This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

Smartphone Sensing Meets Transport Data: A
Collaborative Framework for Transportation
Service Analytics

Yu Lu, Archan Misra, Wen Sun, and Huayu Wu,

Abstract—We advocate for and introduce TRANSense, a framework for urban transportation service analytics that
combines participatory smartphone sensing data with city-scale transportation-related transactional data (taxis, trains
etc.). Our work is driven by the observed limitations of using each data type in isolation: (a) commonly-used anonymous
city-scale datasets (such as taxi bookings and GPS trajectories) provide insights into the aggregate behavior of
transport infrastructure, but fail to reveal individual-specific transport experiences (e.g., wait times in taxi queues); while
(b) mobile sensing data can capture individual-specific commuting-related activities, but suffers from accuracy and
energy overhead challenges due to usage artefacts and lack of appropriate sensing triggers. TRANSense demonstrates
how a judicious fusion of such disparate data sources can overcome these challenges and offer novel insights. We
detail two examples: (a) Taxi Service Analyzer that provides accurate detection of commuter queuing for taxis and
estimates their wait time, by using taxi trip records to identify potential taxi locations with high demand and subsequently
selectively triggering mobile sensing-based queuing analytics on nearby commuters; and (b) Subway Boarding Analyzer
that identifies instances when passengers fail to board arriving trains, by first estimating train arrivals from temporal
patterns of passenger egress at station gantries, and then using mobile sensing-based analysis of commuter movement
behavior on platforms. Experiments with real-world datasets (from over 20,000 taxis and 1.7 million commuters in
Singapore) show the power of this approach: the taxi service analyzer detects commuter queuing with over 90%
accuracy with negligible energy overhead and estimates wait times with error margins below 15%, whereas the subway
boarding analyzer can detect failed boarding events with a precision of over 90% (more than thrice what is achievable

through purely mobile sensing).

Index Terms—Data integration, public transportation, data analysis, crowdsourcing, pervasive computing.

1 INTRODUCTION

Developing adaptive and personalized public transportation ser-
vices is a key component of future smart city initiatives. To support
such adaptive services, transportation analytics research presently
adopts one of two distinct approaches: (a) The infrastructure-
driven approach utilizes transactional informatics data that are
increasingly becoming available from public transportation in-
formation systems (e.g., taxi trajectories and logs [1], smart
card usage history for subway or bus rides [2]); while (b) The
participatory sensing approach [3] utilizes data from smartphone-
embedded inertial & location sensors (e.g., GPS, accelerometer
and compass), obtained from a pool of participating commuters.
Both these approaches have their own merits and demerits:
the infrastructure-based approach is usually comprehensive and
accurate (it typically has visibility on the movement history and
trip history of every vehicle) for understanding and predicting
aggregate traffic characteristics and patterns, but cannot observe

o Yu Lu is currently with Advanced Innovation Center for Future
Education, Beijing Normal University (Email: luyu@bnu.edu.cn).
Archan Misra is with the School of Information Systems, Sin-
gapore Management University, Singapore. Huayu Wu are with
the Institute for Infocomm Research (I2R), A*STAR, Singapore.
Wen Sun is with the Xidian University, China, and she is the
corresponding author.

an individual commuter’s “personal commuting experience”. For
example, it cannot reveal how long a person had to wait at a
taxi stand prior to boarding. In contrast, participatory mobile
sensing can capture an individual’s commuting experience, but
clearly provides only a (possibly non-representative) sampling of
the overall state of the transportation infrastructure. For example, it
cannot reveal how many people board or disembark from a subway
train at the stations along its route. Moreover, continuous mobile
sensing-based recognition of commuting activities can suffer from
both accuracy degradation (inertial sensors are notoriously sensi-
tive to usage-driven artefacts) and high energy overheads (sensors
such as GPS & gyroscopes have a very high power drain).

To date, transportation analytics has employed either approach
in isolation, with little exploration of how these two independent
data streams can be intelligently combined to create innovative
new insights. Our work in this paper tackles this gap, by demon-
strating how these two data streams (infrastructure and mobile)
can jointly provide deeper insights into urban transportation and
commuting behavior, than currently possible. In particular, we
propose a collaborative framework for transportation service ana-
Iytics, called TRANSense, that (a) applies spatiotemporal analytics
on transportation infrastructural data to detect likely anomalous
transportation events (e.g., a high demand for taxis at specific taxi
stands), and (b) uses such anomalous events to smartly trigger
mobile sensing and thereby recognize specific commuting-related

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

activities of interest (e.g., queuing for taxis) with much higher
accuracy and lower energy cost.

To provide practical embodiments of this proposed framework,

we shall demonstrate two different analytics applications: (i) a
Taxi Service Analyzer that detects passenger queuing for taxis
and estimates the queuing time at the taxi demand hotspots, and
(i1) a Subway Boarding Analyzer that identifies events where a
commuter fails to board an arriving train (most likely due to
overcrowding). Most importantly, we show the symbiotic benefit
of fusion of these two data sources: neither of these two services
can be readily realized by using a single type of data stream, and
the accuracy of recognizing both the underlying infrastructure-
based events and individual commuting activities is significantly
improved via mutual reinforcement using the other data stream.
Using a combination of small-scale mobile sensing data and cur-
rently available “big data” from public transportation information
sources in Singapore, we show that these two novel analytics
applications can be readily realized with a high fidelity.

Our work in this paper thus makes the following key contribu-

tions:

o Unified Framework for Infrastructure+Mobile Sensing:
We propose a novel transportation analytics framework
that combines spatiotemporal analytics on large-scale data
from different urban transportation information systems
with mobile sensing data from a participatory pool of
commuters. Using the two services mentioned above as
exemplars, we show how such combined analytics can
provide hard-to-obtain and individual-specific commuting
insights with a high accuracy as well as lower energy
overheads.

o Smart Commuter Mobile Sensing: We adopt a hierarchi-
cal decomposition approach to design and implement a
sensor-based smartphone application to collect different
context information from public transportation commuters.
The application supports two triggering mechanisms for
energy-efficient sensor data collection: either based on
automatic location-driven events (geofences) or remotely
by a cloud messaging mechanism.

e Taxi Service Analyzer: We describe how this analytics
service combines the city-scale taxi trace data with smart-
phone sensing data to detect passengers queueing for taxis
and accordingly estimates the passenger wait time. The
key innovations in this system include (i) the use of taxi
data to identify taxi demand hotspots and further infer the
locations where passenger queues may be occurring, and
(ii) the aggregation of the smartphone-sensing data from
multiple passengers to estimate the passenger wait time at
such hotspots, and (iii) the use of hotspot-driven mobile
sensing triggers to reduce the energy overheads without
sacrificing the ability to capture relevant queuing events.
Using the month-long trace data of over 20,000 Singapore
taxis, together with the participatory sensing data at 6
different taxi stands, we show that this application can (a)
detect the queuing activity of commuters with over 90%
accuracy, (b) estimate the queuing time at taxi stands with-
in an error of 15%, and (c) impose only minimal overhead
(a hypothetical worst-case scenario, where a passenger
stays in the vicinity of a taxi hotspot throughout the day,
would drain only 4.4% of the smartphone’s battery).

o Subway Boarding Analyzer: We show how to combine
the large-scale entry/exit traces of subway data (captured

" Government ™~ +”" Public "
\. Commuters

. [m
._ Operators___-'__Authorities __’

=
8
S
2
°
<1
&
A
z
3
»
g
=
S0
2
>
5
4,
=
=
a
=
o
&
£
=

User Context Collector(UCC)
Data Acquisition & Analytics System

User Context
Information

[Data Fusion and Analytics Layer

T Google loud
| Seeens
[Transportation Data Processing Layer| rciovd)=
| Trigger |
| Transportation Data Collection Layer]
u L 1/

Taxi Service H Subway Service

Bus Service o ‘
Other Service

Public Transportation System Commuter Sensing System

Fig. 1: Block Diagram of the Framework

by tapping of RFID-equipped ticketing card at stations)
with the on-platform passenger activity data (captured by
the smartphone inertial sensors) to accurately identify the
episodes of failed boarding: where an individual is unable
to get on a train (most likely due to overcrowding). The
key innovations include (i) a novel Train Arrival Detection
(TAD) algorithm that uses the temporal pattern of pas-
senger exit traces (provided by infrastructure informatics
data) to indirectly identify train arrival events, and (b)
the fusion of such probabilistic train arrival information
with an individual’s on-platform activity (captured by
mobile inertial sensing) to identify the instances of failed
boarding. By combining a subway dataset, which includes
1.7 million commuters and nearly 50 million transactions,
with the small-scale mobile sensing studies, we show
that this system can identify the failed boarding events
with a precision of over 90%, that is more than thrice
what is achievable via pure mobile sensing (which often
mistakenly translates a passenger’s random movement into
attempting to board a train).

While our two transport service analyzer applications are both
novel, we believe that the main impact of our work is to highlight
the broader possibility of creating innovative new personalized
transportation services, based on a combination of transportation
informatics data and commuter participatory sensing.

The rest of the paper is organized as follows: Section 2 depicts
the overall system architecture. Section 3 describes the designed
commuter sensing tool. In sections 4 and 5, we respectively
present the two exemplary applications (Taxi Service Analyzer
and Subway Boarding Analyzer, along with the empirical eval-
uation results. The discussion and related work are then given in
sections 6 and 7. We finally conclude in section 8.

2 SYSTEM OVERVIEW

The block diagram of TRANSense is illustrated in Figure 1, which
mainly consists of three subsystems, namely Public Transporta-
tion System, Commuter Sensing System and Data Acquisition &
Analytics System.

2.1

This system covers different urban transportation services, such
as taxi, subway and bus service. Each service leverages on the
corresponding informatics infrastructure to acquire the relevant
transportation data. For example, taxi service generates each taxi’s
real-time GPS location and taxi status, which is collected by
the in-vehicle telematics device on taxis. Such individual taxi
information can be instantly sent to the backend cloud using

Public Transportation System

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

the cellular service. Another example is the subway service that
utilizes an RFID-based ticketing infrastructure to record passenger
ingress and egress (tap-in and tap-out) information at each subway
station. The bus service also collects the passenger boarding and
alighting information on each operating bus by leveraging on a
similar electronic ticketing system.

