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ABSTRACT
Existing studies have extensively used temporal-spatial data
to mining the mobility patterns of different kinds of travel-
ers. Smart Card Data (SCD) collected by the Automated
Fare Collection (AFC) systems can reflect a general view of
the mobility pattern of the whole bus and metro riders in
urban area. Since the mobility and stability are temporally
and spatially dynamic and therefore difficult to measure,
few work focuses on the transition of their travel pattern
between a long time interval. In this paper, an overview of
the relation between stability and regularity of public transit
riders based on SCD of Beijing is presented first. To ana-
lyze the temporal travel pattern of urban residents, travelers
are classified into two categories, extreme and non-extreme
travelers. We have two lines for profiling all cardholders,
rule based approach for extreme and improved density-based
clustering method for non-extreme. Similar clusters are ag-
gregated according their features of regularity and occasion-
ality. By combining transition matrix of passenger’s tempo-
ral travel pattern and socioeconomic data of Beijing in the
year of 2010 and 2014, several analyses about resident’s tem-
poral mobility and stability are presented to shed lights on
the interdependence between stability and mobility in the
time dimension. The results indicate that passengers’ reg-
ularity is hard to predict, extreme travel patterns are more
vulnerable and overall non-extreme travel patterns nearly
stay the same.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering; H.2.8 [Database
Management]: Database Applications—Data mining

Keywords
Smart Card Data, Mobility, Stability, SS-OPTICS Cluster-
ing

1. INTRODUCTION
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The continuum of human spatial immobility-mobility at vary-
ing geographic and temporal scales poses fascinating topics
and challenges for researchers to make right decisions on ur-
ban development. Stability and mobility are relative and
linked, since mobility reflects movement in short-term tem-
poral or small spatial scales, while stability refer to long-
term. Geographically, people move over scales ranging from
a few meters to hundreds of kilometers; temporally, they
move or stay over scales ranging from a few minutes to many
years. Although people’s movement seems to be disordered,
we can still mining useful patterns for both individuals and
a group of residents from various types of data. However,
due to the lack of data, research work on mobility and stabil-
ity is still seldom carried out. Thus, figuring out the puzzle
of the relation between stability and mobility will be very
meaningful and can help uncover different aspects of public
transit, social and urban dynamics.

The temporal and spatial dynamic mobility pattern of res-
idents has been concerned about for a long time by re-
searchers in the fields of transportation engineering[11], com-
puter science [20], urban planning [9], or even socioeco-
nomics [4]. Along with the development of computer science
and geographic information (GIS), many new technologies
and new types of data can be utilized to measure people’s
mobility pattern in large-scale regions, such as Call Detail
Records of mobile phone [7], taxicabs’ GPS information [14],
or even outdoor Wi-Fi signal data. When comes to a city-
wide mobility analysis, smart card data (SCD) collected by
Automated Fare Collection (AFC) systems may be a bet-
ter choice, since AFC system are widely adopted by public
transportation operators in most metropolitan areas [5].

AFC systems based on contactless smart cards are available
for both city buses and metros to record the details of trans-
action information when passengers boarding or alighting.
SCD contains fine-grained information not only about pas-
sengers’ ID (smart cards’ ID) and locations of boarding or
alighting stations, but also transaction time and bus/metro
lines. It is a great convenience to utilize SCD to depict pas-
sengers’ daily, weekly or yearly travel profiles in large-scale
regions covered by public transit systems. From an indi-
vidual perspective, SCD can help record passenger’s transit
network, reflect his social and economic characteristics, and
even forecast his travel pattern. From a city perspective,
SCD acting as an transportation probe can help estimate
transportation conditions and provide new materials for ur-
ban planning policy.



In this paper, we utilize the temporal information of SCD
to mine the relationship between passenger’s mobility and
stability in different time and frequency scales. To better
understand the passenger behavior in public transportation,
we introduce other socioeconomic data into our analysis.
Our contributions can be described as follows:

• We take passenger’s regularity into account to the an-
alyze relation between regularity and stability.

• We profile passengers with a rule-based classification
approach for extreme travelers and an improved density-
based clustering method for non-extreme travelers.

• We analyze the mobility and stability of extreme and
non-extreme travelers in different group granularities
by combining socioeconomic data.

The organization of this paper is as follows: Related work
is briefly discussed in section 2. In section 3, we discuss the
relation between regularity and stability and profile the pas-
sengers. Our analysis about mobility and stability is present
in section 4. Section 5 concludes the paper with a summary
and a short discussion of future research.

