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ABSTRACT 

As a result of population growth and urbanization, the 

interdependencies between infrastructure, services, and individuals 

in urban areas continue to increase. Urban areas already consume 

up to 80% of the world’s energy, and the expected population 

increase of nearly 70% by 2050 will drive a further rise in energy 

consumption. It is, therefore, vital for us to develop a better 

understanding of variabilities in human-related effects on 

buildings’ energy consumption within the urban spatial context in 

which they exist. Intra-city trips of urban population are undertaken 

as a result of individuals engaging in activities across various 

locations. However, people exhibit variations in their daily 

activities and the number of locations they visit over time. Here, we 

investigate the spatial interdependencies between human mobility 

networks of two distinct populations (i.e., returners and explorers) 

as an indicator of their daily activity patterns, as well as gas 

consumption to explore how variations in human mobility networks 

can be used to explain spatial fluctuations in energy use. We 

compare 2,015,339 positional records from an online social 

networking platform, Twitter, with energy consumption (gas) 

across 983 areas in Greater London over the course of a single 

month (May 2014). Our findings indicate a stronger statistically 

significant spatial dependency between human mobility networks 

of the returners and gas consumption, indicating domination of this 

population in urban energy use. This suggests that spatial 

fluctuations in urban energy consumption are governed by the 

structure of human mobility networks, among other factors. These 

results provide a clear picture of demand-side diversity and its 

drivers, establishing a foundation for human mobility-based 

predictive models for urban energy consumption. The relationship 

between energy consumption and human mobility is key to creating 

effective policies for urban areas, leading to more reliable 

predictions and effective management decisions about future 

patterns of energy use. Our findings will be of value to urban 

planners, researchers and policy-makers.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications–Spatial 

databases and GIS; H.4.m [Information Systems Applications]: 

Miscellaneous.  

General Terms 

Measurement, Experimentation, Human Factors. 

Keywords 

Energy Consumption; Human Mobility Networks; Network 

Dynamics; Urban Computing; Urban Energy Flux; Urban 

Sustainability.  

1. INTRODUCTION 
Today’s cities are the most complex built environments in human 

history, containing 54% of the world population [1], responsible for 

up to 80% of the world's total energy consumption [2, 3]. Given 

that the planet’s 28 megacities are projected to increase to 41 by 

2030, adding 2.5 billion residents to our urban environments [1], 

world energy consumption is expected to grow by as much as 56% 

between 2010 and 2040 [4]. The parallel rise in the scale and nature 

of human activities in tomorrow’s urban environments [5] mean 

that the complex mix of operations and demands, technology 

adaptation, and lifestyles in future cities will be substantially 

different. This ever-increasing level of complexity raises serious 

concerns regarding the robust operation of the vital urban lifelines 

that supply electricity, transportation, communication, and water. 

There is thus a pressing need to explore how best to ensure that the 

expected increase in urban population, combined with the resulting 

additional complexities, are managed to support positive outcomes 

for future energy demand, efficiency and resilience. How can we 

make reliable predictions of future energy demand that incorporate 

change? 

The major sources driving changes in energy demand stem from 

the mix of personal activities occurring at specific times and 

locations [6]. During the course of the day, people engage in a range 

of different activities scattered across various locations, thus 

driving the energy demand in those locations. Population growth 

and the shift of this population both into and within urban areas 

cause significant increases in the amount, diversity, and complexity 

of human activities, with a corresponding significant impact on 

energy consumption. What will the fluctuations and 

interdependencies between human mobility and energy 

consumption look like in the near and far future? This high level of 

uncertainty raises additional questions regarding urban energy 

resilience, for which our current knowledge about these patterns 

based on today’s consumer behavior may fail to hold true in the 

future.  

Opportunely, understanding variations in an urban population’s 

activities can contribute to better perceptions of location-specific 

energy demands and its spatiotemporal fluctuations by addressing 

questions such as: “What are the current patterns of energy 

consumption as related to their stimulating urban population 

activities?” and “Which regions should we expect to experience 

increases/decreases in demand?” Understanding the distribution 

and patterns of urban energy consumption can be a significant 

indicator in managing and allocating current and future resources. 