2.2 Commuter Sensing System

This system adopts the participatory sensing strategy to capture
transportation-relevant context from the smartphones of participat-
ing commuters. More specifically, a lightweight application, called
user context collector (UCC), is installed on the smartphones of
participating commuters. The application gathers the information
from the embedded smartphone sensors (e.g., accelerometer or
barometer), and meanwhile performs a high-level context recog-
nition task. The sensor data collection and the context sensing
process can be activated and terminated automatically, and thus
the entire process does not need any user’s manually input or
configuration. When installing the UCC application, it is necessary
to get the user permission for collecting the sensor data and
running the non-intrusive context sensing service.

2.3 Data Acquisition & Analytics System

This system is the central component of the proposed framework
to aggregate, fuse and analyze heterogenous data collected from
the above described two systems. It adopts a cloud-based three-
layer hierarchical architecture, where each layer has its own
unique and independent functionality:

o Transportation Data Collection Layer: This layer collects
and manages the incoming raw and large-scale transporta-
tion data from transportation services (e.g., taxi service
and subway service). It provides separate interfaces and
indexing structures for receiving and managing large vol-
umes of spatiotemporally-indexed data. The transportation
data cleaning and preprocessing are also conducted within
this layer.

e Transportation Data Processing Layer: This layer mainly
conducts the analytics on the data from the transportation
system, and outputs the intermediate analytics results (e.g.,
the likely current taxi hotspot locations) to the upper layer.
A variety of data mining and analytics techniques can be
applied in this layer. Besides, this layer also includes a
specifically designed component, called on-cloud trigger,
which is used to activate the commuter sensing tasks from
the cloud side. The triggering decision is made mainly
based on the intermediate analytics results from this layer.
Such intermediate results together with the commuter
sensing results would be also sent to the upper layer.

e Data Fusion & Analytics Layer: This layer firstly ag-
gregates and coordinates the commuter sensing results
from smartphones. After that, it applies the appropriate
fusion logic to combine the commuter sensing results
from smartphones with the intermediate analytics results
from the transportation data. Finally, it provides the key
analytics and insights for the corresponding transportation
service either in an online manner or offline manner.

In short, the above-described three systems in TRANSense
work cooperatively to acquire, process and analyze the data from
both public transportation services and commuters. The final
analytics results would possibly benefit different stakeholders,
including transportation service providers, relevant government
agencies and public commuters.

3 USER CONTEXT COLLECTOR DESIGN

To accurately and effectively collect the commuter context infor-
mation from a smartphone, we adopt a hierarchical decomposition
approach to design and implement a robust and fine-grained
application, called the user context collector (UCC).

3.1 UCC Workflow

The UCC mainly consists of an on-smartphone trigger and three
classifiers. The on-smartphone trigger is mainly used to auto-
matically trigger the sensor data collection, and then the three
classifiers use different feature sets to identify different types of
user activity and context. The basic workflow of the UCC is shown
in Figure 2, which can be described as below:

1) The installed UCC registers and runs a background service,
which periodically fetches the latest location list, such as
the current set of taxi demand hotspots or crowded subway
stations, from a backend service. If the smartphone’s current
location is nearby any listed location, the sensor data collec-
tion is triggered automatically; otherwise, the UCC sleeps for
a specific time period.

2) Once the sensor data collection is triggered, UCC firstly
applies a low-pass filter to the raw 3-axis accelerometer
measurements and transforms the readings from the phone’s
coordinates to the world coordinates, i.e., the earth reference
frame, by multiplying with the rotation matrix [4], [5].

3) The resulting accelerometer frames are first run through a
kinematic motion classifier, to detect whether the smartphone
is in a “fast movement” state, which is possibly caused
by taking a vehicle (subway, bus or taxi) or walking. If
the fast movement is not detected, UCC enables the upper
two classifiers and meanwhile keeps the kinematic motion
classifier running. Whenever a fast movement state is newly
detected (indicating that the user has boarded the bus, taxi or
train), UCC would notify the cloud side, and then abort the
sensor data collection and the classification processes.

4) When no fast movement is detected, the second classifier,
called basic activity classifier, starts to identify user’s basic
activity over short-duration time window (e.g., 2 seconds).
Using the accelerometer data as the input, the classifier has
four output options, namely stationary, stepping, walking
and others, to label each non-overlapping short-duration time
window. The sequence of the classifier outputs serve as the
inputs of the upper advanced activity classifier.

5) The advanced activity classifier performs a more complex
and high-level activity recognition task. Our current design
is to make the distinction between queuing and non-queuing
for each long-term time window (e.g., 120 seconds). If a
queuing activity is successfully detected for the current time
window, it would be continuously running for the next long-
term time window. The classifier currently has two distinct
queuing models: the first model is designed for the com-
mon “continuous” queuing scenarios, e.g., at taxi stand or
supermarket counter, while the second model is for “batched”
queuing behavior, e.g., at a subway or bus station. The
appropriate model is chosen based on the current location
and the corresponding transport service.

Note: While our UCC design is generic, the specific clas-
sification models implemented currently conform to the specific
applications/use cases that we demonstrate. The development of
mobile sensing based commuting activity classifiers is NOT the

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

~ Terminate Sensor Data
—> .
g Collection /

No

___—AnyActivity —___VYes
T Detected? —

‘ Advanced Activity Classification ‘

?

Basic Activity Classification

Results to Cloud Results to Cloud

Send Detection ‘

‘ Send Detection

no
[

Yes) ~ Fast
\;\\\Qe\tect/ejl////
‘ Kinematic Motion Classification }(—
, el ~ N

Start Sensor Data Collection
and Preprocessing
Yes

- ~ Nearbythe ——
T~ Location?

.___________

Periodically Fetch the Latest
Location List from the Cloud
4

On-Smartphone Trigger
~~ RunningBackground

‘\ Service /"

Fig. 2: User Context Collector Workflow

major focus of our work; as needed, the UCC can be extended to
capture other activities (e.g., TransitLabel [6] which captures other
activities inside a subway station).

As described in the UCC workflow, before building the clas-
sification models, the 3-axis acceleration data is first transformed
from the phone’s coordinates to the earth coordinates using the
well-known quaternion-based techniques, and an implementa-
tion publicly available on Google developer manual [7]. The
transformed acceleration measurements are then independent of
phone’s orientation, and thus would not be greatly influenced by
the phone placement and position.

The three classifiers are not strictly in a hierarchical struc-
ture: the advanced activity classifier requires the accurate in-
puts from the basic action classifier, and thus its accuracy is
indeed influenced by the basic action classifier. The kinematic
motion classifier is mainly used to trigger the system using the
detected fast movement, which includes motorized movement,
subway movement and pedestrian movement. For example, when
the motorized movement is wrongly detected as subway movement,
it will also trigger the system and would not directly influence the
accuracy of the upper two classifiers.

3.2 UCC Classifier Design
3.2.1 Basic Feature Extraction

When the UCC application is activated, it firstly transforms 3-axis
accelerometer measurements from the phone coordinates’s to the
world coordinate. After that, the UCC segments the transformed
data into non-overlapping fixed-size frames, and computes the
following features for each frame:

e Frequency Domain: the 5 frequency domain features for
the activity recognition, including spectral energy, entropy,
peak position, wavelet entropy and wavelet magnitude, and
thus a total of 15 features across the 3 axes.

o Time Domain: the 10 time domain features including
mean, variance, standard deviation, magnitude, correla-
tion, minimum, maximum, range, interquartile range and
zero-crossings rate, and thus a total of 30 features across
the 3 axes.

3.2.2 Kinematic Motion Classifier

Running at the root of the UCC classifier hierarchy, the kinematic
motion classifier is mainly used to detect whether the smartphone
user is in a fast movement status or not (i.e., this is, eventually,
a binary classifier). The classifier has four intermediate out-
put options: motorized movement, subway movement, pedestrian
movement and others. Motorized movement means user taking
motorized transportation (e.g., taxi and bus), subway movement
means user taking subway train, pedestrian movement means
user continuously walking. All these three classes are eventually
mapped to a “fast movement” label. Others means that the user
is engaged in some other unknown motion, distinct from “fast
movement”.

The classifier utilizes all the mentioned frequency domain
and time domain features, and thus its feature space consists
of 45 features across the 3 axes. The time domain features
on the horizontal plane provides the highest discrimination for
identifying the accelerations and decelerations that occur when
a user is in a vehicle. The time window size for this classifier
needs to be relatively large to cover several vehicle acceleration or
deceleration periods.

Note that it is also feasible to use alternative methods (e.g.,
GPS-based methods) for fast movement detection, e.g., periodi-
cally estimate the speed using smartphone’s GPS data. However,
the GPS module consumes much more energy than the accelerom-
eter, and is often unsuitable at several transportation-relatedand
locations, such as underground subway stations or taxi stations
in a downtown area with with dense buildings and narrow roads
(urban canyon effect [8]).

3.2.3 Basic Activity Classifier

The basic activity classifier utilizes all the mentioned time domain
and frequency domain features as well. The time window size
for this classifier needs to be relatively small, as a large time
window may cover multiple user basic actions. It would label
each time window with one of the four options, i.e., stationary,
stepping, walking and others. Note that stepping means slowly
moving forward, which often occurs during queuing. The output
labels will be sent to the upper advanced activity classifier as the
inputs.

The main difference between the walking class in the basic ac-
tivity classifier and the pedestrian movement class in the kinematic
motion classifier is the frame size: walking is associated with 2-
second frames, whereas the pedestrian movement class uses a 20-
second frame to capture a relatively long-lived walking activity.
3.2.4 Advanced Activity Classifier

Running at the top level of the UCC classifier hierarchy, the
advanced activity classifier conducts the high-level user activity
distinction. Borrowing from prior work in queuing detection (the
QueueVadis system in [9]), the classifier distinguishes between
queuing and non-queuing activity context.

We separately built two models for two different queuing sce-
narios: (a) model-A is mainly for queuing scenarios where people
move forward gradually, such as at a taxi stand or supermarket
checkout counter; (b) model-B is for scenarios that people move
in a batched fashion, such as at subway platform. Both models
need to aggregate the consecutive outputs from the lower basic
activity classifier and then computes the following features over
the larger time window: the number of transitions between the four
basic actions, the mean and variance of each basic action’s time
duration. Thus, totally 18 features, which are all derived from the

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

basic activity classifier outputs, are used in the advanced activity
classifier. In the evaluation subsection, we shall see that the time
window size for this classifier needs to be large enough to capture
the characteristics of the queuing activity.