2. RELATED WORK
Hanson [4] is among the first researchers to focus on stabil-
ity and show analyzing individuals’ stability requires also
analyzing their mobility. Through an empirical example
centered on the relationship between entrepreneurship and
place, he propose explicitly considering locational stabil-
ity requires examining stability and mobility in tandem,
since spatiotemporal dynamics involved. Based on this idea,
James et al. [2] concentrate on detailed substructures and
spatiotemporal flows of mobility to show that individual mo-
bility is dominated by small groups of frequently visited,
dynamically close locations, forming primary ”habitats”cap-
turing typical daily activity. While many other works [11],
[12], [18], [19] choose a perspective on large-scale mobility
about urban human beings, vehicles or taxis.

To measure residents’ stability and mobility in urban area,
SCD in public transit is one of the most widely used data.
According to Long et al.[10], SCD related research topics
can be classified as: 1) data processing and data comple-
mentation, like back-calculation of origin and destination
and recognition of trip purpose; 2) supporting and manage-
ment of public transit systems; 3) place-based urban spatial
structure and 4) person-based analysis on social network and
special group of people. Pelletier et al. [13] also give a liter-
ature review of SCD use in public transit and present three
levels of management and usage of SCD: strategic (long-
term planning), tactical (service adjustments and network
development), and operational (ridership statistics and per-
formance indicators). Zheng et al. [20] show us several typ-
ical applications based on SCD, like building more accurate
route planners. While, Long et al.[9] seek to understand ex-
treme public transit riders in Beijing using both traditional
household surveys and SCD. In their work, public transit
riders are classified into four groups of different types of ex-
treme transit behaviors to identify the spatiotemporal pat-
terns of these four extreme transit behaviors. Further, Neal

Figure 1: Weekly profiles of two passengers’ trans-
action time. The transaction time (colored squares)
reflects their different travel pattern. Numbers in
squares represent times of transaction in that hour.
D1-D5: weekdays, D6: Saturday, D7: Sunday.

et al. [8] discuss personalizing transport information services
based on SCD. Among their contributions, the authors use
clustering to prove that the usage of public transportation
can vary considerably between individuals. Each passen-
ger’s trips are aggregated into a weekday profile describing
his temporal habits and hierarchical agglomerative cluster-
ing is introduced to discover groups of passengers character-
izing different travel habits. Contrary to this approach, our
weekly profile, presented in Section 3, consisting of hour-
grained grid can show more details.

As we investigated, many methods and algorithms are adopted
to process and analyze SCD. To clustering the temporal in-
formation, Mahrsi et al. [5] construct temporal passenger
profiles based on boarding information and apply a gener-
ative model-based clustering approach to discover clusters
of passengers. They also assign passengers based on their
boarding information to ”residential” areas, which they es-
tablished through a clustering of socioeconomic data of the
Rennes, France, to inspect how socioeconomic characteris-
tics are distributed over the passenger temporal clusters. A
density-based clustering method, DBSCAN [3], which is very
similar to OPTICS [1] is used by [11]. The authors identify
trip chains to detect transit riders’ historical travel patterns
and apply K-Means++ clustering algorithm and the rough-
set theory to cluster and classify travel pattern regularities.
Comparing to approaches reported in these works, we im-
prove the OPTICS algorithm to cut down input parameters
and control cluster size. Further, other than focusing on
people’s mobility pattern, we utilize SCD to measure the
interdependence between stability and mobility in the time
dimension.

3. PROFILING PASSENGERS
3.1 Dataset Description
The Smart Card Data (SCD) collected and issued by Bei-
jing Transit Incorporated contains transit riders’ records for
both the bus and metro systems. There were two types of
Automatic Fare Collection (AFC) system on Beijing buses:



(a) Plot of RE10 - RE14 (b) Plot of RE10 - Stability

Figure 2: Relationship between regularity and sta-
bility

flat fares and distance-based fares, until the beginning of
2015, since when all bus lines became distance-based fare
system. It is a design flaw for the bus smart card system that
flat fares system records the transaction (paying) time when
checking-in, whereas distance-based fares system records the
transaction time when checking-out. For Beijing metro sys-
tem, although passengers pay the fare when alighting, the
system records the time of both checking-in and checking-
out. In this paper, to offset the design flaw, we consider the
transaction time as the time for one ride.

We select SCD with shared card IDs from two datasets in
2010 and 2014. Both the selected datasets of 2010 and 2014
last for one week and contain the same smart card IDs with
the amount of 1.9 million, representing 1.9 million passen-
gers lived in Beijing at least from 2010 to 2014. We assume
each smart card represents an anonymous passenger, with-
out considering the situation of passengers’ changing card,
which is not common in Beijing. Each record of the SCD
consists of 1) smart card ID, 2) boarding or alighting time,
and 3) station ID of boarding or alighting line. As the time
span of SCD in 2010 and 2014 both cover one week, we es-
timate each passenger’s trip activities using a ”weekly pro-
file”, a vector contains 168 (7×24) variables describing the
distribution of the trip activities. Each variable in the vec-
tor represents the number of smart card’s transaction time
over each hour in each day of the week. Figure 1 illustrates
weekly profiles of passengers’ transaction time.