Enhancing our ability to recognize and manage short and long term 

urban energy resilience is essential if our cities are to continue to 

thrive. 
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2. SPATIAL VARIATIONS OF URBAN 

ENERGY CONSUMPTION 
Fluctuations in urban energy consumption have been studied in 

both spatial [7-10], and temporal [10-14] dimensions. It has been 

argued that such fluctuations are driven by urban form, density and 

texture [9, 15-20], building characteristics [21-24], building age 

[25], and function [8]; other researchers have identified population 

density [17], urban transport [18], climate and weather conditions 

[19, 21, 26], socioeconomic elements [7, 19], and individual 

behaviors [27] as having an effect. Some of these have identified 

reverse correlations with energy consumption. Ratti et al. [11] 

found that the surface-to-volume ratio was not representative of the 

total energy consumption in urban areas, instead recommending the 

use of the ratio of passive to non-passive zones as an indicator. 

Although still representative, urban texture can only explain 10% 

of the variations, however, which seems relatively small compared 

to the implications at the system and occupant behavior level [15]. 

A few years later, Zhang et al. [7] analyzed the spatial variations of 

energy consumption in China for 30 provincial capital cities 

utilizing parallel comparison and quantitative analysis, concluding 

that their different geographic features, economic development 

levels and local energy source availability were among the main 

determinants of fluctuations in their energy consumption and thus 

recommending the use of a type-based management system for 

urban energy systems. Rey et al. [28] took a slightly different 

approach in their study of residential energy consumption in 7 

neighborhoods in Swiss cities to evaluate the effects of centrality 

on total energy consumption, finding that occupant density was 

more representative than built density. In a more recent study, also 

in Switzerland, Fonseca and Schlueter [10] took into account the 

spatiotemporal fluctuations of energy services in characterizing the 

energy consumption patterns of residential, commercial, and 

industrial buildings in urban settings. These researchers introduced 

an integrated model that incorporated spatial analysis, dynamic 

building energy modeling and energy mapping and then validated 

it against measured data. Although they did take into account 

elements such as the location of buildings, time, and the properties 

of energy services such as the power and temperature required, they 

failed to consider consumer aspects such as the occupant density of 

each neighborhood and its spatiotemporal fluctuations, both of 

which may be more realistic measures for demand. The main focus 

of their study was to understand building performance in the light 

of potential retrofit strategies.  

Interestingly, despite its significance, all of these studies neglected 

to take into account activity-based variations in urban energy 

consumption. An individual may exhibit low consumption habits at 

work, but consume disproportionate amounts of energy during later 

hours of the day when they are at home or utilize high-energy-

consuming transit modes to travel within the city. Activity-based 

approaches [29-31] are often used to anticipate future demand for 

services and the consumption of resources, but once again these 

approaches focus primarily on the diversity of activities rather than 

the heterogeneity that exists across users and the patterns of their 

collective activities in time and space. In order to be able to reliably 

locate high/low energy consuming locations, we need to track the 

population themselves. Location-based activities do not represent 

the extent of usage, but the movements of consumers do.  

Intra-city trips are undertaken as a result of individuals’ intent to 

engage in activities, and therefore human mobility is often used to 

develop a better understanding of the patterns and types of activities 

[32], or to identify origin-destination locations such as home, work, 

and other [33], as well as different functional locations or points of 

interest (POI) [34-36] in urban settings. Human mobility has been 

used to infer location choices and to strategize optimal accessibility 

to amenities under the influence of human mobility [37, 38]. There 

is a substantial body of research on the determinants of energy 

consumption in urban settings, much of which has explored the 

underlying drivers of its fluctuations [7, 10, 25, 28, 39]. 

