
Matching Restaurant Menus to Crowdsourced Food Data
A Scalable Machine Learning Approach

Hesam Salehian
Under Armour Connected Fitness

135 Townsend Street
San Francisco, California 94107
hsalehian@underarmour.com

Patrick Howell
Under Armour Connected Fitness

135 Townsend Street
San Francisco, California 94107

phowell@underarmour.com

Chul Lee
Under Armour Connected Fitness

135 Townsend Street
San Francisco, California 94107

clee3@underarmour.com

ABSTRACT
We study the problem of how to match a formally structured restau-
rant menu item to a large database of less structured food items
that has been collected via crowd-sourcing. At �rst glance, this
problem scenario looks like a typical text matching problem that
might possibly be solved with existing text similarity learning ap-
proaches. However, due to the unique nature of our scenario and
the need for scalability, our problem imposes certain restrictions
on possible machine learning approaches that we can employ. We
propose a novel, practical, and scalable machine learning solution
architecture, consisting of two major steps. First we use a query
generation approach, based on a Markov Decision Process algo-
rithm, to reduce the time complexity of searching for matching
candidates. �at is then followed by a re-ranking step, using deep
learning techniques, to meet our required matching quality goals.
It is important to note that our proposed solution architecture has
already been deployed in a real application system serving tens
of millions of users, and shows great potential for practical cases
of user-entered text to structured text matching, especially when
scalability is crucial.

KEYWORDS
Short text matching, Nutrition estimation, Convolutional neural
networks, Markov decision process
ACM Reference format:
Hesam Salehian, Patrick Howell, and Chul Lee. 2017. Matching Restaurant
Menus to Crowdsourced Food Data. In Proceedings of KDD’17, August 13–17,
2017, Halifax, NS, Canada.., 9 pages.
DOI: h�p://dx.doi.org/10.1145/3097983.3098125

1 INTRODUCTION
Today’s app-driven marketplace o�en leads to the need to integrate
and connect sources of data that have been collected and structured
in very di�erent ways. �e problem of connecting disparate data
is not a new one, but the nature and characteristics of the data
can cause great di�culties, even within such a well-studied topic.
Speci�cally, our examination here is centered on a problem of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’17, August 13–17, 2017, Halifax, NS, Canada..
© 2017 ACM. 978-1-4503-4887-4/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3097983.3098125

matching short, structured text to items pulled from a much larger
database of short, unstructured text data. Our proposed solution
is a multistage architecture whereby the structured text is passed
through a query generation process and then returned results are
re-ranked through a deep learning model, using a convolutional
neural network as the basis, to produce a probability vector of
whether or not the candidate item is relevant to the query.

�e source of the data that serves as the cornerstone of this
analysis is collected through an app that allows users to track
exercise, dietary habits, and weight loss. MyFitnessPal (MFP) is
a free health and �tness app available in Android, iOS, and web
formats that helps people set and achieve personalized health goals
through tracking nutrition and physical activity. In fact, MFP is
consistently ranked at the top of the health and �tness category in
both the Apple App Store and in Google Play. �rough the tracking
of their health and nutrition, MFP enables users to gain insights
that help them make smarter choices and build healthier habits.
Upon se�ing a personal �tness goal, users can visually inspect
their �tness and weight loss progress. MFP�s food data – namely,
nutritional contents and the food descriptions – are constructed
via users inputs. In Table 1, we illustrate a snapshot of MFP’s food
database, which contains various types of Hazelnut co�ee. While
MFP�s database carries no guarantees of nutritional accuracy due
to its reliance on crowd-sourcing, the great popularity of the app
partially speaks of the quality of its food DB that consists of over
hundreds of millions of food items and tens of billions of individual
food entries.

�is database alone can provide numerous insights on user eating
behavior, but one element that has been missing is an ability to show
real-time food matches to users as they are eating, based on their
location. In the real world, this translates to being able to match
database foods to restaurant menus, which are tied to geolocation
points of the venue. Related to this, one product feature that users of
MFP consistently requested was ”Restaurant Logging” (RL), or, that
MFP should allow its users to log foods while they are eating out
in restaurants based on menus at a location. �is feature was �rst
rolled out in 2015 and consists of 3 steps: (1) A venue navigation step
in which users can choose the restaurant at which they had eaten.
(2) A menu navigation step in which users have access to the menu
data of the given restaurant that they have chosen. (3) A logging
step in which users choose the food item from the given menu that
they have eaten and log the selected food item. While several big
food chain restaurants provide nutrition information in their menus,
most food items in restaurant menus do not have directly associated
nutrition information. �us, it becomes critical to complement each
food item in restaurant menus with accurate nutrition information

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2001

KDD’17, , August 13–17, 2017, Halifax, NS, Canada.. Hesam Salehian, Patrick Howell, and Chul Lee

Table 1: Snapshot of Food DB

Food ID Brand Name Food Name Calorie Information
3424 Co�ee Mate Hazelnut Cream 35
12358 Bailey’s Co�ee Creamer - Hazelnut 35
98742 Bailey’s Co�ee Creamer - Hazelnut 138
64628 Kroger Hazelnut Co�ee Creamer 35
09194 Hazelnut Co�ee Co�ee 1 Creamer 35
63524 McDonald’s Iced Co�ee (Hazelnut) 180
76654 Maxwell House Co�ee (Hazelnut) 70
22214 Starbucks Hazelnut Co�ee Cake 630
52343 Einsteins Vanilla Hazelnut Co�ee 22

