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ABSTRACT
Is it possible to monitor the entire traffic in Manhattan at a
few road intersections? In this paper, we propose a series of
novel graph data processing techniques to handle complex
and nonsmooth traffic data. Then, we validate our proposed
techniques on Manhattan’s taxi pickups during the years
of 2014 and 2015. We are able to approximately recover
the taxi-pickup activities in Manhattan by taking samples
at only 5 selected intersections. We believe that the same
techniques can be applied to recover other types of traffic
data. The advantages of our methods are (a) quality: we
are able to recover the taxi-pickup activities in entire Man-
hattan with small error from only 5 selected intersections;
(b) scalability: we use a tree structure and principle compo-
nent analysis to make this method efficient for large- scale
graphs.
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1. INTRODUCTION
Urban data record the behavior of urban ecosystems. An-

alyzing those urban data potentially leads to improvements
of the urban lives [7, 8]. As one of the most critical com-
ponents of urban data, traffic data is a key to understand
the mobility pattern and to make cities more efficient; how-
ever, traffic data is usually sparse because usually only a few
sensors are installed to cover a limited number of intersec-
tions [10]. Some previous work monitored traffic by using
side information, such as GPS data [9]. In this paper, we aim
to monitor traffic in the entire city from camera installed at
a few intersections, which can count the number of passing
vehicles. We model traffic data as data supported on a city
street graph where the value at a node of the graph reflects
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the traffic activity at the corresponding intersection. In this
setting, monitoring traffic data is nothing but a task of graph
data sampling and recovery [2,3]. Previous works along this
line consider sampling and recovering smooth graph data,
which means that any two adjacent nodes have similar val-
ues; however, real traffic data lie in a high-dimensional space
and are not smooth on a city street graph; see Figure 1. We
handle nonsmooth graph data by a series of novel graph
data processing techniques, including adaptive pieceiwise-
constant approximation, super-graph Fourier basis construc-
tion and graph data sampling. We validate our proposed
method on Manhattan’s taxi pickups in the years of 2014
and 2015. We are able to approximately recover the taxi-
pickup activities in the entire Manhattan by taking samples
at only 5 selected intersections. Here we focus on taxi-pickup
activities, but we believe the same techniques can be applied
to recovering many other types of traffic data. The propose
method is also efficient and scalable to large-scale graphs.

(a) Global view. (b) Zoom-in plot.

Figure 1: Taxi-pickup distribution at 6 pm on January 1st,
2015. The taxi pickups at two adjacent intersections can be
a lot different. Thus, the traffic data are not smooth on the
Manhattan street graph.

2. PROBLEM FORMULATION
We consider a city street graph G = (V, E), where V =
{v1, . . . , vN} is the set of nodes (intersections), E = {e1, . . . , eM}
is the set of edges (streets). In this paper, we use a graph
data to model traffic activities in a city by assigning the
number of nearby taxi pickups xn ∈ R to the node vn. The

graph data can be written as a vector x =
[
x1, x2, . . . , xN

]T ∈
RN . Let C ⊆ V be a set of nodes (an area in a city). We can
represent this set by using an indicator function, 1C ∈ RN ,
where (1C)i = 1 when vi ∈ C, and 0 otherwise. That is,



the values are ones in the node set C and zeros in the com-
plement node set C̄ = V/C. When the node set C forms
a connected subgraph, we call C a piece and 1C a one-
piece graph data. A piecewise-constant graph data is a lin-
ear combination of several one-piece graph data. That is,
x =

∑K
i=1 µi1Ci , where each Ci is a piece, µi is a constant

and K is the number of pieces.
Sampling & Recovery. We consider sampling the num-

ber of taxi pickups at several selected intersections and then
recovering the number of taxi pickups at the rest intersec-
tions. Mathematically, we sample M values at selected in-
dices (intersections) in a graph data x ∈ RN to produce a
sampled version y = Ψx, where the sampling operator Ψ is
a linear mapping from RN to RM with Ψi,j = 1 when we
sample the jth node in the ith measurement, and 0, other-
wise. Here we consider experimentally designed sampling,
which chooses the sampled indices beforehand. We then in-
terpolate y to get a recovery x̂ = Φy ∈ RN , where Φ is
the interpolation operator designed based on the sampling
operator Ψ.