Researchers studying human mobility have also investigated the 

spatiotemporal variations of human mobility extensively [40-45], 

and have linked these variations to patterns of activities, or motifs 

[46-48], as well as land-use or cities’ functional regions [35, 37, 49-

51]. However, a thorough review of the literature revealed no 

attempts to integrate these variations or to seek to explain urban 

energy consumption in terms of patterns of individual activities, 

which in this context means human mobility behavior. While these 

spatiotemporal variations appear to have been extensively studied, 

the link between fluctuations in human mobility and urban energy 

consumption, despite its crucial role, remains elusive. Therefore, 

this study is designed to uncover the interdependencies that may 

exist between the variabilities in urban human mobility and energy 

consumption spatial flux.   

Understanding energy consumption spatial flux across urban areas, 

the underlying dynamics of such fluctuations and the drivers of 

heterogeneity in consumption and demand is fundamental. If 

human mobility patterns can explain urban energy consumption 

patterns, is there a relationship between the spatiotemporal 

variations of human mobility driven by human activities as 

individuals visit different urban functional regions that could shed 

further light on the corresponding fluctuations in energy 

consumption? 

3. HUMAN MOBILITY NETWORKS 
Research has demonstrated that human mobility can account for 

much of the city-wide human activity observed [47, 48, 52] and 

thus can be used to predict urban energy consumption [53]. 

However, the spatiotemporal patterns of human mobility and 

energy consumption are not homogeneous in urban settings. 

Despite the fundamental laws found for human mobility and travel 

distance at larger scales [44, 54, 55], the distribution of the radius 

of gyration suggests that intra-city daily human mobility is largely 

heterogeneous [44, 56]: individuals exhibit variations in their daily 

activities, the number of locations they visit over time, and hence 

their daily mobility. The significance of understanding this 

variability in travel behavior, the analytical rationale for such an 

understanding and its policy implications are the subjects of a long 

standing debate [57]. The earliest work in this area examining the 

dynamics and rhythms in mobility behavior was limited to survey 

data [58], applying travel-activity survey data to explore spatial 

variability in activity-travel behavior [48]. Later, it became possible 

to gather data on the temporal variability of individuals’ daily 

activities in order to identify structures and clustering activities at 

different times of the day [52]. Schneider et al. [56] explored 

individuals’ daily mobility in the form of networks of visited 

locations in two different cities (Paris and Chicago), and across 

different datasets (a travel survey and mobile phone billing data) 

and found reoccurring sets of 17 daily mobility networks that they 

labelled human mobility motifs. They further discovered that 90 per 

cent of the individuals surveyed visited only seven daily locations. 

A more recent study [41] examined the spatiotemporal variability 

of human mobility through statistical analysis and networked-based 

clustering methods at both the individual and aggregate levels in 

Singapore in order to identify diversity. The initial findings of their 

one week study indicated some stability in the spatial structure of 

the mobility patterns revealed. Louail et al. [43] also proposed a 

method for inferring different categories of mobility networks and 



 

 

their flows from origin-destination (OD) matrixes extracted from 

mobile phone data, in their case using data recorded in 31 Spanish 

cities. Louf and Barthelemy [59] took this a step further, reporting 

that the structure of human mobility patterns was largely governed 

by a variety of urban quantities, including the quantity of CO2 

emitted and the total consumption of gasoline. More recently, 

Pappalardo et al. [60] classified individuals into two populations 

with distinct mobility patterns: returners, and explorers, with the 

returners being those individuals whose mobility network is 

governed by a few recurrent preferred locations (e.g., home, work) 

and the explorers’ mobility networks spanning a much larger 

number of different locations. They found significant correlations 

between these mobility networks and their social interactions, as 

well as their role in the diffusion phenomenon. Understanding 

whether distinct mobility patterns of these two populations can 

explain spatial fluctuations in energy consumption is thus of 

fundamental importance and can result in better predictions, better 

management and more effective allocation of resources. Here, we 

explore whether one population exerts a disproportionate influence 

over the spatial consumption of energy in urban areas by examining 

the most preferred locations in their mobility networks.   

4. DATA and METHODS 
For this study, 2,015,339 positional records of 32,620 individuals, 

of whom 17,097 were identified as returners and 10,175 as 

explorers, along with the gas consumption of 3,040,422 building 

meters distributed across 983 spatial divisions were examined. 

