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ABSTRACT

In recent years, big data analysis has been applied to the
design and development of smart cities, which creates op-
portunities as well as challenges. It is necessary to retrieve
a large amount of social media data and physical sensor da-
ta for this purpose. However, different cities have different
infrastructures and populations, resulting in the sparsity of
some types of data, such as social media data. In this paper,
we propose a method for transfer learning between smart c-
ities and apply it to optimal retail store placement owing
to its importance in the success of a business. Traditional
approaches to the problem have considered demographics,
revenue, and aggregated human flow statistics from nearby
or remote areas; however, the acquisition of relevant data is
usually expensive. The rapid growth of location-based so-
cial networks in recent years has led to the availability of
fine-grained data describing the mobility of users and pop-
ularity of places. However, circumstances vary from one
city to another. Furthermore, the number of sensors may
not be sufficient to cover all the relevant areas of a par-
ticular city. In such cases, it would be useful to transfer
knowledge to small cities. We study the predictive power
of various machine-learning features with regard to the pop-
ularity of retail stores in a city by using datasets collected
from open data sources in several big cities. In addition,
we use a multi-view discriminant transfer learning method
to transfer knowledge to small cities. The results of experi-
ments involving cities in China confirm the effectiveness of
the proposed framework.
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Urban computing, which aims to tackle urban problems
by using city-generated data (e.g., traffic flow, human mo-
bility, and geographical data), connects urban sensing, data
management, data analytics, and service provision into a re-
current process to continuously and unobtrusively improve
the quality of life, city operation systems, and the environ-
ment. For instance, the geographical placement of a retail
store or new business has been of prime importance since the
establishment of the first urban settlements in ancient times,
and it assumes the same importance from the viewpoint of
modern trading and commercial ecosystems in today’s cities.
A new coffee shop that is set up in a street corner may thrive
with hundreds of customers, but it may close in a matter of
months if it is set up a few hundred meters down the road.
Nevertheless, infrastructure statistics are not sufficient for
evaluating investment values. For example, the noise and
pollution associated with train/bus systems can lower the
value of a coffee shop. Thus, the utility of infrastructure
statistics is limited. Moreover, such statistics are rarely dy-
namic and do not adequately reflect the changing profile of
a city.

In contrast, from the perspective of urban computing,
more dynamic and information-rich data can be accumu-
lated with the development of mobile, internet, and sensor
technologies. For example, people may post comments and
ratings for places of interest (POIs; e.g., schools, restaurants,
and shopping centers) via mobile apps after consumption.
Moreover, mobility data such as smart card transactions and
taxi GPS traces consist of both trajectories and consumption
records of residents’ daily commutes. If properly analyzed,
these data (e.g., user reviews and location traces) can serve
as a rich source of intelligence for determining optimal retail
store placement.

Indeed, these retail-related dynamic data generated by
users could better reflect values of placement than urban
infrastructure statistics. In general, if people have good
opinions of a store, the demand for this store as well as
its investment value will be high. The challenge is how to
uncover people’s opinions of a store. In fact, the opinions of
users can be mined from (1) online user reviews and (2) of-
fline urban regional data. Specifically, online reviews (e.g.,
Dianping/Weibo ratings) contain explicit opinions regard-
ing places surrounding a store. For example, the quality of
a neighborhood can be partially approximated by the ratings
of business venues, such as overall rating, service rating, and
environment rating. On the other hand, offline urban region-
al data near a store not only encode the static statistics of



urban infrastructure but also reflect residents’ implicit opin-
ions of the neighborhood. For example, the arriving, tran-
sition, and departing volumes of taxies and buses indicate
the mobility density of a neighborhood; the average velocity
of taxies and buses indicates the degree of traffic congestion
or accessibility; and the price of real estate and the traffic
congestion index indicate whether the facility planning is
balanced. All these indications provided by dynamic user-
generated data reveal important facets of a store that are
of great concern to customers and convey the implicit us-
er opinions of a neighborhood. Therefore, we consider and
mine both the explicit opinions from user reviews and the
implicit opinions from urban regional data to enhance the
evaluation of optimal retail store placement.

However, different cities have different infrastructures and
populations, resulting in the sparsity of some types of da-
ta for smart cities[2]. For example, it is relatively easy to
obtain heterogeneous data such as online user reviews in a
metropolis because of its large population and infrastruc-
ture. However, small towns have small populations, and
hence, relatively low social media activity. Therefore, it is
difficult to assess optimal retail store placement on the ba-
sis of such data from small cities. On the other hand, large
cities have been extensively modeled for numerous applica-
tions through big data analysis. In this paper, we propose
a method to transfer knowledge between smart cities and
apply it to optimal retail store placement.