(a) Venues found from geoloca-
tion – Here selecting Philz Cof-
fee as a motivating example

(b) Menu is loaded from third
party – Preview of nutrition
from “top” matches appear
from a simple search call on
the backend

(c) Item is opened for log-
ging food – In this case show-
ing “Hazelnut Trout” as origi-
nal match to “Hazelnut” query,
but likely irrelevant at a cof-
feeshop

(d) User can manually search
for an alternative match –
“Hazelnut Co�ee” being a bet-
ter search term to “Hazelnut”
at Philz Co�ee in this example

Figure 1: Restaurant Logging: Original Flow with Incorrect Matches

by retrieving the exact match from MFP’s food DB if the given food
item is available, or at least the approximate nutrition that exists in
the DB. However, similar to there being no guarantee of nutritional
accuracy, there is also no guarantee that a restaurant’s menu item
necessarily exists within the app food database, unless a user has
speci�cally added it before. If the given restaurant food item is not
found, then the best option is to match the given food item that
is semantically closest to the given restaurant food item. We refer
this problem as restaurant food matching. More precisely, given
∀ restaurant f oodi ∈ restaurant menus , restaurant food matching
tries to learn a function M that

arg max
f oodm ∈f oodDB

M (restaurant f oodi , f oodm)

At �rst glance, the restaurant food matching problem looks
similar in nature to previously studied text matching problems,

making the application of well known techniques like locality
sensitivity hashing (LSH)[12] or improved neighbordhood-based
algorithms[28] seem tempting. However, our restaurant food match-
ing problem has its own peculiarities since both the given text to be
matched (i.e. restaurant menu item) and the matching text in the
app database (i.e. food item with its description) are short in length.
In addition, both the lexical and grammatical structure of each word
has a bigger impact on the overall accuracy than might be the case
in standard se�ings: “spaghe�i meat sauce” needs to be treated
di�erently from “spaghe�i with meat sauce.” Word order also has
a signi�cant impact on the overall matching accuracy: “chocolate
milk”’ should be treated di�erently from “milk chocolate.” All of
these nuances combine to make the direct application of previous
text matching problems a challenge. Finally, menu text data o�en
comes in a form that is highly structured by possessing information
such as the venue’s name, menu section name, and the item itself;

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2002

Matching Restaurant Menus to Crowdsourced Food Data KDD’17, , August 13–17, 2017, Halifax, NS, Canada..

Figure 2: Overall architecture of the proposed system

meanwhile, foods from our crowd-sourced database have nowhere
near the same consistency, owing to the random noise that accom-
panies user inputs – misspellings, information in the wrong �elds,
etc.

One additional and critical requirement for our restaurant food
matching problem is that its matching speed has to be near-real
time in practice and ideally with minimal additional system over-
head. To take LSH as an example, there is signi�cant overhead of
applying LSH to a large collection of items, especially when our
goal is fast performance on a scale of up to hundrends of concurrent
queries. Applying LSH at this scale possesses several challenges:
the maintenance of a large number of hash tables to achieve both
high precision and recall; the fact that scaling LSH would require a
distributed implementation due to it being a main-memory algo-
rithm; and there is inherent di�culty in se�ing up key parameters
for LSH to avoid excessive memory consumption or sub-optimal
performance [27]. �us, we propose a solution architecture that is
highly optimized for scalability while enabling us to overcome the
complexity of our matching problem, by breaking our problem into
two distinct sub-problems, query generation and re-ranking. Figure
2 illustrates the high-level architecture of our proposed solution.
�e �rst step refers to the candidate set construction for foods to
be matched, while the second step refers to the selection of the
best food item in the given universe of match-possible food items.
During the query generation step, the complexity to construct the
initial candidate set of food items to be matched should be reason-
able, even when the overall quality of matching candidate set could
end up being sub-optimal. To handle this potential sub-optimality
during the initial candidate set construction, it is important to em-
ploy the most sophisticated/advanced available machine learning
technique to achieve our required quality goals and handle the pe-
culiarity of our data. For both problems, we adapt prior state-of-the
art machine learning techniques and run experiments to compare
our proposed approaches against some traditional approaches to
show that our proposed solution architecture can outperform the
more basic models.

2 QUERY GENERATION ALGORITHM
As described earlier, we decompose the problem of restaurant food
matching, into two sub-problems: (a) generation of matching can-
didates for the given food item, and (b) re-ranking of the set of
candidates based on their similarity with the input restaurant food
name. In this section, we present the algorithm proposed to tackle
the �rst sub-problem. At a high-level, the algorithm takes a triplet
of strings –the restaurant name, menu name and the item name –
as input and generates the most relevant query (see �gure 2). �is
algorithm is henceforth referred to as �ery Generation (QG).