These spatial divisions consist of MSOAs (middle layer super 

output areas), which are administrative boundaries representing a 

minimum population of 5,000 and an overall mean of 7,200 [61] in 

Greater London. Data was collected for 31 days (May, 2014). The 

positional records included in the study consist of those individuals 

with at least 3 distinct records across two different spatial divisions 

within the duration of the study. Timestamped positional records 

were streamed from an online social networking platform (in this 

case Twitter) and logged if the user allowed. The users were then 

classified into the two distinct populations (returner and explorer) 

based on their 2 (two) most frequently visited locations (Section 

4.1). We then explored whether each population’s mobility 

exhibited a meaningful spatial imprint (Section 4.2) that would 

serve as an indicator for energy consumption through spatial 

autocorrelation and regression analysis (Section 4.3). Section 5 

presents our findings on the role of different human mobility 

networks in urban energy consumption measures and explores 

whether one population is predominant and its implications. The 

paper ends with a discussion of potentially fruitful future research 

directions in this area (Section 6). 

4.1 Radius of Gyration  
We selected the radius of gyration rg(t): (Eq. 1) [44] as our metric 

for this study from among the most widely accepted indicators for 

describing large-scale human mobility patterns to capture 

individuals’ characteristic travel distance within the area where 

they habitually move around in the course of their daily activities. 
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The radius of gyration was calculated at two spatial and two 

temporal levels for each of the two study populations. The 

individual level rgi(t)  is the characteristic distance traveled by a user 

when observed up to time t, so every MSOA level rga(t) represents 

the deviation of rgi(t)s from the corresponding center point (Eq. 2). 

This indicator was then used to describe the patterns of human 

mobility across MSOAs. Next, we ranked the 983 MSOAs for each 

individual based on their frequency of visits. After identifying the 

two most frequently visited MSOAs for each individual, the 

individual level rgi(t) was obtained per MSOA per day. The MSOA 

level rga(t) was then obtained per MSOA over the total time frame 

(in this case 31 days). At the spatial level, we calculated the 

weighted radius of gyration per MSOA and the total radius of 

gyration for each individual for the study period (May, 2014) and 

calculated the M-radius of gyration (Eq. 3) for each individual for 

the first 2 (two) most frequently visited MSOAs.  
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Finally, we compared the total rg and rg
(M) of each individual 

through a Support Vector Machine (SVM) classification such that 

the population was split into two distinct classes: returners and 

explorers [60]. M-returners, with rg
(M)≈ rg, are those individuals 

whose characteristic travelled distance is dominated by their M-th 

most frequently visited MSOA, while the mobility network of M-

explorers, with rg
(M)⋘ rg, spanned multiple MSOAs and could not 

be reduced to M locations. Figure 1 depicts the distribution of 

returners-explorers in terms of their total rg and rg(2) (M = 2, 

second most frequently visited MSOA). 

 

 
 
 

Figure 1. Recurrent vs. Overall Mobility of Populations (May 

2014): returners, explorers. 

4.2 Heterogeneity and Spatial Randomness  
A spatial autocorrelation analysis was performed for energy 

consumption (in this case, gas) and human mobility across the 983 

MSOAs in Greater London to measure the correlation among 

energy consumption and human mobility variables in the spatial 

dimension and assess the extent to which their spatial distributions 

are compatible with randomness. Moran’s I (Eq.4), which ranges 

from -1 (most dispersed) to 1 (most clustered), describes the degree 

of spatial concentration or dispersion for gas and human mobility 

(of returners and explorers), with larger values for I showing 

clusters of larger values that are surrounded by other large values, 

namely (I+)–spatial clustering, and (I–)–spatial dispersion 

indicating larger values that are spatially enclosed by smaller 

values. This also provides a useful test of independence to 
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determine whether the values of returners and explorers’ human 