3.2 Regularity and Stability
In this section, we aim to figure out the relation between
passengers’ regularity and stability in their daily travel. The
large amount of SCD in 2010 and 2014 can help us under-
stand each passenger’s weekly travel regularity. We take
three aspects of weekly regularity into consideration:

• Travel frequency of the week, W = d
7
∈ [ 1

7
, 1]. Here,

d is the number of days when passengers travelled by
public transit.

• Travel frequency of every day. We count the number
of trips in each day of the week, D = {Di|i = 1, ..., 7}.
The standard deviation of D is calculated as Dsd.

• Temporal differences between daily trips. We acquire
the temporal differences of n daily trips in one week,

DIST = {Disti|i = 1, ..., n∗(n−1)
2
}, by using the dis-

tance calculating method presented in Section 3.4.1.
DISTsd is the standard deviation of DIST .

Then, since Dsd and DISTsd is negative correlated with
regularity, we defined passenger’s regularity (RE) as:

RE = W × e−Dsd × e−DISTsd , RE ∈ (0, 1] (1)

Here, we use the exponential function (e−(x)) to normalize
the RE, ranging from 0 to 1. We also acquire each passen-
ger’s stability (Sta), which subject to the variance between
each passenger’s regularities in 2010 and 2014 (RE10 and
RE14), Sta = RE14/RE10. Figure 2(a) shows the relation
between RE10 and RE14, and the correlation coefficient is
0.0485. Figure 2 (b) shows the relation between RE10 and
Sta, and the correlation coefficient is -0.00059. This two
coefficients are both less than 0.1, which means the regular-
ities of passengers between 4 years are nearly irrelevant. We
may assert that the regularity between long-time intervals
cannot be predicted.

3.3 Identifying Extreme Travelers
Before analyzing the transit behaviors of the passengers in
Beijing, we separate the whole passengers into two groups:
extreme travelers and non-extreme travelers. We define and
identify the extreme travelers according to a survey in 2010
[9] as well as researchers’ own experiences of living in Bei-
jing. Four types of extreme travelers are defined based on
their behaviors in weekdays, by setting several thresholds
and combining empirical knowledge of Beijing as depicted
in Table 1. For example, since most people’s working hours
start on 8:30 or 9:00 am in Beijing, public transit boarding
time before 6:00 am would be considered as an unusually
early situation.

Table 1: Definitions of extreme travelers

Type Defination
Early Birds

(EBs)
First trip < 6AM, more than two days

in five weekdays (60% of weekdays)
Night Owls

(NOs)
Last trip > 10PM, more than two days

in five weekdays (60% weekdays)
Tireless

Itinerants (TIs)
≥ one and a half hours commuting,

more than two days in a week
Recurring

Itinerants (RIs)
≥ 30 trips in weekdays of a week

(≥ 6 trips per day)

3.4 Clustering Non-extreme Travelers
As extreme travelers only account for a small proportion
(less than 5%), we cluster the non-extreme travelers to char-
acter their travel pattern. This process is consisted of three
stages: 1) defining the distance (similarity) between different
SCD records; 2) clustering samples of SCD with a simplified-
smoothed OPTICS algorithm proposed by us; and 3) classi-
fying the whole SCD records with a Kmeans-like algorithm
according to results of the clustering stage.

3.4.1 Defining Distance between Smart Card Records
We count the transaction time of SCD in each hour of the
week to form a vector consisted of 168 (24 hours × 7 days)
variables, V = [v0, · · · , v167] ∈ N . There are some classic
distance-measurement methods to measure the similarity of
different records, like Euclidean distance, Manhattan dis-
tance, and cosine distance. As we tested, given two vectors,



Figure 3: Distance between two vectors, u and v , is
the sum of the time interval (Ti = min{TP

i , TN
i }) and

absolute difference between ui and vi (Ai) in each
position i, where ui 6= vi.

Euclidean distance and Manhattan distance only compute
the sum of differences between components in the same po-
sition of two vectors. But they will not consider the influence
of components’ positions which reflect vectors’ temporal at-
tribute. When computing cosine distance, since the vectors
are mostly sparse, the product of two components, one is
zero and the other is not, in the same position of two vectors
will be zero. This will miss out many useful information of
the two vectors. Thus, those classic distances formulas are
not capable of measuring the time interval between smart
card transactions.

