, the cross validation procedure is 

similar to the normal classification one, but the training set 
consists only of observations that occurred prior to the 
observation that forms the test set. Thus, no future observations 
can be used in the forecasting task. This procedure is sometimes 
known as Rolling Forecasting Origin [9]. The training data in the 
beginning set to the first 22 weeks and the rest are testing data. 
Then, we slightly move the timestamp forward to increase the 
training data, generate the predictive data, and calculate the 
RMSE by each time. The results of learned parameters obtained 
by fitting the training data in our model are presented in Table 2.  
 
Table 3: RMSE values under various number of lagged weeks. 

ݐሺߠ  െ 1ሻ ݐሺߠ െ 2ሻ ݐሺߠ െ 3ሻ ߠሺݐ െ 1ሻ  ݐሺߠ െ 2ሻ  ݐሺߠ െ 3ሻ
RMSE 13.5092 11.0679 9.6868 3.4156 

 
The absolute value of the coefficient is positively correlated with 
the effect of a variable on the number of requests. Among the 
regional features, we can see that historic flood area may have 
weakest impact on the construction requests. Both the numbers of 
MRT stations and village/region population have stronger effects 
on construction requests.  To check which lagged time variable is 
more predictive to this model, we conducted only lagged one, 
only lagged two, and only lagged three variable separately into 
our regression model. We found that lagged-one variable is the 
most predictive parameter and the other two lagged variables are 
less deterministic with respect to the predictability of future 
numbers of construction requests. This might suggest the period 
or subperiod pattern of urgent repair of water pipeline request and 
will be different due to different request types and region/village 
we’re modeling.  

 
Figure 4: Curves of the numbers of construction requests over 
time: the forecasted, real data, and the fitted regression model. 
Figure 4 and Figure 5 show the weekly plot of the numbers of 
construction requests for urgent repair of water pipeline from June 
2014 to May 2015 and plot of the relation between RMSE and 
training weeks, respectively. The weekly line graph shows the 
patterns of real data, fitting model, and some predictive data. The 
plot of relation between RMSE and training weeks shows a 
sudden drop at about 40th week which is around March and April. 
To explain the phenomenon, we need to look into the weekly plot. 
We can see the pattern around March and April has successive 
increasing pulses which does not exist in the training data. This 
means that the model hasn’t learned the pattern yet until the 
pattern is included into the training data. Therefore, the RMSE is 
higher before March and April, and then drops afterwards. 
Generally, if we have more data over much longer time span, 



which means there will be more patterns included in the training 
data, it is likely to generate a more accurate predictive model. 

 
Figure 5: The RMSE values of the forecasted under our model. 

5. RELATED WORK 
Recent studies in the Urban Computing [10] area have exhibited 
the potential of visualizing and exploiting various urban data. 
CityBeat [1] used real-time geo-tagged photos to detect hyper-
local trending activities. LiveHoods [2] employed check-in 
records to dynamically group and visualize locations with similar 
spatio-social characteristics. UrbanSound [3] classified urban 
sounds into a taxonomy to analyze urban events. Urban Tribes [4] 
detected the social intent of group photos to analyze the tribes in a 
city. U-Air [5] combined heterogeneous urban information, 
including road networks, place data, weather, and user mobility 
data, to infer the air quality values of location of interests in an 
urban area. In addition, CityNoise [6] utilize New York City 311 
complaint data, together with road networks and user check-in 
data, to analyze the composition of noises in a particular location. 

6. CONCLUSION 
The system presented in this paper is general-purposed and can be 
applied to many other sources of data under the similar schema. 
The developed data exploration and request prediction model does 
not require strong constraints on the data being used; hence it is 
flexible and applicable for other urban data such as air quality 
values and urban noises. In the future, we will integrate the 
system with the data collection backend to provide a real-time 
online service that tracking and predicting various kinds of urban 
informatics. We believe it will be a powerful, informative and 
pedagogical analytic platform to understand urban dynamics, 

particularly for those expressing interactions among human 
activity, the city officials and the environment. 
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