mobility or gas consumption observed in one location depend on 

the values observed at neighboring locations. While Moran’s I 

represents a global spatial autocorrelation for our data, Geary’s C 

(Eq. 5) was also used to examine the deviations in the responses of 

each observation from one another, ranging from 0 (maximum 

positive autocorrelation) to 2 (maximum negative autocorrelation), 

with 1 indicating an absence of correlation. We have used Moran’s 

I and Geary’s C here as a measure of sensitivity to extreme values 

of gas consumption as well as returners and explorers’ human 

mobility in each MSOA in relation to others.  
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Finally, we used Getis-Ord G and Gi* (Eq. 6 and 7) to perform a 

hotspot analysis for returners and explorers. 
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Here, n represents observations related to variable x at locations i 

and j, where x is the mean of the x variable, and wij are the elements 

of the corresponding weight matrix. As illustrated in the four 

quadrants of the Moran scatterplots (Figures 2-4), there are four 

types of spatial autocorrelation for our variables. A positive spatial 

correlation indicates clustered values in similar locations, with 

areas of significance being the datasets in the high-high (upper 

right), and low-low (lower left) quadrants. The positive 

autocorrelation for the high-high scatterplot quadrant areas can be 

interpreted as indicating regions with high gas consumption or 

human mobility for returners or explorers which are clustered with 

and dependent on neighboring regions with high values for the 

corresponding variable. In contrast, the low-low quadrant areas are 

those MSOAs with low gas consumption or human mobility for 

returners or explorers that are clustered with and dependent on 

other low value areas. The two remaining quadrants, high-low 

(bottom right) and low-high (upper left), both depict negative 

spatial associations. Figure 2(a) shows the Moran scatterplot for gas 

consumption along with its permutation test plot (Figure 2(b)), 

indicating the significance of Moran’s I. The observed Moran’s I is 

located in the tail of the 999 permutation sample distribution and 

thus has a low probability of stemming from a spatial random 

distribution of gas consumption (i.e., a significance level of 5%). 

Likewise, Figures 3 and 4 show the Moran scatterplot and 

permutation for the mobilities of returners and explorers, 

respectively. The randomness hypothesis of the mobility of both 

returners and explorers is rejected in favor of spatial structure.   

 

 

 

 

(a) Moran Scatterplot:   

Gas 

(b) Permutation Test for Moran’s 

I – 999 permutations 

Figure 2. Spatial autocorrelation – Gas consumption 

Statistically significant (p-value < 2.2e-16) positive values for I in 

human mobility as well as gas consumption indicate that these 

patterns in Greater London follow a clustering distribution and 

reject spatial randomness in favor of structure. The statistically 

significant results for Geary’s C confirm these results, with high 

values of the C measures corresponding to low values of I and the 

two measures being inversely related. Statistical coefficients of 

these spatial autocorrelations are shown in Tables 2 and 3.  

 

 

 

 

 

(a) Moran Scatterplot: 

returners 

(b) Permutation Test for Moran’s I 

– 999 permutations 

Figure 3. Spatial autocorrelation – Human mobility: returners 

  

 

 

(a) Moran Scatterplot: 

explorers 

(b) Permutation Test for Moran’s I 

– 999 permutations 

Figure 4. Spatial autocorrelation – Human mobility: explorers  
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Table 2. Spatial autocorrelation– Moran’s I 

 Statistic(I) p-value Std 

Gas  0.5860776 < 2.2e-16 30.7 

Returners 0.3069102 < 2.2e-16 16.103 

Explorers 0.2844525 < 2.2e-16 14.93 

Table 3. Spatial autocorrelation– Geary’s C 

 Statistic(C) p-value Std 

Gas  0.430018324 < 2.2e-16 27.759 

Returners 0.7109341162 < 2.2e-16 13.966 

Explorers 0.7002775633 < 2.2e-16 14.534 

  
 

Figure 5. Gas Consumption Hotspots – 

Getis-Ord Gi* 

Figure 6. Returners’ Mobility Hotspots 

– Getis-Ord Gi* 

Figure 7. Explorer’s Mobility Hotspots 

– Getis-Ord Gi* 

These results confirm that for both gas consumption and the human 

mobility of returners and explorers, location is relevant and 

provides additional information beyond just their values. To 

identify models that relate these observations at one location to 

those at other locations and determine whether there is a specific 

spatial correlation structure, we performed a hotspot analysis. In 

order to identify statistically significant hotspots (i.e., where 

high/low values of human mobility and gas consumption are 

clustered spatially), we calculated the Getis-Ord G and Gi*. The 

results suggest a stronger relationship between hotspots of gas 

consumption and human mobility of returners than explorers. 