Specifically, transfer learning aims to extract common knowl-

edge across domains such that a model trained on one do-
main can be adapted effectively to other domains. In reality,
different cities are equivalent to different domains, and on-
line and offline data can be regarded as two different views
(social view and physical view, respectively). Given a set
of candidate areas in a city for opening a store, our aim is
to identify the best ones in terms of their potential to at-
tract a large number of users (i.e., to become popular). We
formulate this problem as a rank problem, where, by ex-
tracting a set of features, we seek to exploit them to assess
the retail quality of a geographic area. More specifically, we
handle social and physical views through a multi-view dis-
criminant transfer learning method. We adopt autoencoders
to construct a feature mapping from an original instance to
a hidden representation[26], and we use the source domain
data to train a classifier for predictions on the target domain.
Based on the framework, a particular solution is proposed
to learn the hidden representation and classifier simultane-
ously.

The major contributions of this paper are as follows:

1) We propose a multi-view discriminant transfer learning
method for urban computing between smart cities. We ap-
ply this method to optimal retail store placement in order
to transfer knowledge from large cities to small ones to im-
prove accuracy. This addresses the issue of what to transfer
and how.

2) We study the factors affecting transfer learning in order
to select the transfer candidates. We analyze the changes
in different cities, and we formulate rules to select transfer
candidates. This addresses the issue of when to transfer
knowledge.

3) We evaluate our approach using various data sources
from the Web, including traffic data, bus data, user com-
ments in China, in order to verify the effectiveness of the
proposed framework.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews existing studies on retail store place-
ment and transfer learning. Section 3 presents preliminary
definitions and the problem statement. Section 4 describes
social and physical view analyses as well as the proposed
multi-view discriminant transfer learning method. Section
5 presents the results of our experiments. Finally, Section
6 summarizes our findings and concludes the paper with a
brief discussion on the scope for future work.

2. RELATED WORK

2.1 Urban Computing

The dynamics of a city (e.g., human mobility and the
number of changes in a POI category) may indicate trends
in the city’s economy[24](23][13][14][15]. For instance, the
number of movie theaters in Beijing kept increasing from
2008 to 2012. This could mean that an increasing number
of Beijing’s residents preferred to watch movies in movie
theaters. In contrast, some categories of POIs may vanish
in a city, signifying a downturn in business. Likewise, hu-
man mobility could indicate the unemployment rate in some
major cities and therefore facilitate the prediction of stock
market trends. Thus, human mobility combined with POIs
can help determine the placement of some businesses.

Land economy community research has concentrated on
spatial interaction models, which are based on the assump-
tions that (1) the intensity of interaction between two loca-
tions decreases with their distance and (2) the usability of
a location increases with the intensity of use and the prox-
imity of complementary arranged locations. However, it has
been shown that the applicability of these models is lim-
ited to agglomerations such as large shopping centers, and
their predictive accuracy decreases when smaller, specialized
stores are considered.

Karamshuk et al.[12] studied the problem of optimal retail
store placement in the context of location-based social net-
works. They collected and analyzed human mobility data
from Foursquare to understand how the popularity of three
retail store chains in New York is shaped in terms of the
number of check-ins. A diverse set of data mining features
were evaluated, modeling spatial and semantic information
about places and patterns of user movements in the sur-
rounding area. Thus, among these features, places of special
interest to users (i.e., train stations or airports) and retail
stores of the same type as the target chain (i.e., coffee shops
or restaurants), which encode the local commercial compe-
tition in an area, are the strongest indicators of popularity.
The problem arises when we cannot obtain sufficient online
data in some small cities.

With respect to previous work in the general area, in this
paper, we examine how the problem can be framed through
transfer learning. The richness of information provided by
the above-mentioned services in big cities could enable us to
study the retail quality of an area in a fine-grained manner:
various types of geographic, semantic, and mobility infor-
mation can not only complement traditional techniques but
also form the basis for a new generation of business analytics
driven by online data.

2.2 Transfer Learning

Transfer learning is what happens when someone finds
it much easier to, for example, learn to play chess having



already learned to play checkers, or recognize tables having
already learned to recognize chairs, or learn Spanish having
already learned Ttalian'[7].