2.1 Related Work
�e query re�nement problem has been well studied in literature
in recent years. �is problem includes modifying the original query
input by a user, based on the search results and users feedback
[19, 23, 25]. �e iterative nature of this problem and the partial
existence of user feedback make it well-suited for a reinforcement
learning framework. �e use of Markov Decision Processes (MDP)
[14] is one of the most well-known techniques to address such a
problem [8]. However, the problem addressed here is substantially
di�erent from the classic query re�nement, for a number of reasons.

�e �rst challenge relates to the unique and complicated nature
of restaurant food names. More speci�cally, the average length
of food names tends to be very short (< 20), hence presence or
absence of a particular word can be critical when generating the
optimum query. �is makes it impossible to directly apply any
standard tf-idf based techniques [8], because the term frequency
is in most cases 0/1. Furthermore, restaurants tend to organize
their food items in their menus using a variety of di�erent formats.
For instance,“Caesar salad” may belong to “appetizers” or “salads”
section. As a more complicated example, foods may interact dif-
ferently with section headers, as “Caesar” found under a “Salads
and Sandwiches” section may refer to either “Caesar Salad” (e.g., at
Panera Bread) or “Caesar Sandwich” (e.g., at Subway).

Second, in our se�ing, we lack user interaction data, which is a
fundamental component of any reinforcement learning technique.
In our problem scenario, users only have access to the �nal re-
ranked list of matched food candidates for each restaurant’s food
while the actual query that was used to retrieve the candidate set
is hidden. �erefore, our method is signi�cantly di�erent in nature

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2003

KDD’17, , August 13–17, 2017, Halifax, NS, Canada.. Hesam Salehian, Patrick Howell, and Chul Lee

compared to the standard algorithms for query re�nement and
session search problems [3, 8, 13]. Pseudo-Relevance Feedback (PRF)
methods are one possibility to address the query expansion problem,
when no user feedback is available [1, 20]. However, these methods
are not directly applicable to our case, because typically under PRF
a user inputs a query, then the algorithm aims to expand it in an
unsupervised manner. In our case no user input is available even
for query initialization, meaning that the initial query is created
only based on the restaurant food’s name.

In order to tackle the above challenges, we propose an iterative
machine learning algorithm, which is mainly inspired by MDP
techniques. Given the set of all words in the combined universe of
restaurant names, menu names and food item names, the learning
algorithm assigns an optimum weight to each term in a query, in
an iterative manner. Decisions to keep or remove each term are
then made based on the weights computed. Due to the lack of real
user signals in this process, the top K search results in response
to the query in each iteration serve as a feedback mechanism to
modify the weight vector. In the next section, our proposed model
is explained in more detail.

2.2 Markov Decision Process Algorithm
In the proposed MDP se�ing, the state of the system, q, in iteration
k , is the current query string which is passed to the search service.
�e query string is represented by a set of terms, ti , i.e., q(k) =
{t1, t2, ..., tn }. �e set of actions, A = {aj }, contains keeping, adding
or removing terms in, to or from the current query, in order to
make a new (and hopefully more relevant) one. �e dynamic of
the model is controlled by the transition functionT (q′ |q,aj), which
de�nes the probability of taking a certain action aj , to transform
current query q to q′. �e reward function, R (q,aj) evaluates each
(feasible) action aj , taken on any given query q, and is de�ned
as the maximum relevance score of the search results retrieved in
response to the new query, q′. Finally, γ ∈ [0, 1] is the discount
factor which controls the importance of the previously visited states.
Accordingly, an MDP model aims to �nd the optimum set of actions
made sequentially given an initial state, which is denoted byV ∗ (q).
�is optimum strategy is obtained using the well-known Bellman
equation [14]:

V ∗ (q) = max
aj

R (q,aj) + γ
∑
q′

T (q′ |q,aj)V ∗ (q′) (1)

A Value Iteration (VI) approach [24] is a standard solution to an
MDP model. Given, the reward function (R (.)) de�ned for each
state, and the transition function (T (.)), VI evaluates the utility
(V ∗i+1 (.)) at each state in iteration i + 1, based on the old utility
values (V ∗i).

In the current problem, it is intuitively possible to estimate the
transition function based on the popularity of each term of the
query string in the search results, and specify the probability of
moving from one query to another. However, the classic VI tech-
nique is not directly applicable here due to extensive time and space
complexities involved. Given the initial query of size n, there are
2n possible states in this standard model, which yields to a transi-
tion matrix of size 2n × 2n . Performing computation over such a
transition matrix is not feasible in practice.

Alternatively, based on the idea of “term popularity” we present
an iterative/greedy technique, to approximate the optimum strategy
in Eq. 1. �e proposed technique assigns a weight value to each
individual query term. �e weights are a measure of popularity
of each term in the results set, hence they are updated based on
the search results at each iteration. Accordingly, an appropriate
action to keep/add/remove terms to the current query is taken.
Although, term weighting is popular in session search [8], and
information �ltering [22], lack of any user feedback makes our
approach considerably di�erent. To the best of our knowledge, there
is no similar term weighting technique in literature to generate the
most relevant query from scratch, without any sort of user feedback
loop, and purely based on the returned search results.