3.2.5 Learning Algorithm

We evaluated several supervised learning models, and finally
adopted the decision tree C4.5 for both the kinematic motion clas-
sifier and the basic action classifier, and naive Bayes for the user
activity classifier. The resulting tree models and the probability
models can be interpreted and implemented on smartphones.
3.2.6 Phone Placement and Usage

The phone placement and usage obviously influence the ac-
curacy of the accelerometer-based activity detection. For most
queuing/waiting scenarios, we observe that commuters either
hold the smartphone on their palm or have it inside a garment
pocket or bag; accordingly, we mainly evaluated the classification
performance based on such phone placement positions. Similar
to the most accelerometer-based activity recognition systems,
our classification techniques exhibit poor performance when the
phone is subject to usage-induced artefacts, such as the user
casually swinging or frequently rotating the smartphone. The most
common approach is to simply discard the sensor data when such
artefacts are detected.

3.3 Trigger Mechanism from Cloud

Besides actively triggered from the smartphone, the UCC ap-
plication can also be remotely enabled from the cloud side. In
our implementation, such remote triggering is supported via the
google cloud messaging (GCM) service (which now supports
Android and iOS devices). When a GCM message arrives, it can
wake up the device from the sleep state and then activate the
specific application using the so-called Intent Broadcast. Figure 3
demonstrates the UCC installation and the cloud-based triggering
process.

UCC Trigger Process —_— UCC Installation Process = = == %
4.Send
Data Analytics = » Google GCM
vt Connection
Server
Server N

¥ L4
1 5. Push Notification ']
! [
! 1l
! [
! [
1 0S Intent 1
1 Broadcast [
: Service [

[}
! 1l
! i [
1 6. Trigger UAD [
: [
\ 2. Registration ID | !
----------- e |[¢---=----="|

3. Send Registration 1D N) 1. Register with GCM
Smartphone

Fig. 3: The GCM Workflow with UCC

Normally, each GCM message sent out by the backend system
carries the latest location list, and the enabled UCC would firstly
run a background process to retrieve the current device location
by using the Google Location APIs [10]. If the device’s current
location is close enough to any of the location in the list, the UCC
would then initiate the sensing and analytics pipeline. Otherwise,
the UCC application acknowledges its current location to the
server and continues to sleep.

To determine the current location of the device, UCC adopts
the Google Location APIs which determines the location by
combining different data sources including GPS, cellular signals
and WiFi signatures. The GPS module usually imposes a higher

5

energy overheads than others. In practice, we found that most
of the located places by UCC are fairly accurate even the GPS
module is disabled. It is probably because of the high density of
cellular towers and WiFi access points in Singapore.

3.4 UCC Evaluation

We implemented the Android version of the UCC and tested it on
Samsung Galaxy S3 and S4. The 3-axis accelerometer sampling
frequency is set to 50Hz. The experiment data are collected by
multiple participants at 6 different taxi stands and 9 different sub-
way stations under the following natural, but somewhat-controlled,
scenarios:

e The participant joins a taxi waiting queue, and choose to
either walk away or get on a taxi when he reaches the front
of the queue. The data are collected by 12 participants
during a three-week period.

e The participants join a subway waiting queue on the
platform, and either get on the arriving train or continue
waiting for the next one due to overcrowding. This data are
collected by 12 participants during a three-week period.

e The participants conduct ‘random’ activities (excep-
t queueing) nearby the taxi stands and subway stations,
e.g., talking with others, purchasing coffee from Starbucks,
or simply walking past the taxi stands or subway stations.
The data are collected by 7 participants during a two-week
period.

e The participants take taxi, subway and bus as a normal
passengers. The data are collected by 6 participants during
a two-week period.

For the kinematic motion data (on the train, taxi or bus),
each participant collected data daily (mainly during their trips
between office and home) over multiple days, for a total duration
of 2.1 hours on average. For the basic action data, each participant
collected around 1.2 hour data for each of the four actions respec-
tively (i.e., stationary, stepping, walking and others). Queuing data
was collected for a cumulative duration of approx. 28.6 hours, and
involved 39 different queuing episodes at either taxi stands or
subway stations. When building the classifiers, we randomly split
the training data and testing data into 9:1, and adopt the 10-fold
cross-validation approach to evaluate the built models. Moreover,
we applied sensitivity analysis to ensure that our models did not
suffer from over-fitting.

All the participants are required to record down the ground
truth and use any of the three phone positions, i.e., on palm, in
trouser pocket and in bag, to ensure the results are not sensitive to
the phone placement.

3.4.1 Kinematic Motion Classifier

Table 1 gives the evaluation results of the kinematic motion
classifier: we see that the F1 scores of motorized movement and
pedestrian movement are both above 0.8, demonstrating that the
classifier can well distinguish these two types of fast movement.
The F1 score of subway movement is sightly lower (around 0.75),
which is probably because the subway ride is generally smooth
with limited vibrations and jerks than taking car or walking. To
further improve the accuracy for the subway movement class, the
barometer measurement data can be collected and utilized by the
UCC [11]. In short, the kinematic motion classifier is able to
successfully detect the desired fast movement types (motorized,
subway and pedestrian), which would be used to obtain the queu-
ing end time and timely terminate the UCC sensor data collection.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

TABLE 1: Accuracy of Kinematic Motion Classifier

Precision (%) Recall (%) F1 score

Motorized Movement 86.0 84.1 0.85
Subway Movement 76.2 74.4 0.75
Pedestrian Movement 82.7 87.8 0.86
Others 84.1 82.8 0.83

TABLE 2: Accuracy of Basic Activity Classifier

Precision (%) Recall (%) F1 score
Stationary 87.5 89.4 0.88
Stepping 82.6 80.9 0.82
Walking 87.8 84.3 0.86
Others 80.8 84.0 0.82

By testing different values and evaluating the experiment results,
we set the time window size for this classifier to 20 seconds, as
such period normally covers several rounds of taxi and subway
train accelerations and decelerations.

3.4.2 Basic Action Classifier

Table 2 shows the evaluation results of the basic action classifier
and we see that the overall classification results achieve a high
accuracy (all F1 score above 0.8). The stepping class has a
relatively low F1 score, but the overall experiment results show
that all the desired basic activities can be well identified.

The classifier adopts 2 seconds as its time window size, as
a larger time window may include multiple basic actions (e.g.,
several stepping actions in one time window) and accordingly
decreases the classification accuracy.

3.4.3 Advanced Activity Classifier

Table 3 gives the evaluation results of the advanced activity clas-
sifier in mode-A and mode-B respectively: we see that mode-A
achieves a slightly higher accuracy than mode-B, and meanwhile
the F1 score of the gueuing class in mode-B is slightly below
0.8. It is probably because queuing for subway train on platform
(mode-B) does not involve many ‘typical’ stepping/stationary tran-
sitions. However, the overall results demonstrate that the classifier
can successfully detect the passenger queuing activities in both
mode-A and mode-B, i.e., at both taxi stand and subway platform.

The time window for this classifier needs to cover several taxi
arrival events or train arrival events. In the practical implementa-
tion, the cloud side can periodically compute the average arrival
rate of the taxis or subway trains, and notify the UCC the latest
value for adjusting the window size.

3.4.4 Energy Consumption

Figure 4 shows the energy consumption of UCC: we see that
around 38 milliWatt (mW) is consumed for only sensor data
collection, and the value slightly increases to 53 mW after en-
abling the three classifiers. It indicates that the classifiers impose
insignificant energy overhead. The total energy consumption of
UCC is around 84 mW, which includes running the GCM service
and periodically using the Google Location APIs (GPS disabled).
Note that the above values are obtained by using the total energy
consumption subtracting the background energy consumption,

TABLE 3: Accuracy of Advanced Activity Classifier

F1 Score Mode-A Mode-B
Queuing 0.832 0.794
Non-Queuing 0.890 0.866

% Sensor Data Collection Only
Sensor Data Collection + Kinematic Motion Classifier

u Sensor Data Collection + All Classifiers

5
3

m Overall UCC Application

s v o
& & 8

Energy Consumption (mW)
8

Now
S

5

0

Fig. 4: Energy Consumption of UCC and its Components

where the background energy is measured by keeping the CPU
on using the Android WakeLock mechanism! and meanwhile
minimizing all the default phone services. The Monsoon power
monitor? is used to conduct all the measurements.

4 EXEMPLARY APPLICATION 1: TAXI SERVICE

ANALYZER

To demonstrate the design, operation and performance of our
TRANSense framework, we present two exemplary and practical
applications: taxi service analyzer and subway boarding analyzer.
In this section, we present the faxi service analyzer, with a special
focus on how UCC-generated individual context information is
fused with infrastructural data to detect passenger queues and
estimate the wait time.

4.1

Queuing for taxis is an in-escapable fact of life in densely popu-
lated Asian cities, such as Singapore and Hongkong. Accurate and
real-time estimation of such queuing delays would not only help
public commuters make more-informed transportation choices, but
also help taxi drivers to find the demand hotspots. Moreover,
regulatory authorities (such as the Land Transport Authority (LTA)
in Singapore) require such queue information to develop new
policies and fare structures. Currently, in Singapore, the LTA con-
ducts daily surveys (published publicly®) by manually recording
down the taxi passenger waiting time. Our goal is to replace this
inefficient manual process with an ubiquitous, smartphone-based
approach for both passenger queue detection and queuing delay
estimation.

Problem Description

4.2 Transportation Data Collection Layer

Each taxi in Singapore periodically reports their location, status
and other critical information to the backend via its in-vehicle
device, called mobile device terminal (MDT). By leveraging
on the MDT installed on each taxi, more than 20,000 taxis in
Singapore keep collecting and updating their real-time states and
GPS locations. Such taxi information is then transmitted to a
backend system using either general packet radio service (GPRS)
or 3G cellular network. The transportation data collection layer
would collect and buffer such incoming taxi MDT data.

Each MDT message normally contains five important fields:
Taxi State, GPS Location, Instantaneous Speed, Taxi ID and
Timestamp. The typical taxi states include FREE (available for
passenger), POB (passenger on board) and ONCALL (booked by
passenger). Any change of taxi state would trigger a new MDT

1. https://developer.android.com/training/scheduling/wakelock.
html

2. https://www.msoon.com/LabEquipment/PowerMonitor/

3. http://www.lta.gov.sg/content/ltaweb/en/public- transport/taxis/
taxis-and-the-1ta.html

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

message sent to the backend. Besides, the MDT periodically sends
the GPS location update message. We define the important terms
and expressions to be used for the taxi data processing.