Transfer learning models data from related but not i-
dentically distributed sources[17][20][19][18][3]. Multi-view
learning has been studied extensively in single-domain set-
tings, such as in co-training[6][22][11]. However, multi-view
transfer has not attracted much attention. Chen et al.[4]
proposed Co-training for Domain Adaptation (CODA), a
pseudo multi-view algorithm with only one view for original
data that may not be effective for a real multi-view case.
Zhang et al.[25] proposed an instance-level multi-view trans-
fer algorithm (MVTL-LM) that integrates classification loss
and views consistency terms in a large-margin framework.
Jing et al.[21] proposed a Multi-view Discriminant Transfer
(MDT) learning approach for domain adaptation. Unlike
MVTL-LM, our method operates at the feature level, i.e.,
it mines the correlations between views together with the
domain distance measure to improve transfer.

However, in many real-world scenarios, given a target do-
main, there may be more than one source domain available
for building classifiers. In this case, how to fully utilize mul-
tiple sources to ensure effective knowledge transfer is a cru-
cial issue. Thus far, several approaches have been proposed
for transfer learning with multiple source domains. Most of
them are focused on learning weights for different domains
based on the similarities between each source domain and
the target domain or learning more precise classifiers from
the source domain data jointly by maximizing their consen-
sus of predictions on the target domain data.

3. OVERVIEW

3.1 Preliminaries

Definition 1 (City Grid): We divide a city into dis-
jointed grids, assuming that placement in a grid g is uni-
form; each grid has several data samples and only one label
that denotes whether it contains only one store (if not, we
will try to use a store with more data as a label).

Definition 2 (Social View): Information aggregation
index svi obtained by the analyses of online user review
data of smart cities.

Definition 3 (Physical View): Information aggrega-
tion index pvi obtained through offline urban region data
from various physical sensors and satellite data from smart
cities.

3.2 Framework

As shown in Figure 1, our framework consists of two ma-
jor components: feature extraction of the original and tar-
get cities, and transfer learning, which involves the anal-
ysis of optimal retail store placement in other cities. We
retrieved massive amounts of online user review data from
big cities. Through proper feature learning from social and
physical views, we fed these data into our framework. Then,
through multi-view discriminant transfer learning, we trans-
ferred knowledge to other cities with sparse online user re-
view data.

Problem statement: Formally, by considering the exis-
tence of a candidate set of areas L in which a commercial
enterprise is interested in placing its business, we wish to
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Figure 1: Multi-view discriminant transfer learning frame-
work.

identify the optimal area | € L such that a newly opened
store in 1 will potentially attract the largest number of visi-
tors. An area 1 is derived from grid g;. We compute a score
y; for every candidate area l: the top-ranked area in terms
of this score will be the optimal area for placing the new
store. Our main assumption in the formulation of this task
is that the Dianping score empirically observed by users can
be used as a proxy for the relative popularity of a place.

Suppose that we are given a group of source cities {Cs1, Cs2,
..., Csn} and a target city Cy. Each source city has a set of
grids Cs; = {Ds}, each grid has labeled source-domain da-
ta Ds = {(s(i),pm,y(k))}, and the target city has labeled
target-domain data D; = {(s"™,p™ y®)}, m << i and
n = j, consisting of two views, where s; and p; are column
vectors of the ith instance from the social and physical views,
respectively, and y; is its class label, y; € {0,1,2, ..., k} (k=3
in this paper). The different class label(0,1,2,3) correspond-
s to the store’s score. The source and target domain data
follow different distributions.

Our goal is to assign appropriate class labels to the in-
stances in the target domain. We adopt autoencoders to
construct a feature mapping from an original instance to a
hidden representation, and we use the source domain data
jointly to train a classifier for predictions on the target do-
main. Eventually, we generate a final score y; for a region
g.

3.3 Map Segmentation

A road network usually consists of some major roads such
as highways and ring roads that partition a city into region-
s[24][23]. We display the vector-based road network on a
plane by performing map projection, which transforms the
surface of a sphere (i.e., the Earth) into a 2D plane (we used
Mercator projection in our implementation). Then, we con-
vert the vector-based road network into a raster model by
gridding the projected map. Intuitively, each pixel of the
projected map image can be regarded as a grid-cell of the
raster map. Consequently, the road network is converted
into a binary image, e.g., after the dilation operation, the
road segments are turgidly thickened. Then, we extract the
skeleton of the road segments while retaining the topology
structure of the original binary image. Figure 2 shows the
result of the procedure described above for Beijing’s entire
road network. Finally, we get the grids g of cities.