Let q(k−1) = {t1, t2, ..., tn } be the query word set passed to the
search service, at iteration k − 1, and let D (k) = {d1, ...,dj } be the
document set resulted from the search service in response to q(k−1) .
�en, the weight vector update equation is wri�en as:

P̂ (ti ∈ q(k−1) |D (k)) = [γ +∑
dj ∈D (k)

P (dj |q(k−1))P (ti |dj)]P (ti ∈ q(k−1) |D (k−1)) (2)

where P (ti |D (k−1)) ∈ [0, 1] denotes the weight assigned to the term
ti in the query, once the document set D (k−1) has been observed,
and γ ∈ (0, 1) is the discount factor.

Also, P (dj |q(k−1)) ∈ [0, 1] represents the relevance score of
document dj to the given query, which can be either computed
using any string similarity measure (e.g., Jaccard or Edit distances
[5]), or can be assigned the relevance score values given by the
search service.

Lastly, the term P (ti |dj) shows the contribution of the term ti

in document dj , which is usually computed by P (ti |dj) =
#(ti ,dj)
|dj |

,
where numerator and denominator denote the frequency of term ti
in document dj , and the length of dj , respectively. According to 2,
each search result changes the term weights, depending on its total
relevance to the entire query. Note that the original ranking of the
documents in the search list is not necessarily ideal, at each iteration.
�erefore, we used the string similarity measures, instead of the
rank-based scores (e.g., 1

r , 1
loд (r)+1 , …) in the update process. Next,

the new weight vector obtained from Eq. 2 needs to be normalized
for [0, 1] values.

P (ti ∈ q(k−1) |D (k)) =
P̂ (ti ∈ q(k−1) |D (k))∑
j P̂ (tj ∈ q(k−1) |D (k))

(3)

Given a triplet of (restaurant name, menu name, food item name),
the algorithm initializes q(0) to be the union of all terms in the input
triplet, with equal weights. At each iteration, k −1, the query string
q(k−1) is sent to the search service, and the list of top K results (Dk)
is retrieved. We employed a customized Elastic Search Service1

which returns a list of relevant documents for each query string,
sorted based on the combination of TF-IDF scores and users click
history. Next, the weights corresponding to the terms in q(k−1)

are updated using Eq. 2. Although, all terms in this equation are
positive, weights of some terms can become smaller over time, due
1h�ps://www.elastic.co/

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2004

Matching Restaurant Menus to Crowdsourced Food Data KDD’17, , August 13–17, 2017, Halifax, NS, Canada..

to the normalization step in Eq. 3. Once the term weights are
updated a�er each iteration, one of the feasible actions (aj) is taken
for each term, based on the new weights. In our experiments, terms
whose weight is < 0.1 or > 0.2 are removed from/added to the
query string, respectively. Finally, our algorithm stops when the
(Euclidean) distance between the new and old weight vectors is less
than a threshold (e.g., 0.001). Although our proposed technique is an
approximate technique to the MDP model in Eq. 1, its e�ectiveness
and e�ciency are shown through experiments with real data.

Figure 3: Average precision @10 for three MDP models:
unweighted (yellow), weighted based on rank (blue) and
weighted based on relevance score (red)

Figure 4: Average length of the optimum query (blue), with
respect to the length of the input string (yellow)

2.3 �ery Generation Results
In this experiment, 500 items from random restaurants are selected
and inpu�ed for QG. We use three di�erent values for the document
weights, in Eq. 2: (1) the relevance score between dj and q(k−1)

given by the search service, (2) the rank of the retrieved document,
i.e., P (dj |q(k−1)) = 1

j ,∀j, and (3) unweighted, i.e., P (dj |q(k−1)) =
1,∀j. Fig. 3 demonstrates this comparison. �e average precision
for all three models converged a�er 5 iterations, so the plots are
limited only to the �rst 5 iterations. It can be seen that the relevance
scores returned by the search service provide the best precision.
�is is because the relevance scores not only consider the common
string similarity measures (i.e., TF-IDF), but also takes the users
click/log history into account, which yields to a smarter weighting
model.

Moreover, Fig. 4 shows the average length of the optimum query,
using the �rst weighting scheme, with respect to the number of
words in the input triplet. It can be seen that the length of the
optimum query does not grow as rapidly as the input size. �is is
important, because in most cases, long input names are due to the
presence of extra/irrelevant terms, which can be problematic when
included in the query string.

Tabel 2 provides the results of the proposed query generation
algorithm, for three sample inputs. In the �rst example, the words
”restaurant” and ”brewhouse” from the restaurant name, as well
as ”appetizers” and ”shareable” from the menu section name are
removed, mostly because they are not frequently used in conjunc-
tion with the rest of the words in the MFP food database. Similarly,
the term ”specialty” is removed from the menu name in the second
example. In the third example, the restaurant name is not popular
and the menu name means ”appetizers” in Italian, hence both are
not included in the �nal query, for similar reasons.

3 RE-RANKING
In this section we present the proposed algorithm to re-rank the
match candidates, a�er retrieving them from the query generation
algorithm. �e need for quality results from the re-ranking algo-
rithm is high. �is is because the re-ranking process needs to also
compensate for any quality de�ciency that might have occurred
during the query generation. Although there are several similar-
ities between this task and the classic re-ranking algorithms, the
unique nuances posed by food-related data requires that we move
beyond existing techniques to achieve a satisfactory result quality
threshold.