Definition 1. Individual taxi’s trajectory z: A temporally
ordered sequence of the MDT messages from one taxi, i.e., p; —

- —pi = -+ — pp, where p; (1 <4 < n)is the MDT records
containing the taxi state p; s¢qte, instantaneous speed p; speeds
latitude coordinate p; j4¢, longitude coordinate p; ;,, and times-
tamp p.¢s.

Definition 2. Multiple taxis’ trajectory set Z: A collection of
the individual taxi’s trajectories, i.e., Z = {z7|j = 1,2,--},
where 77 is the j** taxi’s individual trajectory.

Definition 3. Demand Hotspot spot set QQjoc: A collection of
locations, i.e., Qo = {gr|7 = 1,2, - -}, where g, is the 7" spot
witnessing a high demand for taxis.

4.3 Transportation Data Processing Layer

In this layer, the main objective is to firstly determine the taxi
demand hotspots, and then infer the hotspots that may have
passenger queue (PQ). The taxi demand hotspots are normally
the most frequent taxi pickup locations, and PQ can be inferred
from the taxi pickup behavior and taxi booking information.

To accurately and timely determine taxi demand hotspots, we
propose a practical algorithm, called demand hotspot detection
(DHD) algorithm. The basic idea behind the DHD algorithm is
that given the taxi trajectory set Z over the buffering duration T3,
we firstly identify the taxi pickup events and their corresponding
locations. After that, it uses the density-based clustering method
to find out all the frequent taxi pickup locations. The complete
algorithm is shown in Algorithm 1.

Algorithm 1 Demand Hotspot Detection Algorithm

Input: All taxi trajectory set Z over buffering duration T3, speed
threshold 7).
Output: Taxi demand hotspot set ;.. over the buffering dura-
tion.
I k+ 1; RF « 0; G« 0
2: for each individual taxi’s trajectory 2z in Z do
3: fori=1—ndo

4: if Pi speca < Msp and R* = () then

5: RE.Add(p;_1); RF.Add(p;);

6: else if p; speea < 7sp and R* # () then
7: RF.Add(p;);

8: else if p; speea > 7sp and R* # () then
9: Rk.Add(pi); k+ k+1; RF « (;

10: for each R* # () do

11: if {p;i state In R changes from FREE to POB OR changes
from ONCALL to POB} then

12: Add the first POB location to the location set G

13: Run DBSCAN clustering algorithm on the set G

14: Add the centroid of the found clusters into Qoc;

The DHD algorithm mainly consists of 3 steps: firstly, it
extracts multiple sub-trajectories from each individual taxi’s tra-
jectory, i.e., R',R?,---, R*, where each sub-trajectory has at
least one record with the speed below the given threshold 7.
They are regarded as the pickup event candidates; secondly, it only
keeps the sub-trajectory RF that has the specific pickup patterns,
namely the taxi state changes from FREE to POB or ONCALL
to POB. From each selected Rk, the algorithm takes its first
POB location after its state transition, and adds it to the location
set (. Finally, the algorithm runs the density-based clustering

7

algorithm DBSCAN [12] on the location set (&, and computes the
centroid of each found clusters. These centroids are the identified
demand hotspots during buffering duration 73. Note that we set
the buffering duration as a fixed-size moving time window to store
and batch process the newly received MDT data.

Based on the identified taxi demand hotspots, the system
further infers potential PQ locations using a simple and practical
method, called passenger inference (PQI) algorithm. As the inputs
of the PQI algorithm, Nyee(gr) is the number of arrival taxis
at hotspot ¢, with FREE state, tyqit(gr) and tgep(q,) are the
average wait time and average departure interval of the arrival
taxis at ¢,. Besides, Noncaii(gr) is the number of arrival taxis
with ONCALL state at g,.. The complete PQI algorithm is shown
in Algorithm 2.

Algorithm 2 Passenger Queue Inference (PQI) Algorithm

Illpl.lt! Nfree(qr)’ Ewmlt(‘]r): {dep(qr)s Noncall (%-), Qloc and
thresholds TNwaitsNdep>Ts>Tl>Tratio-
Output: Labeled possible PQ with type 17, T5 or T5.
1: for each g, in Q. do B
2 if Nfree(qr) < Ts and twait(QT) < Nwait then
3 Label ¢, as a possible PQ location with type 77;
4: elseif Nfree(qr) > 7 and taep(gr) < 7)dep then
5 Label qr as a possible PQ location with type T5;
6 onr‘a” qrg
7

else if > Tratio then
Npree(qr) | . .
Label q, as a possible PQ location with type T3;

In general, the PQI algorithm uses three separate conditions to
infer passengers queuing for taxis:

1) A small number of arrival FREE taxis Ny,c.(g,) and mean-
while a short average taxi wait time %,4::(g.) are both
observed. This condition indicates that all arrival taxis are
quickly taken at hotspot g, but the current taxi supply there
is relatively small.

2) A large number of arrival FREE taxis Nf'r‘ee(QT) and
meanwhile a short average taxi departure interval are both
observed. This condition indicates that a taxi queue may
currently co-exist with a passenger queue at hotspot g;-.

3) A large ratio of arrival ONCALL taxis to FREE taxis at
hotspot g, is observed, which means a large fraction of
passengers choose to book taxis instead of waiting for FREE
ones. This condition is based on the fact that passengers in
Singapore usually prefer hailing down a FREE taxi rather
than booking one due to significant booking charges.

If any one of the above three conditions is satisfied, the
corresponding hotspot would be labeled as possible PQ location,
with the type 77, T5 or T3 respectively, during that buffering time
period. The DHD and PQI algorithms are designed based on our
previous study [13], where we also use taxi status transitions to
identify the demand hotspots. A key differentiator in this work is
the introduction of a new condition in the PQI algorithm, i.e., the
ratio of ONCALL taxis to FREE taxis, to infer PQ.

The latest inferred PQ would be added into the location list
on the cloud side, which can be fetched by the running UCC
application. Meanwhile, the cloud side actively triggers the UCC
application (via GCM messages) on mobile devices that were
reported to be near such PQ locations.

4.4 Data Fusion & Analytics Layer

This layer aggregates the queue sensing results from the smart-
phones and conducts the two analytics tasks: 1) validate the

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

existence of PQ; 2) estimate the average passenger wait time,
denoted as 7.

When a user ‘joining’ or ‘leaving’ a queue event successfully
detected, the UCC would send out a message to the cloud side,
comprising a 4-tuple payload (id,desc, time,loc), where id is
the smartphone’s GCM ID, desc is either queuing start or queuing
end, time is the current timestamp, and [oc is the device location.
We design a novel algorithm, called passenger queue validation
(PQV) algorithm (see algorithm 3), to process the delivered UCC
messages and conduct the two analytics tasks.

Algorithm 3 Passenger Queue Validation (PQV) Algorithm

Input: A new UCC message (id, desc, time, loc), hash table W,
hotspot set (0o, threshold 74,5+ and 7.
Output: Validated passenger queue and avg. wait time 7,.
1: if id is not a key in I/ then
2: for each g, in Q. do
3: if distance(loc,) < N4;s¢ AND desc = start then
4: Insert a new key-value pair (id, [g,,time]) into the
hash table W; N(q,) < N(qr) + 1;

5: if N(g,) > 1, then

6: Validate a passenger queue at g, ;

7: else if id is an existing key in W then

8: Get the value [g,, t5] from W using id;

9: if desc = end AND t4 # null AND time # null then
10: Validate a passenger queue at g,

i Tpglgy) < Dealtlrlospimerte,

12: Remove the key-value pair (id, [g,ts]) from W;

Briefly speaking, the algorithm runs in a message driven way,
meaning each arrived UCC message would invoke the algorithm
once. Moreover, the algorithm constructs a hash table W, whose
key is the GCM ID (i.e., id) and the value is the user queuing
start time ts together with the corresponding hotspot location
gr- Whenever an UCC message sent from a new smartphone,
i.e., id is not an existing key in W, the PQV algorithm would
then check whether the location [oc is close to any hotspot and
whether the UCC message is a “queuing start” message. If both
conditions are true, the algorithm would insert a new key-value
pair, i.e., (id, [gy,time]), into the hash table TV, and count one
more queuing user at ¢,. If the number N (g,) is more than the
threshold 7),, PQV would validate a passenger queue at g,.. The
basic design logic is that a passenger queue can be confirmed
when several queuing passengers are detected at the same hotspot.

When id is an existing key in W, namely the UCC message
sent from a commuter who already starts queuing, the algorithm
would directly retrieve the stored values from W, i.e., the queuing
start time t; and the queuing location, say g,. It then checks
whether the delivered message is a “queuing end” message, i.e.,
desc = end. If it is true, PQV would validate the passenger queue
at ¢,-, and meanwhile update the estimated wait time value T}, at
q,. Finally, the existing key-value pair would be removed from the
hash table V.

In the practical implementation, when no UCC message atrives
from hotspot g, for more than one buffering duration, all the
corresponding variables, including T}, (g,) and N(g,), would be
initialized. A key attractive feature of the PQV algorithm is that it
does not require a high deployment density—i.e., the the queuing
context from a small proportion of waiting passengers can validate
passenger queues and estimate average passenger wait time.

=—#—Inferred Passenger Queue Hotspot =—fi—Total Hotspot

Number of Hotspots

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time
Fig. 5: Variance of Hotspot Number

TABLE 4: PQ Inference Results and Validation

Type Labeled by PQI Algorithm Percentage Average Failed Booking Number

T, 22.9% 4.53
T, 5.6% 1.45
T, 10.2% 3.63
Non-Labeled 61.3% 0.66

4.5 Experimental Results

We run the DHD algorithm and the PQI algorithm on the taxi data
during one month period: the speed threshold 7)5;, and the buffering
duration 7} in DHD algorithm are set to 10 km per hour and
1800 seconds respectively. The thresholds in the PQI algorithm
are the localized parameters: for a given hotspot, we compute
its 20" percentile of taxi wait time and 20" percentile of taxi
departure intervals, and use these two values as the thresholds
Thwait and 74ep respectively; similarly, we compute the 20t
percentile and 80" percentile of FREE taxi arrival number during
each buffering period, and use the two values as the thresholds 7
and 7; respectively; the last threshold 7,44, is set to the average
ratio of booking job number to the street job number at the given
hotspot.