To solve the above problems, we define a method to compute
the distance between two vectors as Transaction Distance
(Dtran), considering both vector’s difference and temporal
attribute. Since non-extreme passengers’ vectors are mostly
sparse vectors. We define the distance between the two vec-
tors, u and v , by computing the sum of ith component dis-
tance (Di) between ui and vi. The component distance (Di)
consists of two parts, the time interval (Ti) and the absolute
difference of the two components’ value (Ai = |ui − vi|). As
for the time interval Ti, if one of ui and vi equals to 0, Ti

equals the smaller value of the previous and the next time
intervals between non-zero components in different vectors,
namely Ti = min{TP

i , TN
i }. If ui and vi both do not equal to

0, Ti = 0. Then, the Transaction Distance between vectors
u and v can be represented as:

Dtran =

167∑
i=0

min{TP
i , TN

i }+k∗|ui−vi|, s.t. ui 6= vi (2)

Here, k, ranging from 0 to 3, is a parameter to balance the
weights of T and A, as we tested. Figure 3 shows an example
of computing the transaction distance. Tj = min{TP

j , TN
j }

equals 1 and Tl = 0. If a non-zero component in one vec-
tor cannot find a previous or next non-zero component in
the other vector, like the situation of ui, its TP

i equals
min{i, 167− i}.

3.4.2 Clustering Samples of SCD Records
We then cluster the vectors to identify the travel pattern
of public transit riders in Beijing based on the distances of
smart card transaction records. Although K-Means algo-
rithms or other centroid models are very efficient to cluster
the travelers pattern, it is hard to nominated the number of
clusters (k) before running of the algorithm, without prior
knowledge. A new fast-searching and density-based cluster-
ing algorithm [15] can only identify 4 or 5 obvious clusters
as we tested. Thus, we propose an improved density-based

Figure 4: cd of OPTICS and rd of both OPTICS
and SS-OPTICS. MinPts = 4

clustering algorithm based on OPTICS [1], which is suit-
able for our data with distances acquired. We named it as
Simplified-Smoothed-OPTICS (SS-OPTICS).

1) Simplify : The original OPTICS algorithm has two key
concepts, cord-distance and reachability-distance.

Definition-1, Core-distance (cd): Let p be an object
from a dataset D, let ε be a distance value, let Nε(p) be the
set {x ∈ D|dist(p, x) ≤ ε}, let MinPts be a natural num-
ber and let MinPts-distance(p) be the distance from p to its
MinPts neighbor. Then, the core-distance of p is defined as
core-distanceε,MinPts(p) ={

UNDEFINED , if Card(Nε(p)) < MinPts

MinPts-distance(p) , otherwise

Algorithm 1: Getting Ordered Points by OPTICS

Data: D (Unprocessed Dataset), ε
Result: OrderedPoints
initialization;
while D 6= Null do

Point = D.pop();
OrderedPoints.append(Point);
P neighbors = point.neighbor(ε);
if P neighbors 6= Null then

OrderSeeds = [];
OrderSeeds.updateRD(Point, P neighbors);
while OrderSeeds do

OrderSeeds.sort(key = RD);
Seed = OrderSeeds.pop();
OrderedPoints.append(Seed);
S neighbors = Seed.neighbor(ε);
if S neighbors 6= Null then

OrderSeeds.updateRD(Seed, S neighbors)

Definition-2, Reachability-distance (rd): Let p, o ∈ D,
let Nε(o) be the ε -neighborhood of o, let MinPts be a natu-
ral number. Then, the reachability-distance of p with respect
to o is defined as reachability-distanceε,MinPts(p,o) ={

UNDEFINED , if |Nε(o)| < MinPts

max (core-distance(o), distance(o, p)) , otherwise

Here, ε and MinPts are two input parameters of the original
OPTICS algorithm. According to OPTICS’s definitions, the



Figure 5: RD curves of OPTICS and SS-OPTICS, ε
= 100 and S = 41

green points covered by the yellow circle in the Figure 4
share the same reachability-distance (rd), which equals to
the core-distance of point o (cd). Although the green points,
p1, p2 and p3, have same rd, their actual reachable distances

from point o are different (rd
′
p1 < rd

′
p2 < rd

′
p3).

The main ideas of OPTICS can be described as: 1) reacha-
bility distance represents density and 2) reachability-distance
determines the points’ output order, which determines clus-
ters. Based on these ideas, we can find a design flaw of
OPTICS that the output order of p1, p2 and p3 in the left
example of Figure 4 maybe disordered due to their same rds.
Thus, we design an improved OPTICS algorithm, mainly
shown in Algorithm 1, by abandoning the concept of core-
distance and define a new concept of reachability-distance
(RD) as follows.