3.1 Related Work
Learning to rank is a well studied problem in the last decade, which
involves the ranking of a set of documents with respect to a given
query [9, 18]. Existing methods generally fall into three main cat-
egories, based on the way each learning instance is generated. In
the pointwise ranking methods, each pair of (query,doc) is labeled
as relevant or irrelevant, and the documents are then sorted with
respect to the predicted label and the prediction con�dence [6, 26].
�e pairwise approaches take triplets of the form (query,doc1,doc2),
and estimate the probability of doc1 being more relevant to query,
compared to doc2. �ese relative probabilities are then exploited to
re-rank the candidates [10]. In the listwise approaches, the query
and the entire list of documents are considered as a single learning
sample, and the ranking takes place over an entire list of candidates
[2].

�e choice of a suitable feature extraction technique is a fun-
damental step in any of these re-ranking algorithms. A widely
used approach is to encode input text pairs using complex lexical,
syntactic and semantic features and then compute various similar-
ity measures between these representations [18, 21, 26]. In many
cases, the �nal learning quality of a re-ranking algorithm is largely
dependent on �nding the right representation of input text pairs.
In our particular scenario, directly applying previous techniques in
our feature extraction task is not as feasible due to the small length
of the food names and lack of external knowledge sources.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2005

KDD’17, , August 13–17, 2017, Halifax, NS, Canada.. Hesam Salehian, Patrick Howell, and Chul Lee

Table 2: Sample query generation results

Restaurant Name Menu Section Name Item Name Final �ery
BJ’s Restaurant and Brewhouse Appetizers and Shareable Chicken Le�uce Wrap bj’s chicken le�uce wrap
Panera Bread Specialty Breads Sourdough panera bread sourdough breads
Zero Zero Antipasti Marinated Italian Olives marinated italian olives

�e advent of Convolutional Neural Networks (CNNs) [16, 17]
has opened new alternatives for complex, and mostly heuristic,
feature engineering tasks, typically applied to image data. In recent
years, more CNN-based methods have been proposed for text-based
analysis. Taking inspiration from image studies, the concept in
general is to transform the input text into an embedding matrix,
and then feed this matrix through several convolution layers [7, 15,
29]. Many algorithms in this category are based on a word-level
embedding, where a feature vector is assigned to each individual
word or a character-level embedding, where an unknown feature
vector is assigned to each character [30].

We present this variety of CNN architecture, following the struc-
ture for the short text matching approaches found in [26] and [11].
�e proposed architecture is �exible enough to inject both word and
character-level embedding. Unlike the character-level embedding
presented in [30], we do not encode the characters by pre-de�ned
sparse vectors, instead allowing the embedding to be learned dur-
ing the training process. �e character-level embedding proved
particularly interesting since our food database is constructed via
crowd-sourcing and therefore highly susceptible to misspellings.
We present experimental results using both approaches for the sake
of comparison.

3.2 Main Algorithm
An initial e�ort to address the food re-ranking problem involved a
point-wise SVM algorithm, trained on v = ϕ (q, f) instances with
relevant or irrelevant labels, where q and f are the query restaurant
food and the database food name, respectively, and v is the feature
vector extracted via the function ϕ (.). �e choice of an appropriate
feature extraction function, i.e., ϕ (.), is a challenge. We opted to use
a set of features based on well-known string similarity measures,
combined to form a single vector. �ese low level features include
Jaccard and Edit distances between di�erent combinations of the
restaurant food and the current database candidate. For a query of
the form {restaurant name, menu name, item name}, and a data-
base food candidate of type {brand name, description}, the string
similarity scores are computed on (restaurant name, brand name),
(item name, description), (item name + menu name, description),
etc., and are appended together form a vector of size 28. Although
the above SVM technique using an RBF Kernel provided reasonable
accuracy on a small size of training data, it is unable to generalize
over larger/more complicated datasets. �is is expected, due to the
sizable gap between the low-level heuristic feature extraction and
high-level semantic complexities involved in this problem.

We found a CNN architecture well suited for this application,
as it allows the model to learn an optimal representation of input
food names together with a similarity function to relate them in a
supervised way from a massive database of food names. �e large
complexity of this particular matching problem is far beyond the

capabilities of standard feature extraction tools, as in some cases
even a non-expert human might fail to make correct predictions.
Moreover, equipped with millions of inpu�ed text food items in
our database, along with 500K restaurant menu-structured items,
we are able to provide a CNN with plenty of training data, which is
important for any deep learning technique.

�e proposed CNN model is based on a pointwise learning ap-
proach to assign relevant/irrelevant labels to each pair of restaurant
item (query) and food from the database (candidate). �e architec-
ture contains 2 convolution networks that are similar in compo-
nents, but are trained separately. �ese networks create two dense
feature vectors, corresponding to the query and the candidate. A
fully connected layer is then used along with a �nal so�max layer
to combine the dense feature vectors and transform them into into
a two-length probability vector of relevant/irrelevant.

Two di�erent CNN architectures are proposed here for testing,
the di�erence between the two depending on the type of the embed-
ding, whether word-level or character-level. A word-level approach
carries a bene�t of using a pretrained embedding model based on a
much larger corpus than the CNN models themselves might use in
this specialized application. As a counter-point, the character-level
architecture is more �exible through its ability to include the em-
bedding process itself directly into the training of the CNN model.
Given these di�erences, we have constructed a �exible architecture
that is able to test both, holding other aspects of the CNN constant.