4. APPROACH



Figure 2: Segmented regions.

4.1 Model Social View

Prosperity and users’ opinions of a neighborhood are two
important factors determining property investment value.
Recent studies have shown that a strong regional economy
usually indicates high demand[12][9]. Thus, we decided to
mine online user reviews collected from dianping.com.

1)Dianping Score. For each region g, we measure (1) over-
all satisfaction, (2) service quality, (3) environment class,
and (4) consumption level r; by mining the reviews of busi-
ness venues located in r;, {p : p € P&p € ri}, where P is the
set of business venues in a city.

Overall Satisfaction: For each grid g, we access the
overall satisfaction of users over the neighborhood ;. Since
the overall rating of a business venue p represents the satis-
faction of users, we extract the average of the overall ratings
of all business venues located in r; as a numeric score of
overall satisfaction. Formally, we have

o0s _ Zp:p,qu&pem OwverallRatingyp
v {p:peP&per;} ’

Service Quality: Similarly, we compute the average ser-
vice rating of business venues in r; and express the service
quality of the neighborhood as

fSQ pip, qeP&per; ServiceRatingp

{p:pEP&pET;}

Environment Class: The environment class of business
venues could reflect whether the neighborhood is high-class.
Therefore, we extract the average environment rating as

EC _ Ep:p,qEP&pETi EnvironmentRating,
- {p:pEP&pET; }

Consumption Cost: The average cost of consumption
behaviors in business venues can partially reflect the income
and neighborhood class. We calculate the average consump-
tion cost of business venues of a targeted neighborhood as a

feature:
cc _ p:p,q€ P&per; AverageCosty
v {p:pEP&pET;}

2)Dianping Comments. We extend the existing word-
embedding learning algorithm and develop five-layer neu-
ral networks for learning, as shown in Figure 3. We learn
the store-specific word embedding from tweets, leveraging
massive tweets as distant supervised corpora without any
manual annotations. These automatically collected tweet-
s contain noise and thus cannot be directly used as gold
training data to build sentiment classifiers. However, they
are sufficiently effective to provide weakly supervised signals
to train store-specific word embedding.

Assuming that there are K labels, we modify the dimen-
sion of the top layer in the C&W model[5] as K, and add
a softmax layer on the top layer. The softmaz layer is
suitable for this scenario because its outputs are interpret-
ed as conditional probabilities. Unlike the C&W model,
our model does not generate any corrupted n-gram. Let
f9(t), where K denotes the number of polarity labels, be
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Figure 3: Structure of word embedding.

the gold K-dimensional multinomial distribution of input t
and Y, f2(t) = 1. The cross-entropy error of the softmax
layer is given by

lossp(t Z fk

k=0,1

-log(fi' (1)), (1)

where f9(t) is the gold event distribution and f"(t) is the
predicted event distribution.
Formally, the tweet representation is defined as
p(x) = % 25 Py
We define this probability using a softmax function:
ea:p(@l )
S cop(0] @)
ezp(92 z)
>4, exp(6] x)
go(x) = ea:lp((’gr) ’
E?:l e:cp(@]rw)
ezp(HZ:v)
Z?:l emp(Q;rz)
where the probability of a higher-class label is the score
obtained from the classifier.

4.2 Model Physical View

Recent studies have reported that different types of tran-
sit systems have different impacts on a region owing to the
differences in fares, frequencies, speeds, and scopes of ser-
vice. Economic information of a region can also reflect its
pulse. Bus transits are slow, cheap, and mainly distributed
in areas having a large number of IT and educational estab-
lishments. The price of real estate and the traffic congestion
index indicate whether the facility planning is balanced. We
exploit these features to uncover the implicit preferences for
a neighborhood.

Bus-Related Features.: Most moderate-income resi-
dents choose buses, which are cheaper and travel at accept-
able speeds, instead of taxies, which are expensive and travel
at faster speeds. Because most residents in a city are from a
middle-class background, bus traffic represents the majority
of urban mobility. Moreover, there is a connection between
a drop in grid and decreased bus mobility. Thus, we measure



the arriving, departing, and transition volumes of buses in
the neighborhood of each grid. Let BT denote the set of all
bus trajectories of a city, each of which is denoted by a tuple
< p,d >, where p is a pickup bus stop and d is a drop-off
bus stop.