Figure 5 shows the average number of the identified demand
hotspots and the inferred PQ hotspots at different time slots. We
see that the total number of the demand hotspots significantly
increases during the day time, and less than 50% demand hotspots
are inferred as PQ hotspots during the peak hours (11AM to
10PM). Hence, it is not necessary to conduct the smartphone
sensing at all the identified hotspots; we can focus on the inferred
PQ hotspots. For practical reasons, it is hard for us to concurrently
and continually monitor the 120+ possible hotspots in Singapore
to collect the corresponding ground truth. Instead, we utilize the
manually collected taxi wait times, at 29 designated hotspots,
published by Singapore government [14] to perform partial vali-
dation of our results. In particular, all the 29 hotspots are correctly
detected by the DHD algorithm (thus demonstrating 100% recall).
and they follow the same time-variant pattern shown in Figure 5.

We select 15 busy demand hotspots, and Table 4 summarizes
their PQ inference results: the first column is the labeled type
by the PQI algorithm, and the second column is the inferred
PQ time in percentage. It shows that averagely 22.9%, 5.6% and
10.2% of the time slots are labeled as 7', T, and T3 respectively.
Meanwhile, 61.3% time slots are not labeled, meaning the nearby
participating smartphones would not be triggered then and the cor-
responding energy cost on smartphones would be saved. Assuming
a worst-case scenario, where a smartphone is perpetually near a
demand hotspot, we see that the UCC on the smartphone would
run for approx. 4 hours each day (2 hours in the morning peak and
2 hours in the evening peak). Even in this pessimistic scenario, the
UCC'’s daily energy consumption is approx. 350 milliWatt-hours,
i.e., around 4.4% of the nominal battery capacity of a Samsung

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

Number of Hotspot Pairs
100 200 300 400 500 600

0
1

T
0 5000

10000
Distance between Two Hotspots (Meter)
Fig. 6: Histogram of Distance between Two Hotspots

15000 20000 25000

smartphone (7.98Wh).

The third column in Table 4 is the corresponding failed
booking number: a failed booking means a taxi booking request
dispatched to the taxis nearby but no one available, and thus a
large failed booking number at a hotspot indicates the current taxi
supply less than its demand here. We see that the non-labeled
type has a much smaller failed booking number, i.e., 0.66, than
the other three types, which at least to some extent validates the
PQ inference results. The type 75 has a relatively lower number
(i.e.,1.45) than type T} and T3. It is possibly due to 75 is derived
from the condition that a large number of FREE arrival taxis with
a fast departure rate: where passengers see more FREE taxis and
thus are more willing to wait in the queue rather than booking one.

Figure 6 shows the histogram of the distance between any two
identified demand hotspots: only 4 pairs have the distance smaller
than 50 meters, and the majority falls in the range of 1000 to 5000
meters. Given the GPS localization error can be several meter-
s [15], it shows that most identified demand hotspots are relatively
far from each other, and thus the commodity smartphones with
GPS module are able to well localize and distinguish these demand
hotspots. The identified demand hotspots include not only the taxi
stands, but also other popular pickup locations, such as hospitals
and schools.

We conduct the passenger queue validation experiments during
both morning and evening peak hours at 6 different busy hotspots,
which consists of totally 31 sessions and each session operates
at least 30 minutes. During the session, 3 to 5 participants
randomly join the PQ with their own smartphones running the
UCC application. The smartphones are put into the participant’s
trouser pocket or holding on the palm. An observer takes down
the ground truth during each session: the start and the end time
of each queuing people (including both the participants and other
queuing passengers). The commercial 3G cellular networks are
used to communicate with the backend cloud. On the cloud side,
the distance threshold 74;5¢ and the parameter 7, used in the PQV
algorithm are set to 100 meters and 3 respectively. Meanwhile, all
the UCC applications periodically fetch the location list from the
cloud every 3 minutes.

Among all the sessions, 90.3% sessions successfully validate
the PQ at the given hotspot. The unsuccessful cases are mainly
due to two reasons: 1) the queuing time is too short to be captured
by the UCC application (typically smaller than 90 seconds); 2) the
UCC application misclassifies the queuing activity into the non-
queuing activity. Figure 7 shows the box plots of the passenger
wait time from the PQV algorithm and the ground truth collected
by the observer during both the morning sessions and evening
sessions. We see that the system can fairly estimate the passenger

9
700 1,200 -
— 600 S 1,000
o1

] [a |
T o g 800
£ =
= 400 =
I S 600
o
= 300 J %
g | & 400
® 500 @
2 2
& 100 & 200
-9

0 . : 0

Ground Truth PQv Ground Truth PQV

(a) Morning Sessions (b) Evening Sessions

Fig. 7: Estimation of Passenger Wait Time

Fig. 8: Queuing Passengers inside a Subway Station
wait time with the average mean error less than 15%. Note that
the box plot results are based on the fact that at least 3 participants
with UCC in the same passenger queue, while the estimation error
may increase if fewer participants conduct sensing there. In short,
the experiment results show that the system can accurately validate
PQ and meanwhile fairly estimate the passenger wait time at the
hotspots.

5 EXEMPLARY APPLICATION 2: SUBWAY BOARD-

ING ANALYZER

In this section, we present the second application, which collab-
oratively uses personal smartphone sensing data in tandem with
records of passenger ingress/exit activity at subway stations.

5.1 Problem Description

Due to the popularity of the subway system (which provides a
reliable and extensive transportation network that is immune to
traffic jams or bad weather), there is an extremely high demand,
especially during peak hours. (Fig. 8 shows a snapshot of queuing
passengers inside a Singapore subway station.) As a result, trains
often get filled beyond their maximum loading capacity, and
queuing commuters at subsequent stops may not be able to board
an arriving train, but instead have to wait for the subsequent
train on the platform. Such “failed boarding” (FB) events are
not uncommon at the busy stations in Singapore, and contribute
significantly to a lowered perception of the overall commuting
experience.

To capture such individual-specific FB events, we require
information from both an individual commuter and the subway
operations infrastructure. Currently, the subway stations use auto-
matic ticketing gantries, which require commuters to tap in and tap
out their RFID-equipped tickets, thereby providing a repository of
timestamped entry/exit traces of passenger data. By leveraging on
such large-scale subway informatics records and individual-level
smartphone sensing, our TRANSense framework can enumerate
the severity of FB events at different stations/platforms.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

TABLE 5: Field and Description of Ticketing Card Record

Field Description

Card_Number Encrypted Card ID
Entry_DT Date and Time when Passenger Entering Station
Exit_DT Date and Time when Passenger Exiting Station
Origin Location ID of Entry Station
Destination Location ID of Exit Station

5.2 Transportation Data Collection Layer

In Singapore, the subway system, called massive rapid transit (M-
RT) system, serves more than one million commuters daily [16].
The deployed automatic ticketing system uses a contactless ticket-
ing card to charge the trip fares at all subway stations. As ticketing
card users get a fare discount, nearly all Singaporean residents
(and the vast majority of visitors) use the card to utilize MRT and
bus services. For the MRT service, the ticketing card is required
to tap in and tap out at the gantry to calculate the current trip
fare. Each card transaction record in the system contains multiple
fields; for our FB-analytics work, we use only the fields (which
are completely anonymous) summarized in Table 5.

5.3 Transportation Data Processing Layer

This layer has two objectives (both based on the ticketing card
data): (a) the main objective is to detect the subway train arrival
events on the platform, while (b) a secondary objective is to
identify the likely “crowded” subway stations (this identification
being used to trigger the sensing/analytics by the UCC client on
nearby mobile devices).

Train Arrival Detection: While the subway trains nominally have
a fixed arrival time schedule, in practice, they are easily delayed
due to longer boarding time or other unexpected situations, es-
pecially during the peak hours. Even a single train’s short delay
at a station results in cascaded impacts on multiple subsequent
operating trains and their arrival time. We thus design a practical
algorithm, called train arrival detection (TAD), to detect the actual
train arrival time using the ticketing card data. The complete
algorithm is shown in Algorithm 4 and 5.

The basic idea is as follows: shortly after the arrival of a train
at a busy station, alighting passengers would lead to a burst of
tap-out transactions at the station. Therefore, such train arrival
events can be detected by discovering such short-lived deviations
in the overall tap-out rate in the ticketing card transactional data.
In our current implementation, the large volume of ticketing card
data is maintained in a Hadoop system, and analyzed using the
MapReduce framework. The Mapper essentially groups all the
ticketing card records of an individual destination station. A
Reducer will firstly uses the given MRT station ID to find all
the exiting passengers at the station during the given time window
W . It then classifies the exiting passengers into different traveling
directions by utilizing their origin station ID. (Note: the need
to obtain the traveling direction arises because we would like
to distinguish between the arrival of trains on the two different
directions of travel associated with each train line.) After that, the
algorithm counts the number of departing passengers separately
(for each direction) during the current time window, e.g., /N 4 , and
the next time window, e.g., N’;. Finally, the algorithm identifies
the train “arrival events” using the following two conditions: 1) a
significant increase from Ny to N 1’4; 2) no train arrival event is
detected during the last time window at that direction. In addition,
At is deducted from the marked time window W' at the final
step, to account for the time that a passenger takes to walk
from the platform to the station exit gantry. At is clearly station

10

dependent (it mainly depends on the internal layout of the station)
and typically ranges between 60-180 seconds in our studies.