For the word-level embedding CNN (wCNN), we applied Word2Vec
[21], to represent each word by a numerical feature vector of size
e = 200. To this end, a Word2Vec model was trained on a larger
collected food names corpus with more than 5M unique food items.
An input matrix is created by zero padding the number of word
columns to a maximum of L = 20, and truncating a food name if it
stretched beyond 20 words. �e �lter width for the wCNN model
was set atw = 3, or to look at each item in trigram-length windows.
Di�erent parameters were necessary for the character-level embed-
ding CNN (cCNN). �e main advantage to the cCNN is the ability
to learn embedding weights through backpropagation in training.
�e corpus of characters was limited to the Roman alphabet and a
space character, keeping the number of learned embeddings at 27.
We assigned to each character, an unknown vector of size e = 10
that is learned at the time of cCNN training. �e maximum number
of characters per food name was set to L = 100, again with zero
padding if a word has less than 100 characters, and truncating if a
word has more. �e �lter width for the cCNN is then set to only
consider characters in a moving window of 5 neighbors.

�e input to each query/match convolution layer is an embed-
ding matrix of size e × L, where e and L are the embedding vector
size and the maximum length of the text (see Fig. 5). In each con-
volution network, there is 1 convolution layer with n = 50 �lters of
size w × e , followed by a ReLU layer. Each convolution �lter in the

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2006

Matching Restaurant Menus to Crowdsourced Food Data KDD’17, , August 13–17, 2017, Halifax, NS, Canada..

Figure 5: CNN Architecture

bank outputs a vector of sizev = L−w+1. Next, the 50 1×v vectors
generated from the �lter bank are max pooled into a single dense
vector. �erefore, in both the wCNN and cCNN, the output of the
two parallel convolution networks for query and candidate string
is a pair of dense feature vectors, each of size 1 × v . In order to
combine the two dense vectors, the convolution layers are followed
by 2 fully connected (FC) layers. �e �rst layer transforms an input
(combined) vector of size 1 × 2v into a smaller vector of size 1 × 10.
�is vector is further shrunk via the second layer, into a 1×2 vector.
�ere is one ReLU layer a�er each FC layer. Finally, a so�max layer
is applied on top of this vector to make �nal probability vector
of size 2, where each component correspond to the probability of
relevant/irrelevant class membership. �e implementation of CNN
is carried out using Keras [4] with a backend in �eano. Also, a
dropout value of 0.5 was used in both wCNN and cCNN on top of
each convolution layer to prevent over-��ing.

4 EXPERIMENTS
4.1 Results
In this section, we compare the performance of the proposed CNN
methods and the base SVM algorithm described earlier. A set of 1M
labeled samples was collected to train each method. To evaluate the
performances, a set of 4K instances were labeled by experts, to form
our �rst test set. A second test set containing 100K instances was
created from the implicit feedback of a set of users selecting foods.
Items that were frequently logged by users were considered as “rel-
evant” matches for the restaurant food item, while the “irrelevant”
matches are the foods that were frequently skipped by users to pick
be�er alternatives. �ese two test sets are called hand-labeled and
user-labeled, respectively. A set of 5-fold validation was carried
out for each method over each dataset, and the average accuracy
values are reported in Table 3. �e le�most segment of Table 3
shows the accuracy of each technique, when tested over a random
partition of the training set. It can be seen that SVM was able to

provide a competitive accuracy over 10K samples, but for larger
sets the word-level CNN approach outperformed the SVM classi�er
by wider margins, as expected.

It is evident that the word-level embedding had the best �t to the
training data of size 1M , compared to the competing methods. �is
is not surprising, as CNN-based approaches are able to learn many
more feature complexities via larger training sets, while SVM is
limited to the heuristically chosen features, which are independent
of the training size. Meanwhile, the cCNN achieves similar accuracy
to the wCNN on hand-labeled data, but lags behind SVM on the
training and user-labeled experiments. Since cCNN is learning its
embeddings at the time of the model training, its weaknesses might
be explained from losing the advantage of preprocessing as in SVM
and/or the advantage of a larger corpus for embeddings as in wCNN.
We should also emphasize that the food candidates suggested to the
users in the baseline �ow were originally estimated using the same
SVM approach that is used as the baseline comparison. �erefore,
the user-labeled data is potentially biased towards the SVM model,
which explains the larger accuracy of SVM in this case versus the
hand-labeled data experiment (Table 3).

Table 4 contains a few examples of the input restaurant food
information, along with the best matches retrieved by two di�erent
algorithms: SVM and word-level CNN (wCNN). Considering the
food’s ingredients and nutritional contents, in the �rst example,
”Philadelphia sushi roll” is the best match, as successfully retrieved
by wCNN. Meanwhile SVM failed to achieve the same result, ap-
parently because of overemphasizing on the ”hand roll” phrase.
�e ”vegetarian roll” retrieved by SVM contains a very di�erent
list of ingredients from the input ”Philadelphia roll”, making its
nutritional information far from the ground truth the user was
interested in retrieving.