Table 4 shows the statistical coefficients for these analyses.  

Table 4. Spatial autocorrelation – Getis-Ord G 

 Statistic(G) p-value Std 

Gas  5.941973e-3 1.728e-16 6.2768 

Returners 6.416208e-3 < 2.2e-16 8.8668 

Explorers 6.448446e-3 < 2.2e-16 9.2423 

 

This suggests that those MSOAs with high energy consumption 

values are also surrounded by high human mobility of returners. 

The larger the G, the more intense the clustering of these high 

values (hotspots), indicating that hotspots of returners’ mobility is 

more similarly spatially clustered to gas consumption hotspots 

(Figures 5-7).  

4.3 Predominant Energy Consumption  
Having identified a dominant role played by returners in the spatial 

imprints of gas consumption, it is of significant interest to 

understand the dependencies that exist between their mobility 

patterns and energy consumption compared to explorers. Albeit, 

the energy use in different areas of a city cannot be regarded as 

being truly independent of one another in a regression analysis due 

to the identified spatial autocorrelation. The same statement holds 

true for urban human mobility for different populations (i.e., 

returners and explorers). In other words, considering the intrinsic 

spatial autocorrelation of energy consumption and human mobility 

in the 983 different areas of Greater London, does the correlation 

between the human mobilities of the returners and explorers and 

gas consumption manifest itself spatially different in urban areas? 

To answer this question we performed a spatial regression analysis.  

5. SPATIAL EXTERNALITIES and 

RESILIENCE 
Exploring the relationships between energy consumption and 

human mobility of returners and explorers in each MSOA and their 

neighboring values would allow us to examine the impact that one 

observation has on other proximate observations. Having found 

spatial dependencies and clustering distributions for both human 

mobility of returners and explorers, and gas consumption, we 

modeled their spatial interdependencies, by applying 

autoregressive models to implicitly incorporate such spatial 

dependence into a covariance structure. The two main 

autoregressive models for areal data tested in this study were 

simultaneous autoregressive models consisting of both lag (SAR) 

and error (SEM) models to represent global dependency conditions 

and identify spatial dependence in the covariance structure as a 

function of fixed parameters, such as the number of energy meters 

per MSOA, and examine various conditions. We also compared the 

results using a simple linear model, as well as developed a third 

model in which returners and explorers are both considered as 

covariants. Tables 5-7 include the statistical significance and 

parameters of these models.  

Table 5. Spatial regression analysis results – Gas consumption 

per human mobility: returners. 

 
Simple 

Linear Model 

(OLS) 

Spatial Lag 

Model 

(SAR) 

Spatial 

Error Model 

(SEM) 

p-value < 2.2e-16 < 2.22e-16  < 2.22e-16 

AIC 14939 14407 14419 

R-squared 0.08586 - - 

Statistics  92.14 0.73177 0.75099 



 

 

As indicated by p-values lower than 0.0001, these models are 

statistically significantly representation of and can predict gas 

consumption per human mobility of the population. However, with 

respect to the AIC measures, a SAR with the least AIC value (AIC 

= 14,407) that incorporates data for returners only, is the most 

representative spatial model and predictor for gas consumption. 

The multivariate SAR that distinctly incorporates data for both 

returners and explorers (AIC = 14,409) has substantial evidence, 

while the SAR that incorporates data for explorers only stands last 

among others (AIC = 14,410) has considerably less support 

compared to the best model. These models explicitly test the impact 

of human mobility variables on energy consumption. At a global 

scale, they imply that the state of the gas consumption per human 

mobility of returners and explorers for each MSOA in Greater 

London is influenced by that of its neighboring MSOAs and that 

this influence is better explained by returners and through spatial 

lag models implying a significant role for this population in the 

spatial distribution of gas consumption. 