Bus Arriving, Departing, and Transition Volume: We ex-
tract the arriving, departing, and transition volumes of buses
from smart card transactions. Formally,

FEAY = |<p,d> inBT :p ¢ ri&d € 1y

FBLV |<p,d> inBT :p € ri&d & ri|

FBTV |<p,d> inBT :p € ri&d € r4].

Bus Stop Density: Recent studies have reported that price
premiums of up to 10% are estimated for retail stores with-
in 300 m of a large number of bus stops. In other words,
bus stop density is positively correlated to retail store value.
Here, we propose an alternative approach and strategical-
ly estimate bus stop density using smart card transactions.
In smart card transactions, the ticket fare of a trajectory
reflects the number of bus stops in this trajectory. This is
because the Public Transportation Group charges passen-
gers according to the number of stops in each trip. Given
the pick-up stop p and the drop-off stop d, the trip distance
between p and d is fixed in a particular bus route. Then,
the ratio of trip distance to number of bus stops implicitly
suggests the average distance between two consecutive bus
stops. Since the number of bus stops in a trip can be ap-
proximated by the fare, we compute the ratio of distance to
fare for estimating the density of bus stops in a neighbor-
hood. The smaller the distance-fare ratio, the higher is the

bus stop density.
FBSD — Yperlld inr; dist)(p,d)/ fare(p,d)
|<p,d> anT per; &der;|
Smart Card Balance: The smart card balance indicates

the patterns of consumption and recharge behaviors. If resi-
dents always maintain a higher balance in their smart card-
s, this suggests that they spend more money on bus travel.
The large expense on bus travel implies that (1) residents de-
pend on buses more than on other modes of transportation
(e.g., subway, taxi), which may indicate that the affiliated
neighborhood lacks subways and taxies; and (2) residents
travel a long distance to work, shop, and pick up children,
and thus need to maintain a high balance. In other word-
s, this place is remote and inconvenient. Thus, we decided
to extract the smart card balance as a feature. Formally,
F.SCB _ ZPETin. inrg lalance(p,d)

z |<p,d> inBT:pEr;&deEr;| *

Real Estate Features: Recent studies report that real
estate prices reflect the purchasing power and economic in-
dex of this region. First, we collect the historical prices of
each estate, and we calculate the average estate price of the

neighborhood of each grid. Formally, we have
F.RE o pip, qeP&per; RealEstatep
v {ppeP&per;}

Traffic Index Features: Increased travel velocity and
reduced traffic congestion should be reflected by values. We
investigate the traffic index from nitrafficindex.com, which
gives us as value to evaluate local traffic conditions in each
grid. Formally, we have

F.RE o pp,q€ P&pEr; TrafficIndexy

L {p:p€P&peEr;}
Competitiveness Features: We devise a feature to fac-

tor in the competitiveness of the surrounding area. Given
the type of the place under prediction 7; (e.g., Coffee Shop
for Starbucks), we measure the proportion of neighboring
places of the same type 7, with respect to the total number

of nearby places. Then, we rank areas in reverse order, as-
suming that the least competitive area is the most promising
one: Ny

Xi(r)=— 1%,;; )

However, it is worth noting that competition in the con-
text of retail stores and marketing can have either a pos-
itive or a negative effect. One would expect that, for in-
stance, placing a bar in an area having a large number of
nightlife spots would be rewarding, as there already exists
an ecosystem of related services and a large number of peo-
ple are attracted to that area. However, being surrounded
by competitors may also mean that existing customers will
be shared.

Quality by Jensen Features: To consider spatial in-
teractions between different place categories, we exploit the
metrics defined by Jensen et al.[10]. To this end, we use the
inter-category coefficients described to weight the desirabil-
ity of the places observed in the area around the object, i.e.,
the greater the number of the places in the area that attract
the object, the better is the quality of the location. More
formally, we define the quality of location for a venue of type
Y as

Xi(r) = prer log(pr—>vz) X (N“/p(lf) - va(l,r))v

where N, ) denotes how many venues of type v, are
observed on average around the places of type ~;, I' is the
set of place types, and X,,->+, are the inter-type attrac-
tiveness coefficients. To compute the latter, we analyze how
frequently places of type 7; are observed around 7, on av-
erage, and we normalize that value of the expectation for a
random scenario. Formally, we get

N-N N, (p,r

Xvp—>m = prvail 2 N(p—,yrl';iI\f)wp'