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2007

KDD’17, , August 13–17, 2017, Halifax, NS, Canada.. Hesam Salehian, Patrick Howell, and Chul Lee

Table 3: Accuracy comparison

Validation Data Hand-labeled Data User-labeled Data
Training Size wCNN cCNN SVM wCNN cCNN SVM wCNN cCNN SVM

10K 87.10 79.84 88.30 64.09 61.08 51.15 71.51 70.43 74.03
100K 91.77 84.91 90.56 64.61 63.92 51.28 81.95 71.80 74.14
1M 95.23 87.54 90.52 66.16 64.19 51.57 87.41 72.41 74.17

Table 4: Sample matching results using 2 di�erent models: SVM and wCNN

Restaurant Name Menu Section Name Item Name Ranking Algorithm Best Match

Benihana Sushi Bar Philadelphia
Hand Roll

SVM Sushi - Vegetarian
Hand Roll

wCNN Wasabi Sushi Bar -
Philadelphia Roll

Buca di Beppo
Italian Restaurant Traditional Pasta Spaghe�i with

Meat Sauce
SVM Spaghe�i sauce

with Meat

wCNN Homemade - Spaghetti
Pasta With Meat Sauce

4.2 Data Collection
In order to optimize any deep learning network parameters, a large
amount of training data is required. Collecting necessary data is
an important obstacle, because of the uniqueness and complexity
of this speci�c problem. To the best of our knowledge, there is no
publicly available training data dedicated to the task of food names
matching, and existing text matching datasets are not applicable to
this problem.

�e main challenge in our matching problem relates to the fact
that string/text similarity is not su�cient to assign the correct labels.
Food items can look very similar in name, but refer to completely
di�erent entities with di�erent nutritional contents, e.g., ”spaghe�i
meat sauce” and ”spaghe�i with meat sauce”. Also, in some cases
the food descriptions are not so similar, but the items can be still
considered as a true match, e.g., ”grilled / marinated lamb or chicken
or pork small sandwich” and ”grilled lamb sandwich recipe”.

To address this problem, a set of 4K pairs of food names, i.e.,
(restaurant food name, database food name), were generated and
hand-labeled by our in-house experts. �e labels assigned to each
pair were either relevant (2), somehow relevant (1) or irrelevant (0).
�is training set is then expanded to a much larger scale, in order
to train the CNN parameters. To this end, we applied a pairwise
RankSVM model [9], because (a) a SVM-based model can achieve a
reasonable accuracy on smaller training set, and (b) the pair-wise
nature of this model allows to make comparisons between relevant
and non-relevant labeled instances, and adds more �exibility to the
classi�cation task.

Our SVM-based data collection involved multiple steps. First,
the labeled data, originally pointwise in nature, are transformed to
a pairwise set. Let f be the restaurant food name and c1, c2 be two
food candidates, with the labels being y1, y2, respectively. �en, a
pairwise training instance is formed by ((c1, c2) | f) and is assigned
the label y1 − y2, which is positive if c1 is a more relevant match
for f , compared to c2, and is negative otherwise. Next, a SVM
model is trained on these pairwise instances and employed to make

predictions for new instances, along with prediction con�dence.
�e features used in this SVM model are the same as in the pointwise
SVM described in the previous section.

Equipped with the trained pairwise SVM model, a set of 200K
restaurant menus were processed. Every item, f , was input to
the query generation model, and a list of candidates (c1, c2, ..., cn)
was retrieved from database. �en, the model was used to label
((ci , c j) | f) with a certain con�dence level. �is resulted in more
than 80M labeled pairs, but evidently not all of which were cor-
rectly predicted. �erefore, we only kept the instances which were
labeled with 99%+ con�dence. Each survived pairwise instance,
e.g., ((ci , c j) | f) was then decomposed into two pointwise labeled
instances: (ci , f) ∈ relevant and (c j , f) ∈ irrelevant , if ((ci , c j) | f)
was labeled ”positive”. Consequently, were able to collect more
than 1M labeled instances, to train our CNN model.

In the second example, SVM’s suggested match looks very similar
to the input restaurant food, with respect to the string similarity
(without the words ordering they are identical!). However, a�er
looking closely, it is evident that the input query is a ”spaghe�i”
containing ”meat sauce” as an additional ingredient, while the
SVM’s output is a type of ”sauce” made with ”meat”. �erefore,
they refer to completely distinct entities, hence their nutritional
contents are drastically di�erent. On the other hand, wCNN was
able to �nd the correct match, which is close enough to the input
food name.

5 CONCLUSION
Across the three main variations of test sets – random partition
withheld from the training set, hand-labeled data by humans, and
observed responses from users – the wCNN model outperforms the
basic SVM technique once the scale of training data is on the scale
of 100K or more examples, and becomes really evident once the
data set size reaches 1M . Since the limitations of this type of food
data can make straightforward techniques di�cult or impossible,

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2008

Matching Restaurant Menus to Crowdsourced Food Data KDD’17, , August 13–17, 2017, Halifax, NS, Canada..

it is impressive that the fusion of multiple machine learning tech-
niques working together can reach accuracy levels higher than any
alone would be able to achieve. �e combination of reinforcement
via MDP for initial query generation, SVM for building synthetic
training data, and CNN architectures for learning relevance, all
come together to create a powerful tool for short text matching in
the absence of context and/or user feedback.