Definition-3, New Reachability-distance (RD): Let p, o
∈ D, let Nε(o) be the ε -neighborhood of o. The reachability-
distance of p with respect to o is defined as reachability-
distanceε(p,o) ={

UNDEFINED , if |Nε(o)| = 0

distance(o, p) s.t. p ∈ Nε(o) , otherwise

2) Smooth: The 2D plot based on the ordered points’ reach-
ability distance can help us distinguish the clusters. As the
denser the points gather, the lower reachability-distances the
points get, the ”valley” shapes in the reachability distance
curve represent clusters with high density. In Figure 5, the
blue and green lines are the rd curves of OPTICS and SS-
OPTICS, respectively. We notice that, although the value
of SS-OPTICS’s RD is less than OPTICS’s, their curves are
extremely similar.

The red line is the smoothed RD of SS-OPTICS, RD
′
, in

Figure 5. We smooth the RD curve with two aims: 1) easily
identifying the the valley-shaped clusters and 2) controlling
the size of a cluster. We use mean filter to smooth the RD
curve to achieve our goals with only one parameter, window

size (S). Each value of the smoothed RD curve, RD
′
i , is the

mean of RD value of points within the window:

Figure 6: Four obvious categories of the heatmap of
the 33 clusters. D1-D5: weekdays, D6-D7: week-
ends

RD
′
i = (

j=i+n∑
j=i−n

RDj)/S, s.t. n =
S − 1

2
(3)

Since RD
′

has been filtered by a S sized window, it should
be noticed that the boundary of the valley-shaped cluster
has a bias to the left, and the offset is S−1

2
. After the mean

filtering, the valley (cluster) of the RD curve, whose number
of the points in this cluster is less than S−1

2
, will nearly be

filled up. Thus, the cluster size is controlled to be larger
than S−1

2
.

As we tested, the average sizes of clusters generated by SS-
OPTICS is 10% larger than that of OPTICS and the average
cohesion of clusters generated by SS-OPTICS is around 3%
smaller than that of OPTICS. Further, the results of clus-
tering by the two methods are nearly the same, if the input
points are distributed in normal shapes, like square, circle
or Gaussian. And both SS-OPTICS and OPTICS are not
sensitive to the value of input parameter with time complex-
ity of O(n2). But SS-OPTICS only needs one parameter (ε,
setted as 100 in our experiment), while OPTICS needs two
(ε and MinPts). Meanwhile, SS-OPTICS is more easier to
control the cluster size by defining the value of S. Finally,
we iteratively cluster several random samples of SCD, con-
taining 20000 entries in each sample, and identify 33 clusters
for the next stage to classify the whole dataset.

According to the transaction time distribution of the 33 clus-
ters, they can obviously be classified into 4 big categories as
Figure 6 shows. The 4 categories can be described as: one-
day trips, two-days trips, multi-days trips, and commuting
trips. The one-day trips containing 7 clusters (9-15) are dis-
tributed in one day of the week from Monday to Sunday.
The transaction time of two-day trips ( cluster 1-8, 16 and



18-23) is distributed mainly in two days of the week, while
the transaction time of multi-day trips (cluster 24-27, 29 and
31-33 ) is dispersed in different days (at least 3 days). The
commuting trips (clusters 17, 28 and 30) are mainly charac-
tered with regular transaction time distributed in weekdays.

3.4.3 Classifying the Whole SCDs
The 33 clusters acquired by SS-OPTICS are described as
C = [C1, ..., C33]. Each Ci in C is a one-dimensional vector
containing 168 components. Each component (cj) of Ci is
the incidence rate of passenger’s smart card transaction in
the (j%24)th hour of the (j − j%24/7)th day of the week.
We also add a cluster to C as the 34th cluster, whose com-
ponents are all zero, to classify some noise points. Thus,
we can classify all the SCDs based on the clusters’ feature,
C = [cij ]34×168.

According to the data we already known: 1) cluster number
k and 2) feature of each cluster Ci, it is very suitable for us to
utilize Kmeans-like algorithm to classify the whole dataset,
since the nodus of Kmeans is to fix k and the centroid of
each cluster. For each SCD vector, V = [v0, · · · , v167]vi∈N ,
it belongs to Cluster Ci:

i = argmax
i

168∑
j=1

vj × cij (4)

Then, we update the cluster Ci, cij=
n× cij + vj
n + ||V ||0

, if vj 6= 0

n× cij
n + ||V ||0

, otherwise

Here, n is the total number of transactions in Ci.