Algorithm 4 Map Function of the TAD algorithm

Input: An empty key, and a card transaction record value
1: if value is valid then
2: Set key = value.Destination;
3: Emit(key, value);

Algorithm 5 Reduce Function of the TAD algorithm

Input: A key of a station ID, and an iterator values, threshold 6.
1: Initiate empty lists Q;
: while values.hasNext() do
Q.add(values.next());
: Sort Q based on Exir_DT, denoted as {ez(i)|i = 1,2,---};
: Set the sliding time window W, and N4 <— 0, Np < 0;
: for all ez(i).Exit_DT in W do
if ez(7).Origin € Direction A then
Ny Ny+1;
else if e2(7).Origin € Direction B then
Np + Np +1;
: Slide to next time window W';
: Repeat the above steps to obtain N’y and N during W',
. if %_ANA > f AND W is not marked for Direction A then
Mark W' for Direction A as a train arrival time window;
. if %;NB > 6 AND W is not marked for Direction B then
Mark W’ for Direction B as a train arrival time window;
: emit(key, marked time window W' — At);

e e e e

In the TAD algorithm, we use the “origin station ID” to help
determine the train’s direction. In reality, some origin stations can-
not clearly indicate the passenger’s travelling direction, as multiple
feasible (and likely) routes (on different lines) may exist between
the observed (origin, destination) pair. However, for each direction
at a given destination station, it is possible to find a smaller set of
“unambiguous” origin stations, which provide a clear indication
of the passenger travel direction. Such an “unambiguous” origin
station has two properties: 1) either there is only one feasible route
from it to the destination; 2) or there may be multiple routes, but
one route has a significantly shorter traveling time than other alter-
natives. In the practical implementation of the TAD algorithm, for
any given destination station, the system only choose the ticketing
card records generated by such “unambiguous” origin stations.
We do observe that the number of such “unambiguous” stations
is much lower at key interchange stations (where multiple lines
intersect). As a consequence, the overall volume of ticketing card
records processed by the TAD algorithm may be much smaller
than the total volume of exiting passengers, thereby potentially
impacting the accuracy of our analysis. In such cases, the system
may need to utilize additional information from the ticketing
system: for example, the entry/exit gantry ID would be helpful,
as passengers with different subway lines/directions usually use
different gantries. For our current paper, we perform the analysis
with TAD only on those stations that have a sufficient number
of “unambiguous” origin stations (and thus do not require any
additional gantry-level information).

The threshold 6 affects the accuracy of train arrival detection.
An overly large value fails to detect the actual train arrival events,
while an unduly small value leads to false alarm (too many train
arrival events). Moreover, an appropriate value for 6 also depends
on each station’s popularity (the intensity of departing or arriving

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

passengers at different times). Hence, our approach models 6
as a station-specific parameter; we shall explain the empirical
derivation of 6 later, when we describe the experimental results.
Note that, in the future, § may also be continually adjusted by
automated machine learning techniques that effectively attempt
to match the inter-arrival distribution and total number of train
arrivals to known values obtained from external observations (e.g.,
known values of train frequencies).

Crowded Station Identification (CSI): A separate CSI algorithm
is used to process the underlying ticketing card transactional
records to identify the set of crowded stations—i.e., the ones where
there is likely to be a higher incidence of FB events. The basic
idea is as follows: a crowded station usually has a large mismatch
between the number of entry passengers and exit passengers, with
the number of entry passengers far exceeding the exiting ones.
The core logic of the CSI algorithm (represented as the Reduce
operation of a separate Map-Reduce implementation) is shown in
Algorithm 6.

Algorithm 6 Crowded Station Identification (CSI) Algorithm

Input: Grouped card records {ez (i) = 1,2, - -}, station ID s,
and thresholds 7).
Output: Marked crowded subway station.
1: Set sliding time window W, and Nepyry < 0, Negiy < 0;
2: for each ez(i) do

3: if ez(i).Origin = s; AND ez(i).Entry_DT € W

then

4: Nentry — Nentry + 1;

5: if ez(i).Destination = s; AND ez(i).Exit_DT € W
then

6: N NezitN<_ Nem’t +1;
Loe entry —{Newit
: lf W > T] then
8: Mark s; as a crowded station during time window W;

-

Similar to the TAD algorithm, the mapper function groups all
the ticketing card records by origin station and destination station,
and sends them to a reducer to process. The CSI algorithm on
the reducer side operates on a per-station basis, first calculating
the difference between the corresponding entry rate and departure
rate. If the mismatch is larger than the threshold value, the algo-
rithm will mark the station crowded. As a result, the TRANSense
framework would then trigger the UCC applications (in a manner
similar to the Taxi Analyzer application) on nearby smartphones
to activate the sensing needed to detect potential FB events. The
threshold 7 in the CSI algorithm is critical: An overly large value
would result the system failing to detect the crowded stations,
while an unduly small value would lead to a number of false
alarms. Hence, it is carefully set as a station-specific parameter as
well, which will be elaborated in the evaluation part.

5.4 Data Fusion & Analytics Layer

In this layer, the main objective is to detect FB events by
combining the detected train arrival events and the smartphone
sensing results from the UCC applications. The designed UCC
application can detect the passenger queuing activity on the
platform (by mode-B of the advanced activity classifier) and
the subway movement (by its kinematic motion classifier)—i.e.,
it can detect both queuing-related behavior by a passenger on
the platform as well as the subsequent subway movement state
of a passenger who has successfully boarded the train. More
specifically, the UCC classifier would notify the server of a 4-
tuple payload (id, desc, time, loc), where id is the smartphone’s

11

GCM 1D, desc is either queuing or subway movement, time is
the current timestamp, and [oc is the device’s location.

We now present the failed boarding detection (FBD) algorithm
that identifies such FB events by combining such mobile device-
generated alerts with the train arrival events detected from the
ticketing card data. The complete one is shown in algorithm 7.

Algorithm 7 Failed Boarding Detection (FBD) Algorithm

Input: A new UCC message (id,desc,time,loc), hash ta-
ble Hr, station set S and the threshold 7)4;s¢.

Output: Detected FB events.

1: if ¢d is not a key in Hp then

2 for each station s; in S do

3 if distance(loc, s;) < ng;st AND desc = queuing then

4: Insert a new key-value pair (id, [s;,time]) into Hr;
5: else if id is an existing key in H7 then
6
7
8
9

Get the value [s;, t5] from Hy using the id;
if desc = subway movement then
Get the moving direction, say A, using loc and s;;
if any train arrival detected during [¢s, time] in A then
10: A new FB event detected at station s; in direction A;
11: Remove the key-value pair (id, [s;,ts]) from Hr;

Similar to the PQV algorithm used in the taxi service, the FBD
algorithm also runs in a message driven way—i,.e., each arriving
UCC message would invoke the algorithm once. It constructs a
hash table Hp, whose key is the GCM ID of smartphones and
value is the queuing time ¢ together with the subway station s;.
Whenever an UCC message sent from a new smartphone, i.e., ¢d
is not a key in the hash table H7, FBD would then check whether
the smartphone location [oc is close enough to a subway station
and whether the UCC message is a “queuing” message. If both
conditions are true, the algorithm would insert a new key-value
pair, i.e., (id, [s;,time]), into the hash table Hr.

Whenever the arrived id is an existing key in H7, meaning
the UCC message is sent from a smartphone whose user is already
in the “queuing” state, FBD would directly retrieve the stored
value from Hr, i.e., subway station s; and queuing time t. If the
UCC message is a “subway movement” message, the algorithm
will get the smartphone’s moving direction based on its latest
location and its queuing station. However, if any train arrival in
the same direction is detected during the time period for which
the user was in the ‘queuing’ state, the algorithm would confirm a
new FB event detected (for that specific user) at that station. The
existing key-value pair would be removed from the hash table Hrp.

Note that the proposed algorithm identifies the FB events
of only the participating smartphone users. It may thus appear
that this system is capable only of providing individual-specific
insight about the commuting experience. However, in reality,
multiple commuters typically the same “skip the current train”
behavior when faced with an overcrowded train. Accordingly, it
is not necessary to capture FB events from all commuters on
a platform. The detection of multiple FB events from even a
smaller set of participatory users can alert the train operator that
the train has become overcrowded. Accordingly, for this particular
application, the TRANSense framework is capable of providing
useful aggregate-level insights as well.

5.5 Experimental Results

We ran the TAD and CSI algorithms on our one-month long
subway dataset (which included nearly 50 million transaction

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

@
3

| A\ Detected Train Arrival Event

N w Y w
S 3 3 3

Number of Exit Transactions (Direction A)
n
5

0

2 B A0 b Ah A® AP A b ab g® gb a®

s“'@ »° «5"‘@ s“"‘“b KO SN s“‘;_ N i AR R A L
ime

Fig. 9: Detected Train Arrival Events using Ticketing Card Data

records from 1.7 million subway commuters). The sliding time
window size W is set to 60 seconds and 900 seconds for the
TAD algorithm and CSI algorithm respectively. The parameters 6
used in the TAD algorithm and 7 used in the CSI algorithm are
computed empirically for each individual MRT station as follows.
For a given station, we collect its exit passenger numbers at each
time window and then compute the 60" percentile over all the
positive increasing rates (i.e., windows where the passenger exit
exceeds that of the prior window). The computed value is used
as the threshold 6 for that station. Separately, we calculate the
difference of entry rate and exit rate during each of “net inflow”
time windows (i.e., time windows where the entry passenger count
exceeds the exit count), and then use the]0th percentile over all
such differences as the threshold 7 for that station.

TAD & CSI Performance:

We run the TAD algorithm at the busy stations during morning
peak (7:30AM-9:30AM) and evening peak (17:30PM-19:30PM)
periods. Our results show that 86.7% train arrival events are
successfully detected. TAD fails in two distinct scenarios: 1) when
two consecutive trains arrive within a short time interval; or 2)
only a few passengers alight from the arrival train (and thus do not
cause a blip in the MRT exit records). Fig. 9 shows an example of
applying TAD at a busy station during the evening peak hour: we
see that during the 30-minute time period, 9 train arrival events
are successfully detected, with the average inter-train arrival gap
of approx. 200 seconds. TAD failed to detect only one train arrival
(the event at 18:07PM), as its arrival time was quite close to the
previous one (only around 100 seconds time interval).

We run the CSI algorithm on the same period of the ticketing
card data: of the total set of subway stations, we find that 11 and
13 subway stations, respectively, are frequently (more than 75%
of the time) marked as “crowded’ stations during the morning
peak and the evening peak hours. During the morning peak, the
total hourly entry rate is around 65000 and the exit rate is around
33000-i,e., on average, around 1084 passengers enter and 617
passengers leave these 11 stations every minute.

FB Detection Performance: To study the ability to accurately
detect FB events, we conducted multiple experiments, during both
morning peak and evening peak hours, at 9 different subway
stations (consists of of a total of 22 distinct sessions). During
each session, 3 to 4 participants joined the waiting queue on the
platform with the smartphone running the UCC application. The
smartphones were either in the participant’s trouser pocket or held
in their hand. A separate observer noted the ground truth of each
participant (his or her ‘queuing start’ and ‘train boarding’ times)
during the session, as well as the arrival and departure time of
each train on the platform. The commercial 3G cellular networks
are used to communicate with the backend cloud. On the cloud

12
TABLE 6: Failed Boarding Detection Results

Detected Number Ground Truth Percentage

Morning Peak Hours 27 31 87.1%
Evening Peak Hours 26 29 89.7%
Total 53 60 88.3%

TABLE 7: Accuracy of Two Methods for FB Detection

FB Detection Method Precision (%) Recall (%) F1 score
Subway Data + Smartphone Sensing 94.6 88.3 0.91
Smartphone Sensing Only 32.5 91.6 0.48

side, the distance threshold 74;5; used in the FBD algorithm is set
to 100 meters. All the participating UCC applications periodically
fetch the crowded station list from the cloud every 5 minutes. Note
that one FB event means one participant failed to board the latest
arrival train; for some sessions, we may have no FB event (as all
participants successfully boarded the first arriving train).