REFERENCES
[1] Delphine Bernhard. 2010. �ery expansion based on pseudo relevance feedback

from de�nition clusters. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters. Association for Computational Linguistics,
54–62.

[2] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[3] Ben Cartere�e, Evangelos Kanoulas, and Emine Yilmaz. 2011. Simulating simple
user behavior for system e�ectiveness evaluation. In Proceedings of the 20th
ACM international conference on Information and knowledge management. ACM,
611–620.

[4] François Chollet. 2015. Keras: �eano-based deep learning library. Code:
h�ps://github. com/fchollet. Documentation: h�p://keras. io (2015).

[5] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. 2003. A comparison
of string metrics for matching names and records. In Kdd workshop on data
cleaning and object consolidation, Vol. 3. 73–78.

[6] Koby Crammer, Yoram Singer, and others. 2001. Pranking with Ranking.. In Nips,
Vol. 14. 641–647.

[7] Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. 2015.
Applying deep learning to answer selection: A study and an open task. arXiv
preprint arXiv:1508.01585 (2015).

[8] Dongyi Guan, Sicong Zhang, and Hui Yang. 2013. Utilizing query change for
session search. In Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM, 453–462.

[9] LI Hang. 2011. A short introduction to learning to rank. IEICE TRANSACTIONS
on Information and Systems 94, 10 (2011), 1854–1862.

[10] Ralf Herbrich, �ore Graepel, and Klaus Obermayer. 1999. Large margin rank
boundaries for ordinal regression. Advances in neural information processing
systems (1999), 115–132.

[11] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in Neural Information Processing Systems. 2042–2050.

[12] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the �irtieth Annual
ACM Symposium on the �eory of Computing, Dallas, Texas, USA, May 23-26, 1998.
604–613.

[13] Jiepu Jiang and Daqing He. 2013. Pi� at TREC 2013: Di�erent E�ects of Click-
through and Past �eries on Whole-session Search Performance. In �e Twenty-
Second Text REtrieval Conference (TREC 2013) Proceedings.

[14] Leslie Pack Kaelbling, Michael L Li�man, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of arti�cial intelligence research (1996),
237–285.

[15] Yoon Kim. 2014. Convolutional neural networks for sentence classi�cation. arXiv
preprint arXiv:1408.5882 (2014).

[16] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�ca-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[17] Yann LeCun, Léon Bo�ou, Yoshua Bengio, and Patrick Ha�ner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[18] Hang Li. 2014. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures on Human Language Technologies 7, 3 (2014),
1–121.

[19] Yasunari Maeda, Fumitaro Goto, Hiroshi Masui, Fumito Masui, and Masakiyo
Suzuki. 2011. �e Bayesian Optimal Algorithm for �ery Re�nement in Infor-
mation Retrieval. IJCSNS 11, 10 (2011), 91.

[20] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and others.
2008. Introduction to information retrieval. Vol. 1. Cambridge university press
Cambridge.

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Je�rey Dean. 2013.
E�cient Estimation of Word Representations in Vector Space. In Proceedings of
Workshop at ICLR.

[22] Nikolaos Nanas, Victoria Uren, Anne De Roeck, and J Domingue. 2003. A
comparative study of term weighting methods for information �ltering. KMi-
TR-128. Knowledge Media Institue, �e Open University (2003).

[23] Kriengkrai Porkaew and Kaushik Chakrabarti. 1999. �ery re�nement for
multimedia similarity retrieval in MARS. In Proceedings of the seventh ACM
international conference on Multimedia (Part 1). ACM, 235–238.

[24] Stuart Russell and Peter Norvig. 1995. Arti�cial intelligence: a modern approach.
(1995).

[25] Eldar Sadikov, Jayant Madhavan, Lu Wang, and Alon Halevy. 2010. Cluster-
ing query re�nements by user intent. In Proceedings of the 19th international
conference on World wide web. ACM, 841–850.

[26] Aliaksei Severyn and Alessandro Moschi�i. 2015. Learning to rank short text
pairs with convolutional deep neural networks. In Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 373–382.

[27] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak,
Piotr Indyk, Samuel Madden, and Pradeep Dubey. 2013. Streaming similarity
search over one billion tweets using parallel locality-sensitive hashing. Proceed-
ings of the VLDB Endowment 6, 14 (2013), 1930–1941.

[28] Wei Wang, Chuan Xiao, Xuemin Lin, and Chengqi Zhang. 2009. E�cient ap-
proximate entity extraction with edit distance constraints. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009. 759–770.

[29] Wenpeng Yin and Hinrich Schütze. 2015. Convolutional neural network for para-
phrase identi�cation. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies. 901–911.

[30] Xiang Zhang and Yann LeCun. 2015. Text Understanding from Scratch. arXiv
preprint arXiv:1502.01710 (2015).

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2009

	Abstract
	1 Introduction
	2 Query Generation Algorithm
	2.1 Related Work
	2.2 Markov Decision Process Algorithm
	2.3 Query Generation Results

	3 Re-ranking
	3.1 Related Work
	3.2 Main Algorithm

	4 Experiments
	4.1 Results
	4.2 Data Collection

	5 Conclusion
	References