4. MOBILITY AND STABILITY ANALYSIS
Mobility and stability patterns of people living in metropoli-
tan areas are really hard to measure due to the huge number
of residents and incomplete methods to probe all the popula-
tion. As many work [11], [5], [13] mentioned, utilizing SCD
collected by AFC system is a nearly ideal solution of this
problem, since public transit is used by a large proportion
of urban residents and AFC system can record their travel
details. But we still need to consider the influence of many
other factors, like age distribution, social scale, per capita
income, type of job, city size and so on, to analyze and make
correct decisions. Since the datasets of 2010 and 2014 are
selected according to same smart card IDs, the mobility and
stability of fixed passengers can be reflected by their changes
of travel pattern between the two years. In this section, we
analyze passenger’s mobility and stability pattern based on
temporal information combining some background socioeco-
nomic factors listed in Table 3.

4.1 Relation between Mobility and Stability
Different temporal scales of data reflect facts from different
perspectives. Weekly profiles showing short-term mobility
depict people’s living circles, while transitions of mobility
patterns may imply the unchangeable of lifestyle and social
status between several years. A case study of variability
of temporal patterns in Singapore [21] shows variability of
mobility patterns can be observed at individual and spatial

Table 2: Transition Matrix of Extreme Travelers

2010
2014

EB NO TI RI NE SUM

EB 1286 206 535 82 7605 9714
NO 299 2550 2200 153 30006 35208
TI 376 996 9488 182 48406 59448
RI 93 198 677 275 7351 8594
NE 8780 26357 82630 3977 1646118 1767862

SUM 10834 30307 95530 4669 1739486 1880826

EB: Early Birds, NO: Night Owls, TI: Tireless Itinerants, RI:
Recurring Itinerants and NE: Non-Extreme Travelers

Figure 7: Four obvious categories of the heatmap of
the 34 clusters

aggregated scale, but the overall urban movements remains
almost the same. Jiang et al. [6] cluster individuals’ daily
activity patterns according to their usage of space and time
within one year, and show that daily routines can be highly
predictable at a group scale. But the analysis of relation be-
tween regularity and stability in Section 3.2 shows it is hard
to predict passenger’s regularity. Thus, the predictability of
passenger’s regularity is likely to be influenced by the time
interval of prediction.

Meanwhile, our long-term analysis about mobility and sta-
bility can be mutual corroborated to some extent by the
above two works focusing on short-term analysis [21], [6].
As we can see in the fine-grained and coarse-grained com-
parisons of non-extreme passengers’ transit profiles between
2010 and 2014 in next sections, long-term dynamics of ex-
treme travelers give us a snapshot of urban dynamics. Along
with the increase of population and urban size in Beijing,
inhabitant’s travel pattern changes a lot. But people’s life
styles are more or less at a standstill. They still live in
such a big city, they still have to use public transit sys-
tems, and they still have no more choice but to ride buses or
metros. The passenger’s performance shows how difficult to
ascend a higher stratum of the society in leaps and bounds
in four years. The relation between mobility and stability
also makes us have a better understanding of that people
and society advance by steps not by leaps.

4.2 Extreme Travelers Analysis
According to the classification criteria proposed in Table 1,
we get the transition matrix of the 4 types of extreme trav-
elers (EB, NO, TI, RI) from 2010 to 2014 in Table 2. The
amounts of extreme travelers in 2010 (141340) and 2014



Table 3: Social Economics Factors in Beijing

Y ear Population Population Density Private V ehicles Bus V olume Metro V olume

2010 17.55 mil. 1224 persons/km2 2.97 mil. 5.165 bil. 1.423 bil.
2014 21.15 mil. 1498 persons/km2 4.25 mil. 4.843 bil. 3.205 bil.

Figure 8: Heatmap of the 34 clusters’ transition ma-
trix

(112964) are both very small comparing to that of non-
extreme travelers. In addition, 84% of the extreme travelers
in 2010 converted into non-extreme travelers in 2014, which
means the stability of extreme travelers’ live pattern cannot
last for a long time.

But among the 4 extreme type’s transition, we still find that
the amounts of EB, NO and TI in 2010 converted to them-
selves in 2014 (1286, 2250 and 9488) occupy the highest
rate. That is to say, extreme pattern is more likely to keep
the original status other than to convert into other extreme
patterns. It also meets the findings of our previous work [9]
that most of EB, NO and TI are full-time workers, implying
full-time worker will less likely change their jobs (also travel
pattern) compared to the unemployed. The phenomenon of
the transition rate of TI to TI (86%) greatly exceeds that of
TI to EB, NO or RI demonstrates that people in the group
of TI may have greater difference of work patterns compared
to others.