Table 6 summarizes the FB event detection results: we see
that 87.1% and 89.7% FB events are successfully captured during
the morning session and evening sessions respectively. We also
found that nearly 30% of the detected FB events occurred con-
secutively—implying that the participants failed to board multiple
consecutively-arriving trains due to overcrowding. On the other
hand, around 11.7% FB events are not detected—such false nega-
tives were mainly caused by the UCC classification errors in the
kinematic motion classifier and advanced activity classifier.

To clearly understand the need for combining such MRT and
mobile sensing data, we compared our approach with an alterna-
tive smartphone-only method, where only smartphone sensing was
used to detect the FB events. In this approach, we assumed that an
FB event occurred whenever a queuing commuter’s activity (on
the platform), as computed by basic activity classifier in UCC,
was seen to transition either (i) from stationary to stepping or
(i1) from emphstationary. Table 7 gives the FB detection results
for both the TRANSense and smartphone-only approaches: we see
that both methods achieve a good recall rate, implying that most
of actual FB events can be successfully detected by both methods.
However, the precision of the second method (smartphone sensing
only) is significantly lower, i.e., only around 32.5%, due to a large
number of false positive cases. In particular, in the absence of
corroborating train arrival data, random movements of a commuter
are interpreted incorrectly as FB events, leading to a high false-
positive rate.

In summary, the experimental results show that the TRANSense
framework can accurately capture the FB events for the subway
service, and that the collaborative fusion of the subway data
with the smartphone sensing data significantly increases the FB
detection accuracy.

6 DiscussION
6.1 Possible Limitations

In general, our algorithms are based on the expected behavior
of commuters at typical high-demand hotspots (for both taxis
and train stations), and may need to be extended to handle
less-common scenarios. For example, the Taxi Service Analyzer
assumes that a large queuing time occurs primarily at hotspots
(those locations with a significant number of taxi pickup events).
However, there may be certain remote passenger queuing location-
s, where the overall taxi demand is low but taxi arrivals are even
more intermittent. While it is likely that passengers may simply
book taxis at such locations, the long wait time is still unavoidable,
and thus new algorithms and design may be needed for such
cases. Similarly, the Subway Boarding Analyzer assumes that the

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

arrival of a crowded train at a platform will usually result in a
noticeable number of disembarkations and consequent passenger
‘tap-out’ transactions. While it is a reasonable assumption, this
approach of detecting train arrival events will fail for some special
stations (through which most passengers simply transit without
leaving the station). A more careful analysis of the passenger
entry/exit patterns at upstream and downstream stations (that needs
to effectively take into account the connectivity graph of the train
network) might be able to reveal such ‘hidden crowding’ cases.

Some time-dependent and location-dependent parameters used
in the current algorithms, such as the thresholds used in Algo-
rithm 5 and 6, are crucial to the system performance. Currently,
these parameters are derived from empirical observations using a
primarily heuristic approach. To provide greater robustness, we
are now exploring the use of machine learning techniques to au-
tomatically derive these values based on historical measurements.
For example, the thresholds can be learnt via simple adaptation
techniques that aim to maximize the correlation or agreement
between sampled ground-truth values and inferences obtained via
our algorithms. Moreover, cost-sensitive classification techniques
can be used to appropriately reflect the application-specific desired
tradeoff between false-positive and false-negative errors.

6.2 Offline vs Real-time Implementation

The empirical results presented in this paper are all based on
offline analytics—using traces of historical subway and taxi data,
and replaying them through the developed TRANSense modules.
While such offline analytics is adequate for our goals (of demon-
strating the unique ways in which transactional transport data can
be combined with participatory mobile sensing), additional modest
system enhancements may be needed to support a more real-time
implementation. For example, the detection algorithms for taxi
hotspot locations or crowded stations may need to modified to
support more aggressive and early detection; similarly, the Map-
Reduce based implementation of our analytics may need to be
enhanced to support asynchronous (potentially delayed) arrival
of transactional data. Such “systems” issues provide interesting
directions for future work.

6.3 Smartphone Sensing Enhancement

In the current implementation of the UCC application, we do
not make a distinction between car movement and bus movement
in the kinematic motion classifier and simply regard both as the
motorized movement class. It is feasible to further classify these
two transport modes in the next version of UCC: such design
would help the Taxi Service Analyzer to easily exclude the bus
passengers at the locations where taxi demand hotspots are nearby
the bus stops. More features and sensor data may need to be added,
such as using the audio sensor [17] to detect the beep sound of the
ticketing card reader on the bus. Besides, the UCC application may
need to keep running for additional several minutes, especially
after commuters getting on the vehicle, to accurately identify the
transportation mode. Besides, the bus-related commuter sensing
information, combing with the public bus data, would enable
building a new analyzer specifically for the bus service.

6.4 Transportation Data Enrichment

In the given two exemplary applications, we only use the basic
information of the transportation data from the taxi system and
subway system. The richer and better quality of transportation
data would help to significantly improve the system performance.

13

Take the current Subway Boarding Analyzer as an example: it
is relatively hard to accurately detect the train arrivals at some
interchange stations by only using the origin and destination
station ID, as such origin-destination pairs cannot determine a
unique train route and direction. However, it would be much easier
to tackle this issue, when the system further utilizes the exit gantry
ID, as subway commuters taking different subway lines normally
pass through different gantries at the interchange stations.

Furthermore, the transportation data used in the current two ap-
plications are mainly collected from the public transport operators.
The latest technologies, e.g., near field communication (NFC),
would enable the smartphone-based payment for the transportation
service, and thus the smartphone may have both transportation
service information and user activity information. It would enable
a new way to aggregate the information from both sides, and
accordingly facilitate building new analytics applications for the
public transportation services.

6.5 Potential Applications

The core of the proposed TRANSense framework is the belief
that combining data from transportation-related infrastructural
information sources with personal mobile sensing can provide
richer person-centric insights that go beyond simple operational
statistics. Such insights can benefit both the commuting public
and transportation operators. For example, accurate and real-time
estimation of queuing delays at bus stations and taxi stands can
be integrated into a travel-planning mobile application, which
a commuter can use to make better real-time decisions (e.g.,
deciding whether to wait for a taxi or take a bus from a nearby lo-
cation). Accurate and fine-grained understanding of a commuter’s
transportation-related experiences can also help operators engage
better with consumers. For example, if the application detects
multiple failed-boarding attempts, it can provide dynamic rewards
to specific commuters, thus helping assuage some of their justified
resentment. In a similar vein, if an application can accurately
detect how long an individual elderly commuter had to stand
in a bus before getting a seat (as opposed to just computing
overall crowdedness levels), operators could preferentially reward
such commuters with incentives (e.g., higher chances of winning
lucky draws) or more intelligently deploy small autonomous bus
fleets on targeted short-distance routes (thereby tackling localized
aggravations that are hard to infer purely from infrastructural
data).

Note also that, while the specific two applications described
here were driven by the characteristics of the Singaporean trans-
portation network, the generic TRANSense concepts can apply to
other cities, which may have their own distinct characteristics.
For example, cities such as London have a flat fare system
for buses, and hence cannot track passenger disembarkations—
in such scenarios, TRANSense can provide useful fine-grained
observations on a commuter’s behavior.

7 RELATED WORK

7.1 Urban Computing and Transport Data

Taking advantage of the vast amounts of mobile data generated
from heterogeneous sources in urban space, urban computing [18]
principally focuses on quantifying key aggregate-level metrics for
improved city operations. As part of these efforts, public trans-
portation data, including taxi data [19] and smart card data [2],
have been widely used to tackle a variety of urban problems.
For example, the taxi data are used to study urban planning [20],
traffic mobility [21] and the driver recommender systems [22].

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

Transactions on Mobile Computing

The smart card data are used for travel behavior analysis [23],
passenger segmentation [24] and station density study [25]. We
utilize such city-scale datasets in tandem with modest amounts of
participatory mobile sensing to uncover other a commuter’s latent
and personalized experiences with transportation services.

A number of cities are now making transportation related
datasets more publicly available. For example, Copenhagen pro-
vides a platform called city data exchange [26] to publish its
bicycling and other transportation data. London [27] and Los
Angels [28] also provide similar platforms and transportation
datasets to support urban computing and data analytics.

7.2 Mobile Phone Sensing

The camera-based solutions [29] for human activity recognition
usually suffer the complexity and the privacy issues [30], and the
solutions using wearable sensors can well address such issues,
especially for the classification of everyday locomotive activities
(such as sitting, standing and walking) [31]. On the other hand,
the sensor-based activity classification techniques exhibit poor
performance when the sensor is subject to usage-induced artefacts,
such as the user casually swinging or frequently rotating. The most
common approach is to simply discard the sensor data when such
artefacts are detected.

Smartphone-based sensing and activity recognition [32], in-
cluding analysis of user queuing behavior [9], have made rapid
progress recently. Smartphone sensor data has also been used
to classify different modes of vehicular transport, including bus,
car and trains in [33]. These studies utilize different features
extracted from a variety of smartphone sensors, especially from
the 3-axis accelerometers. Alternative sensing modalities have also
been used to infer urban commuting states, e.g., Anderson and
Muller [34] explored the use of cellular signal variation to capture
different types of user movement. Our UCC application utilizes
the same inertial-sensing based estimation strategy; however, we
innovate in developing an energy-efficient triggering strategy and
a 3-tier classification architecture that is specially tuned to our
commuting activities of interest.

7.3 Participatory Sensing

Participatory sensing [3] approaches rely on the voluntary con-
tribution of mobile sensing data from multiple participants to
infer various urban environmental states. Zhou et al. [17] utilize
mobile phone’s cellular signal and audio information from bus
passengers to predict bus arrival time. Ganti et al. [35] gather
vehicles’ on-board diagnostics and location information to study
the fuel efficiency for different routes. Consolvo et al. [36] collect
individual’s nutrition and exercise information to track their per-
sonal fitness. More recently, Elhamshary et al. [6] have developed
the TransitLabel system to annotate various semantic locations at
train stations, based on large-scale participatory sensor data.