POIs: The category of POIls and their density in a region
indicate land use as well as patterns in the region, thereby
contributing to optimal placement. A POI category may
even have a direct causal relation to it. Let #(¢,c) denote
the number of POIs of category ¢ € C located in g;, and let
#(7) be the total number of POIs of all categories located in
gi- The entropy is defined as

POI _ ﬁ ﬂ(i: c)
RO O ®

Because these physical features are mostly related to ur-
ban infrastructure, we analyze the data through softmax
regression and fit them in a single physical view[l]. The
log-likelihood is given by

4 e T 1 B
Z H 1 1{yD=1}
log e 1e<9T <z>)) ’ (3)

Now, we can obtain the maximum likelihood estimate of
the parameters by maximizing ¢() in terms of 6.

As shown in Eq.(4), the probability that x belongs to class
k can be expressed as

i i exp(OF 2
Py = ka0 0) = 20t )

Z]’:l e:vp(@jrx(i)) ’

where 6 is the dimensional weight vector of physical fea-
tures. Physical features are finally fitted to reveal their prob-
ability of impact on the region. Thus, we obtain two views.

(4)

4.3 Multi-view Discriminant Analysis



Diethe et al. extended Fisher’s Discriminant Analysis (F-
DA) to FDA2 by incorporating labeled two-view data into
the Canonical Correlation Analysis (CCA) framework as fol-
lows [8][16]:

T
wy Mywyp
(wiawp) \/ws Ws * \/'LUPM 'LUp

()

where

My = XTyyT Z,,

M, = %ZZL (¢(s ) f1s)((si) — ps) ",

My = 3577, (6(pi) — 1) (6(pi) — 1)

where ,us and Lp are the means of the source data from
the two views. The numerator in Eq.(5) reflects the inter-
class distance, which needs to be maximized, while the de-
nominator reflects the intra-class distance, which should be
minimized. The above optimization problem is equivalent
to selecting vectors that maximize the Rayleigh quotient:

T
=S, (6)

0 M, _( Ms O _
WhereQw—(Mg 0 ),P-( 0 Mp>7and§_

< zs ) Note that Q. encodes the inter-class distance,
P

whereas P encodes the compound information about the
view-based intra-class distances. Further,  is an eigenvec-
tor. Such an optimization is different from FDA2 and fa-
cilitates its extension to cross-domain scenarios, which will
be presented in the following subsection. For an unlabeled
instance, the classification decision function is given by

f(si,pi) = (w3 o(si) +wy d(pi) — b], (7)

where b is the threshold.

4.4 Autoencoders

An autoencoder first maps an input instance x to a hidden

representation z through an encoding mapping:
=h(Wz +n),

where h is a nonlinear activation function, W € R* x m
is a weight matrix, and b € R* x 1 is a bias vector. The
resulting latent representation z is then mapped back to a
reconstruction & through a decoding mapping;:

g=g(W z+V),

where g is a nonlinear activation function, W' e RF xm
is a weight matrix, and b € R* x 11is a bias vector. Given a
set of inputs {x;}i=;, the parameters of an autoencoder are
optimized by minimizing the reconstruction error as follows:

=300 s — 2.

mlnw,byw/b/

4.5 Transfer Learning

The proposed optimization problem for transfer learning
is formulated as follows:

mine,e’,{ej} =e(xs, s, zr,Zr) + YO, @/)
+ au(zs,ys; {0;})

(8)

where the first term in the objective is the reconstruction
error of the source and target domain data, which can be

written as
T

i n
- 2 S 2
:ZZHSU&-—QU&;H +Z |z, — &z, ||".

i=1 i=1 Ti=1
9)

The second term in the objective is a regularization term
on the parameters © = {W, b} and e = {W/, b/}.

The third term represents the total loss of the softmax
regression classifier over the corresponding source label data
with the hidden representation. The trade-off parameters
a,~y are small positive contents to balance the effect of the
different terms on the overall objective.

The optimization problem is an unconstrained optimiza-
tion with five types of variables to be optimized, namely
W, b, W/,b'7and{9j}. We propose the use of gradient de-
scent methods for the solution.

e(zs, s, xT, 1)

Algorithm 1 Multi-view Transfer Learning with Autoen-
coders

Input:

The source dataset Ds = {(s'”,p?, y*))}

The target dataset D, = {(s (m) p" ),y( N}

trade-off parameters «, v, and the number of hidden features
k.

Output:

A classifier on the target domain.