4.3 Non-Extreme Travelers Analysis
As Figure 6 illustrates, the heatmaps of non-extreme clusters
can be classified into the 4 categories. Heatmap’s feature in
each category is so distinctive that it seems like that these
clusters are classified by some thresholds or a decision tree,
which reflects the accuracy of our clustering method. After
clustering the sample data and classifying the whole dataset,
we get the amounts of cards in each of the 34 clusters in 2010
and 2014, demonstrated by Figure 7. The amounts of trans-

action time in one-day, two-day and multi-day trips do not
vary much between 2010 and 2014. The amount of of one-
day trips, around 60000, is a little more than that of two-day
trips, around 50000. The amount of multi-day trips (about
30000 in each cluster) is the least. This phenomenon may be
explained as: the more disperse the passenger’s trips are in
one week, the smaller the amount of this kind of passengers
is. Except for the workers commuting by public transit, only
a small portion of people travel a lot with their travel time
irregularly distributed in the week. These data also shows
more people in Beijing choose to use public transit occasion-
ally, mainly in one day or two days. It is maybe related to
the huge urban size which leads residents will not use public
transit only if they go far.

However, almost all the towering bars in Figure 7 belong
to commuting trips, which depicts the public transit com-
muters who take a home-to-work trip every weekday morn-
ing and go back to home in the evening. Under scrutiny, the
amount of passengers belonging to commuting trips nearly
doubled from 2010 to 2014. To explain this evident increase,
two reasons should be considered. One is that public transit
became more convenience from 2010 to 2014, since Beijing
metro company constructed 8 more lines into 15 lines in total
and the total metro length increased rapidly from 228 km to
465 km during this 4 years. The other reason is the ground
transportation in Beijing became more congested, since the
total number of private vehicles in Beijing increased from
2.9 to 4.3 million.

4.3.1 Fine-grained Analysis
By acquiring the amounts of passengers of the 34 clusters
in 2010 and 2014, we calculate the transition (mobility) ma-
trix of these clusters demonstrated by a heatmap shown in
Figure 8. In this heatmap, the brighter the grid is, the more
passengers belong to this grid. We can easily catch sight
of bright parts (red, orange, yellow and white parts) and
find these parts mainly distributed in cluster 17, cluster 28
and cluster 30 of both 2010 and 2014, which belong to the
commuting trips category.

Especially for the yellow and white grids (C17→17, C17→28,
C28→17 and C28→28), their amounts are several times as
large as the amounts of other grids. This reflects the sta-
bility of people belonging to commuting trips category, who
tend to remain the same status. The four grids’ weekly pro-
files are demonstrated by heatmaps in Figure 9. Although
their morning-evening rush hours have a deviation of one
hour, the stability can be reflected by the similar distribu-
tion of transaction time and the same time intervals be-
tween morning and evening rush. Their temporal profiles
also tell us most commuting trips of passengers in Beijing
are distributed mainly from Tuesday to Friday. It is inter-
esting to see why commuting passengers use public transit



Figure 9: Heatmaps of the mutual transition be-
tween cluster 17 and cluster 28 in both 2010 and
2014

Figure 10: Ratios of the passengers riding in a metro
at least once a week

on weekdays except Monday in the future. A possible ex-
planation may be the Monday Morning Syndrome (MMS),
which means some people feel even more tired out than on
Friday after relaxation over the weekend.

There are also some red and orange grids distributed in the
one-day trips region (cluster 9-15). The heatmap shows the
mutual transitions between one-day trip category (cluster
9-15) and commuting trip category (cluster 17, 28) happen
a lot. Passengers in the group of one-day trip category are
regarded as the ones using public transit occasionally. This
transition shows passengers change their public transit us-
age patterns from occasional to regular on weekdays. This
situation can be the result of many reasons, like changing
job or work location, earning enough money to buy a car,
or taking metro to work instead of driving. Figure 10 shows
the ratios of passengers who rode in a metro at least once a
week in each cluster. The ratio in 2014 is apparently higher
than that of 2010. Further, the ratios of commuting clusters
(17, 28, and 30) reach local peaks in both lines of 2010 and
2014 in the figure. This means commuting passengers may
be the most stable group who are most willingly to transit
by metro.