Table 6. Spatial regression analysis results – Gas consumption 

per human mobility: explorers. 

 
Simple 

Linear Model 

(OLS) 

Spatial Lag 

Model 

(SAR) 

Spatial 

Error Model 

(SEM) 

p-value < 2.2e-16 < 2.22e-16  < 2.22e-16 

AIC 14957 14410 14418 

R-squared 0.06931 - - 

Statistics  73.06 0.73709 075208 

Table 7. Spatial regression analysis results – Gas consumption 

per human mobility: returners + explorers. 

 
Simple Linear 

Model (OLS) 

Spatial 

Lag Model 

(SAR) 

Spatial 

Error Model 

(SEM) 

p-value < 2.2e-16 < 2.22e-16  < 2.22e-16 

AIC 14940 14409 14421 

R-squared 0.08728 - - 

Statistics  46.86 0.73146 0.75092 

 

A significant implication of these interdependencies is possible 

spillover effects, meaning whether fluctuations occurring in gas 

consumption by the human mobility of returners and explorers in 

one MSOA have any diffusive impact on its neighboring MSOAs. 

And, if yes, whether there is a significant difference in the diffusive 

effects of these populations. The OLS and SEM models do not 

allow the spillover effect to be explored due to spatial independence 

limitations, but the SAR models, while being the most 

representative predictive models, do permit the magnitude and 

significance of direct spillover effects to be assessed, thus showing 

how changes in human mobility at a particular location will be 

transmitted to all other locations and how they will affect the gas 

consumption at the corresponding locations. Having such 

information will allow city managers and policy makers to identify 

hotspots and develop strategies to create bigger energy efficiency 

spillover effects, or to restrict unwanted or excessive energy use 

spillover effects. When creating such strategies, individual 

locations (gas consumption hotspots) can be targeted based on the 

spatial attributes of those locations. Alternatively, particular human 

mobility networks (consisting of either returners or explorers) can 

become the focus of attention. Whether diffusing desired effects by 

introducing changes in the spatial structure (e.g., targeting specific 

buildings or areas), or instigating contagion by introducing changes 

in the flow (targeting specific population), planners will be one step 

closer to ensuring better management and allocation of energy 

resources in urban areas. 

6. CONCLUSIONS and FUTURE WORK 
The dominance of returners’ human mobility networks on urban 

energy consumption signifies the important role urban population 

and variations in their activities play in using current and future 

resources. Understanding such continuous state of flux across 

urban areas, their underlying dynamics and the drivers of 

heterogeneity in consumption and demand is thus fundamental in 

making demand predictions. The relationship between the spatial 

variations of human mobility driven by human activities of certain 

populations as they visit different locations and energy 

consumption of these locations improve our understanding of how 

energy demand may be distributed in an urban setting. This could 

shed further light on the corresponding energy allocation strategies. 

Crucially, rapid globalization and the subsequent growth in energy 

consumption cannot be sustained as population growth has the 

potential to grow more rapidly than energy supplies can be 

increased. According to a recent International Energy Agency 

World Energy Outlook report, “Greater changes in the future are 

possible as the relation between work, home, and free time and the 

technologies that support these activities evolve” [2]. A better 

understanding of the underlying drivers of this process and its 

fluctuations across different populations belong to different 

communities and organizations [62] will facilitate the identification 

of an urban system’s reactive, recovery, and adaptive capacities 

across time and space. Cities are self-organizing in the sense that 

interactions between individuals and the built environment form 

self-reinforcing patterns of spatial and temporal allocations. 

Understanding how different urban settings and populations 

respond to change in a predictable fashion will also reveal the 

associated orders and states, thus providing useful insights that 

could guide future management decisions. This research is a step 

towards achieving these goals. Additional explorations of the 

functional regions to which each population travels will help to 

further clarify the relationship between human activities and energy 

consumption in urban areas.  
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