8 CONCLUSION

We have introduced the TRANSense framework, which aims
to derive insights by fusing aggregate insights from city-scale
transportation informatics data sources with carefully-activated
participatory mobile sensing data. We demonstrated the promise
of this approach via two applications. First, the Taxi Service
Analyzer is able to identify taxi demand hotspots and then employ
mobile sensing to estimate the wait time of individual commuters
(within an error bound of 15%, and with practically negligible
energy overhead). Second, the Subway Boarding Analyzer is

14

able to reliably (with over 90% precision) identify the failed
boarding attempts that commuters make at crowded stations—this
accuracy is achieved by ingeniously detecting train arrival events
from smartcard transactional records, and imposes low energy
overheads by triggering mobile sensing only during instants when
such boarding activity is plausible.

On a broader canvas, the TRANSense framework demonstrates
the importance of combining mobile sensing and infrastructural
transaction data: the insights obtained reach a level of accuracy
that purely participatory mobile sensing has struggled to provide.
We believe that many other insights of practical interest (e.g.,
quantifying how crammed a commuter feels in a bus, capturing
how many passengers share a taxi ride) can be estimated using
this framework. Moreover, our results show that certain aggregate
insights (e.g., the average waiting time at a taxi queue) can be
obtained even with very low levels of participatory sensing by the
commuters. In ongoing work, we are working to deploy real-time
versions of our analytics platform, for adoption by a large-scale

commuter population.
REFERENCES

[1] Yu Zheng, Yanchi Liu, Jing Yuan, and Xing Xie. Urban com-
puting with taxicabs. In Proc. ACM Conference on Ubiquitous
Computing (UbiComp), New York, NY, USA, 2011.

[2] Marie-Pier Pelletier, Martin Trpanier, and Catherine Morency.
Smart card data use in public transit: A literature review. Trans-
portation Research Part C: Emerging Technologies, 19(4):557 —
568, 2011.

[3] D. Estrin, K. M. Chandy, R. M. Young, et al. Participatory sens-
ing: applications and architecture [internet predictions]. [EEE
Internet Computing, 14(1):12-42, 2010.

[4] W. Premerlani and P. Bizard. Direction Cosine Matrix IMU:
Theory. Techical Report, 2009.

[5] Yunus Emre Ustev, Ozlem Durmaz Incel, and Cem Ersoy. User,
device and orientation independent human activity recognition
on mobile phones: challenges and a proposal. In Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication (UbiComp), pages 1427-1436.
ACM, 2013.

[6] Moustafa Elhamshary, Moustafa Youssef, Akira Uchiyama, Hi-
rozumi Yamaguchi, and Teruo Higashino. Transitlabel: A crowd-
sensing system for automatic labeling of transit stations seman-
tics. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys 16,
2016.

[71 Android Developer Manual. Available:

[online] http-

s://developer.android.com/reference/android/.../SensorManager.html.

[8] M. Dottling, F. Kuchen, and W. Wiesbeck. Deterministic model-
ing of the street canyon effect in urban micro and pico cells. In
Proc. IEEE International Conference on Communications (ICC),
pages 36—40, June 1997.

[9] Tadashi Okoshi, Yu Lu, Youngki Lee, Rajesh Krishna Balan,

and Archan Misra. Queuevadis: Queuing analytics using smart-

phones. In Proc. ACM Conference on Information Processing in

Sensor Networks (IPSN), 2015.

Google Location APIs. [online] Avail-

able: https://developer.android.com/google/play-

services/location.html.

Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L.

Ananda, Mun Choon Chan, and Li-Shivan Peh. Using mobile

phone barometer for low-power transportation context detection.

In Proc. ACM Conference on Embedded Network Sensor System-

s (SenSys), 2014.

Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu. A

density-based algorithm for discovering clusters in large spatial

databases with noise. In Proc. ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD),

1996.

(10]

(1]

(12]

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2743176, IEEE

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]
[27]

(28]

[29]

(30]

(31]

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Mobile Computing

Yu Lu, Shili Xiang, and Wei Wu. Taxi queue, passenger queue
or no queue? - a queue detection and analysis system using taxi
state transition. In Proc. International Conference on Extending
Database Technology (EDBT), Belgium, 2015.

LTA Annual Report 2014. [online] Available:
s://fwww.lta.gov.sg/content/ltaweb/en.html.

N. M. Drawil, H. M. Amar, and O. A. Basir. Gps localization
accuracy classification: A context-based approach. IEEE Trans-
actions on Intelligent Transportation Systems, 14(1):262-273,
March 2013.

Erika Fille Legara, Christopher Monterola, Kee Khoon Lee, and
Gih Guang Hung. Critical capacity, travel time delays and travel
time distribution of rapid mass transit systems. Physica A,
406:100-106, 2014.

Pengfei Zhou, Yuanqing Zheng, and Mo Li. How long to
wait? predicting bus arrival time with mobile phone based
participatory sensing. IEEE Transactions on Mobile Computing,
2013.

Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban
computing: Concepts, methodologies, and applications. ACM
Transaction on Intelligent Sys. and Tech., 2014.

Pablo Samuel Castro, Daqing Zhang, Chao Chen, Shijian Li,
and Gang Pan. From taxi gps traces to social and community
dynamics: A survey. ACM Comput. Surv., 46(2):17:1-17:34,
December 2013.

Nicholas Jing Yuan, Yu Zheng, Xing Xie, Yingzi Wang, Kai
Zheng, and Hui Xiong. Discovering urban functional zones us-
ing latent activity trajectories. IEEE Transactions on Knowledge
and Data Engineering, March 2015.

Javed Aslam, Sejoon Lim, Xinghao Pan, and Daniela Rus. City-
scale traffic estimation from a roving sensor network. In Proc.
ACM Conference on Embedded Netw. Sensor Sys. (SenSys),
2012.

Meng Qu, Hengshu Zhu, Junming Liu, Guannan Liu, and Hui
Xiong. A cost-effective recommender system for taxi drivers.
In Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2014.

F. Zhang, J. Zhao, C. Tian, C. Xu, X. Liu, and L. Rao. Spa-
tiotemporal segmentation of metro trips using smart card data.
IEEE Transactions on Vehicular Technology, 65(3):1137-1149,
2016.

L. M. Kieu, A. Bhaskar, and E. Chung. Passenger segmenta-
tion using smart card data. IEEE Transactions on Intelligent
Transportation Systems, 16(3):1537-1548, 2015.

J. Zhang, X. Yu, C. Tian, F. Zhang, L. Tu, and C. Xu. Analyzing
passenger density for public bus: Inference of crowdedness and
evaluation of scheduling choices. In Proceedings of the IEEE
Conference on Intelligent Transportation Systems (ITSC), pages
2015-2022, 2014.

City Data Exchange.
s://www.citydataexchange.com.

http-

[online] Available: http-

London TFL Data. [online] Available: https://tfl.gov.uk/info-
for/open-data-users/.
LADOT Traffic Counts. [online] Available:

https://data.lacity.org/A-Livable-and-Sustainable-City/LADOT-
Traffic-Counts-Summary/94wu-3ps3.

Joshua Candamo, Matthew Shreve, Dmitry B Goldgof, Debo-
rah B Sapper, and Rangachar Kasturi. Understanding transit
scenes: A survey on human behavior-recognition algorithm-
S. IEEE Transactions on Intelligent Transportation Systems,
11(1):206-224, 2010.

Oscar D Lara and Miguel A Labrador. A survey on human activ-
ity recognition using wearable sensors. [EEE Communications
Surveys and Tutorials, 15(3):1192—-1209, 2013.

Hong Lu, Jun Yang, Zhigang Liu, Nicholas D Lane, Tanzeem
Choudhury, and Andrew T Campbell. The jigsaw continuous
sensing engine for mobile phone applications. In Proceedings of
the 8th ACM conference on embedded networked sensor systems,
pages 71-84. ACM, 2010.

(32]

(33]

[34]

[35]

(36]

15

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore.
Activity recognition using cell phone accelerometers. SIGKDD
Explor. Newsl., 12(2):74-82, 2011.

Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma.
Accelerometer-based transportation mode detection on smart-
phones. In Proc. ACM Conference on Embedded Network Sensor
Systems(SenSys). ACM Press, 2013.

Ian Anderson and Henk Muller. Practical context awareness
for gsm cell phones. In Proceedings of the 10th International
Symposium on Wearable Computers, ISWC ’06, 2006.

Raghu K. Ganti, Nam Pham, Hossein Ahmadi, Saurabh Nangia,
and Tarek F. Abdelzaher. Greengps: A participatory sensing
fuel-efficient maps application. In Proceedings of the ACM

International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2010.

Sunny Consolvo et al. Designing for healthy lifestyles: Design
considerations for mobile technologies to encourage consumer
health and wellness. Found. Trends Hum.-Comput. Interact., 6,
2014.

Yu Lu received the Ph.D. degree in com-
puter engineering from National Universi-
ty of Singapore (NUS) in 2012. He cur-
rently serves as the chief scientist at Ad-
vanced Innovation Center for Future Ed-
ucation, Beijing Normal University (BNU).
Before joining BNU, he was a research sci-
entist at A*STAR, Singapore. His research
interests include data analytics, ubiquitous
computing and learning technology.

Archan Misra is a Professor and the As-
sociate Dean of Research in the School
of Information Systems (SIS) at Singapore
Management University. He also directs
the LiveLabs and CASA research centers
at SMU, which focus on innovations in mo-
bile systems and smart city technologies
respectively. His current research interests
are in the areas of wearable & loT sens-
ing, real-time socio-physical urban analyt-

ics and mobile crowdsourcing. Archan received his Ph.D. from
University of Maryland at College Park in 2000.

Wen Sun is currently an associate profes-
sor with the School of Cyber Engineering,
Xidian University. She received her Ph.D.
degree in Electrical and Computer Engi-
neering from National University of Singa-
pore in 2014. Her research interests cover
a wide range of areas including body sen-
sor network, loT, participatory sensing, and
5G.

Huayu Wu received his Ph.D. degree in
computer science from the School of Com-
puting, National University of Singapore in
2011. He is currently the head of the Data
Management and Optimization Lab, Insti-
tute of Infocomm Research, A*STAR, Sin-
gapore. He has research interests in gener-
al database and data analytics topics. He is
also actively engaged in applied research.