4.3.2 Coarse-grained Analysis
The transition matrix of the 4 types of non-extreme travel-
ers is also counted according to above data, in Table 4, and
give us a new perspective to analyze passenger’s mobility
and stability. Here, people belonging to O and transformed
into C is represented by TO→C as a component of transition
matrix. However, only with smart card data, we cannot
prove our conjectures. To better understand the mobility
and stability of passengers, we combine some socioeconomic
statistics data of Beijing in both 2010 and 2014 [16], shown
in Table 3. From 2010 to 2014, Beijing increased 3.6 million

Table 4: Transition Matrix of Non-extreme Travel-
ers

2010
2014

O T M C SUM

O 119270 193290 84311 31864 428735
T 164817 298667 142436 48043 653963
M 64449 142399 76769 20038 303655
C 36642 79266 47757 11812 175477

SUM 385178 713622 351273 111757 1561830

O: One-day trip, T: Two-day trip, M: Multi-day Trip and C:
Commuting Trip

people and the population density in urban area rose from
1224 to 1498 persons per square kilometer. Along with the
growth of population, the total number of private vehicles
in Beijing expanded to 4.25 million from 2.97 million. All
these factors tell us a fact that Beijing became more crowed
in urban area and more vehicles led more congested ground
transportation in 2014. As for the transition matrix, the
ratios of components in each row of the transition matrix
are very close (approximately O:T:M:C=6:14:7:2), implying
the overall travel patterns of passengers in Beijing did not
change much from 2010 to 2014. Although population and
vehicles increased a lot in Beijing, data reveals the stabil-
ity of travel pattern of public transit riders. However, as
table 3 indicates, the total volume of Beijing Metro System
doubled during the 4 years, while the volume of bus system
decreased. This unusual decline can be explained that the
government focused on pushing forward the expansion of the
Beijing Metro System to mitigate congestion brought by the
fast increasing population and vehicles. But the transition
matrix uncover that the increased metro lines cannot fix the
root cause of this problem. In conclusion, like the findings in
[21] and [17], the coarse-grainded analysis shows the mobil-
ity of a part of residents may change, but the overall travel
patterns of passengers nearly stay the same.

5. CONCLUSIONS
Smart card data gives us another opportunity to observe
the operation of our cities, where moving is the perpetual
normal. In this paper, we analyze the relation between pas-
senger’s regularity and stability. For the non-extreme trav-
elers, we cluster them by utilizing SS-OPTICS, proposed
by ourselves, to discover their transition patterns between
different clusters. By combining socioeconomic data, we
present several analyses about resident’s temporal mobility
and stability. Extreme travelers are most vulnerable that
the stability of extreme travelers’ life pattern cannot last for
a long time. According to clustering outcomes and our anal-
yses, non-extreme travelers show their high mobility by a lot
transition between different fine-grained clusters. However,
the stability of their travel patterns is also obvious when
coarse-grained classification is introduced to our analysis.
Along with the increase of population and vehicles in Bei-
jing, although the government constructed more metro lines
to mitigate congestion, it cannot solve this problem and the
overall public transit riders nearly keep the same travel pat-
terns. But at individual level, a passengers’ transit trip is
hard to predicted based on short-term travel behavior, like



predicting a passenger’s regularity in 2014 based on that
in 2010. Further, the prediction will be more difficult for
extreme travelers.

Several improvements can be made based on the work pre-
sented herein. Firstly, the accuracy of SCD can be enhanced
in the future by adopting robust methods to mitigate the de-
viations of boarding and alighting time. Secondly, the pro-
posed SS-OPTICS algorithm can be improved aiming to find
a better way to define the boundaries of clusters. Thirdly,
more fine-grained socioeconomic data can be introduced to
our analysis.
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daily patterns of human activities in the city. Data
Mining and Knowledge Discovery, 25(3):478–510,
2012.

[7] C. Kang, S. Sobolevsky, Y. Liu, and C. Ratti.
Exploring human movements in singapore: a
comparative analysis based on mobile phone and
taxicab usages. Exploring human movements in
Singapore: a comparative analysis based on mobile
phone and taxicab usages - ResearchGate, 2013.

[8] N. Lathia, C. Smith, J. Froehlich, and L. Capra.
Individuals among commuters: Building personalised
transport information services from fare collection
systems. Pervasive and Mobile Computing,
9(5):643–664, 2013.

[9] Y. Long, X. Liu, J. Zhou, and Y. Chai. Early birds,
night owls, and tireless/recurring itinerants: An
exploratory analysis of extreme transit behaviors in
beijing, china. arXiv preprint arXiv:1502.02056, 2015.

[10] Y. Long, L. Sun, and T. Sui. A review of urban
studies based on transit smart card data (in chinese).
Urban Planning Forum, 3(10):70–77, 2015.

[11] X. Ma, Y.-J. Wu, Y. Wang, F. Chen, and J. Liu.
Mining smart card data for transit riders’ travel
patterns. Transportation Research Part C: Emerging

Technologies, 36:1 – 12, 2013.

[12] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and
C. Mascolo. A tale of many cities: Universal patterns
in human urban mobility. Plos One, 7(5):: e37027.,
2012.
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