1:Initialize W, b, W,,and v by executing an autoencoder al-
gorithm on instances of all the domains, and train 6; on the
corresponding domain data independently.

2. Fix 60;; update W, b, W/, and b’ alternatively.

3. Fix W,b, W', and b'; update 6;.

4. 1If the solutions converge, construct a target classifier;
otherwise, go to Step 2.

4.6 Target Classifier Construction

After the solutions of W, b, W/, b,, andj are obtained, one
can construct a classifier fr in terms of 1 for the target do-
main. For any instance zr from the target domain, which
can be either from the observed unlabeled sample Dr or
from an unseen data sample, the classifier fr makes a pre-
diction on it based on

frzr) = 1 327,07 (9(War +1))),

where g(x) is the classifier function of softmax regression.

5. EXPERIMENTS
5.1 Datasets

Table 1 lists the data sources. We extract features from
smart card transactions in five cities. Each bus trip has an
associated card id, time, expense, balance, route name, and
pick-up and drop-off stop information (names, longitudes,
and latitudes). In addition, we crawl the traffic index from
nitrafficindex.com, which is open to the public. Further-

more, we crawl online business reviews from www.dianping.com,

which is a site for reviewing business establishments in Chi-
na. Each review includes the shop ID, name, address, lati-
tude, longitude, consumption cost, star rating, poi category,
city, environment, service, overall ratings, and comments.
Finally, we crawl the estate data from www.soufun.com,
which is the largest real-estate online system in China.



Table 1: Details of the datasets

Data Sources Properties Statics
Cities Number of cities 5
Number of grids 1,245
Bus Traces Number of bus stops 9,810
Time period 31
Number of trips 6,543
Dianping Number of business POIs 1472
Number of reviews 470846
Number of users 159302
Real Estates Number of real estates 2,851
Traffic Index | Number of monitored regions 793
POIs Number of POIs 3,214

5.2 Evaluation Metrics

To verify the effectiveness of our method, we compared
our method with the following algorithms: (1) MART, a
boosted tree model, specifically, a linear combination of the
outputs of a set of regression trees; and (2) RankBoost ,
a boosted pairwise ranking method, which trains multiple
weak rankers and combines their outputs as a final ranking.
These methods use only data from the target cities.

Normalized Discounted Cumulative Gain.

The discounted cumulative gain (DCG@N) is given by

reliif n= 1
DCGn] =
i} DCG[nfl}JrlZZl’;if n>= 2
2

Later, given the ideal discounted cumulative gain DCG/,
NDCG at the n-th position can be computed as NDCG[n|=

%G,[[’j]. The larger he value of NDCG@N, the higher is the

top-N ranking accuracy.

Precision and Recall. Because we use a four-level rat-
ing system ( 3 > 2 > 1 > 0) instead of binary rating, we
treat the rating 3 as a high value and ratings less than 2
as low values. Given a top-N grid list Enx sorted in de-
scending order of the prediction values, the precision and

recall are defined as Precision@N :% and Recal-
1aN ::%, where E'>—o are grids whose ratings are

greater than or equal to 2.

5.3 Feature Evaluation

We provide a visualization analysis to validate the corre-
lation between the extracted features and store values. We
use a scatter-plot matrix for correlation analysis. Each non-
diagonal chart in the scatter-plot matrix shows the corre-
lation between a pair of features whose feature names are
listed in the corresponding diagonal charts. Given a set of
N features, there are N-choose-2 pairs of features, and thus,
the same number of scatter plots. The dots represent the
scores of stores and their colors represent the grades of the
values. For readability, we use green > yellow > blue > red
(symbol) to represent 3 > 2 > 1 > 0 (number) in Figure 4.

In Figure 4(a), we present the correlation between social
view features (overall satisfaction, service quality, environ-
ment class, consumption cost, comments) and store value.
As can be seen, the green dots tend to appear at the top
right corner of all the non-diagonal charts. This implies that
if mobile users have higher ratings for store neighborhoods,
the store values are the higher.

In Figure 4(b), we show the positive correlation between
store value and bus-related features, such as the departing,
arriving, and transition volumes of buses, and bus stop den-
sity, and negative correlation such as smart card balance.

Figure 4(c) shows that the traffic index has a negative cor-
relation with store value, whereas the others have a positive
correlation. Recall that by the entropy of frequency of cat-
egorized POIls, we mean the heterogenesis of POI planning.
Interestingly, we observe that if the heterogenesis of func-
tionality planning is too high or too low, these region are
usually low-value region. This can be intuitively explained
by the fact that people are willing to go to a place that can
meet and balance the needs of their lifestyles.

The visualization results show the collectiveness of our
intuitions for defining and extracting discriminative features.

Figure 5: Source domain and target domain for transfer
learning.

5.4 Model Evaluation

We use data for a single city as the baseline for our exper-
iments. The dataset contains data from five cities in China.
Each city’s grid that has a retail store is annotated with a
score of {0,1, 2,3} based on the dianping.com score empiri-
cally observed by users. Each city is considered as a domain,
and each domain contains hundreds of grids. We randomly
select one of the five domains as the target domain, and all
the domains serve as the source domains as shown in Figure
5 . Therefore, we can formulate four multi-source classifica-
tion problems.

Now, considering the application scenario where the best
geographic area for a new business has to be discovered, for
instance, by a geo-analytics team, we would like to compare
the different ranking strategies in terms of their ability to
yield high-quality locations. To this end, we measure the
fraction of time for which the optimal location in the pre-
dicted list R is in the top-X% of the actual popularity list R,
which represents our ground truth. We refer to this metric
as Accuracy@X.Note that we have used percentage instead
of the absolute values (i.e., top-K) to allow for comparison
across different chains.

i i

i

(b) Precision@N

Ut

(c) Recall@N

T

(a) NDCG@N

Figure 6: NDCG, precision, and recall of @N for Starbucks
in Beijing.

Figure 6 shows the NDCG, precision, and recall of the so-
cial view, physical view, both views, and transfer learning
for Starbucks in Beijing. In all cases, we observe the per-
formance of discriminant transfer learning outperformed the
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(a) Features of social view.

(b) Features of physical view (1).

(c) Features of physical view (2).

Figure 4: Feature correlation analysis of social view and physical view.

other methods.

In Table 2, we present the results obtained for the ND-
CG@10 metric for all features across the three chains. In
all cases, we observe a significant improvement with respect
to the baseline. Nevertheless, by controlling the number of
training grids in the cities, as shown in Figure 7, we found
that the error rate decreases as the number of grids increas-
es. In fact, the number of training samples increases with
the number of grids.

Overall, transfer learning yields better results than the
single-city method. Moreover, when considering more city
grids in addition to the original city grids, we observed con-
siderable improvements, highlighting the greater accuracy
provided by a larger number of city grids.

Table 2: The best average NDCG@10 results of baseline and
transfer learning

Cities | Starbucks | TrueKungFu | YongheKing
MART (Single City)

Beijing 0.743 0.643 0.725
Shanghai 0.712 0.689 0.712
Hangzhou 0.576 0.611 0.691
Guangzhou 0.783 0.691 0.721
Shenzhen 0.781 0.711 0.722

RankBoost (Single City)

Beijing 0.752 0.678 0.712
Shanghai 0.725 0.667 0.783
Hangzhou 0.723 0.575 0.724
Guangzhou 0.812 0.782 0.812
Shenzhen 0.724 0.784 0.712

Transfer Learning

Beijing 0.755 0.712 0.755
Shanghai 0.745 0.751 0.783
Hangzhou 0.755 0.711 0.752
Guangzhou 0.810 0.810 0.823
Shenzhen 0.780 0.783 0.723

76 L L L L L L L L L
100 200 300 400 500 GO0 700 800 900 1000 1100

size of grids

Figure 7: Sample size and error rate.

6. CONCLUSIONS

In this paper, from the perspective of a smart city, we
analyzed retail store placement using four datasets observed
in cities in general. Using the proposed multi-view discrim-
inant transfer learning method, we transferred knowledge
from some cities to other cities with sparse data. In addi-
tion, we tested our approach for five cities in China. The
results showed that our approach is applicable to different
city environments.

The proposed transfer learning algorithm may also have
the same effect for some type of data sparsity, such as AQI
in small cities. Thus, we hypothesize that our algorithm will
succeed in transferring other urban knowledge, such as air
pollution and traffic, from larger cities to smaller cities and
towns with sparse data. This can be understood by ana-
lyzing the differences between cities and the rich knowledge
transfer obtained from big cities.

In the future, we plan to apply our approach to other
cities. Moreover, the sparsity of labeled data for machine
learning remains a problem. To overcome this problem, it
is necessary to use transfer learning to train sparse labeled
data with abundant labeled data.
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