3. PROPOSED METHOD
The proposed method involves two phases: the learning

phase and the real-time phase. In the learning phase, we
prepare for all the operators needed in the real-time phase
using the traffic data. In the real-time phase, we sample the
traffic activities at a few selected intersections and recover
the rest by using the operators learned in the learning phase.

Figure 2: Learning phase includes two main modules:
adaptive piecewise-constant approximation implemented by
adaptively pruning a decomposition tree and sampling im-
plemented by sampling bandlimited graph data. In the
learning phase, we decide which intersection to sample.

3.1 Learning Phase
The purpose of the learning phase is to learn important

patterns from historical traffic data and then decide which
intersections we need to sample. An initial idea is to con-
struct a graph that promotes smoothness for historical traf-
fic data and then use graph sampling techniques to design
samples. Does the original Manhattan street graph promote
smoothness for traffic data? Figure 1 shows the taxi-pickup
distribution at 6 pm on January 1st, 2015. We see that many
intersections have many more number of taxi pickups than
their adjacent intersections and the overall taxi-pickup dis-
tribution is barely smooth. We thus need to learn a graph
from traffic data. However, a city street graph is usually
huge and historical traffic data is limited. For example,
Manhattan has 13, 670 intersections. It is thus inefficient
and not robust to construct a huge graph from limited his-
torical traffic data. To overcome this difficulty, we should
reduce the size of the graph. The idea is to explore local
information and do graph coarsening, which groups those
neighboring intersections as one super-node. This is equiv-
alent to approximate a graph data by using a piecewise-
constant graph data, which captures both local smoothness
(the number of taxi pickups at two adjacent intersections

are similar). and fast transition (the number of taxi pickups
at two adjacent intersections have a large difference).

After piecewise-constant approximation, the dimension re-
duces from the number of intersections to the number of
pieces. We then construct a super-graph whose nodes are
pieces and edges are the dependencies between pieces. Then,
we can use graph sampling techniques to design samples.
Figure 2 overviews the procedure of the learning phase. The
two main modules are adaptive piecewise-constant approx-
imation and graph sampling. We now elaborate the imple-
mentation of these two modules.

Adaptive piecewise-constant approximation. The
goal is to adaptively search for a piecewise-constant graph
data to approximate traffic data. The key of the proposed
approximation technique is to design a series of nonoverlap-
ping pieces that captures the variation of an graph data.
There are usually two approaches to design such a series of
pieces: predesigned approach and learning approach. In a
predesigned approach, we design pieces before accessing any
traffic data. We can simply use physical partitions, such as
zipcodes and census blocks, but these partitions may not be
flexible enough to capture complex variations in traffic data;
on the other hand, in a learning approach, we learn a series
of pieces to fit traffic data. However, there are multiple
restrictions in the optimization: those pieces are connected,
nonoverlapping and cover the vertex domain. It is inefficient
and unrobust to solve a nonconvex optimization problem.

We consider combining the advantages of these two ap-
proaches. We first design a set of redundant pieces before
accessing any data. Because of redundancy, this set is able
to capture various shapes and sizes. We then select the best
series of nonoverlapping pieces by pruning this set according
to historical traffic data. This approach is both adaptive and
efficient. Since the set of redundant pieces is constructed be-
forehand, the bottleneck of the computational complexity is
the pruning stage. We will show that by taking advantage
of a binary-tree-based pruning technique, the computational
complexity of the pruning stage is merely O(N).

(a) Global view. (b) Zoom-in plot.

Figure 3: Growing a binary tree in (a) is equivalent to
decomposing a graph in (b). The green path in (a) is a
decomposition in (b), where same color indicate the one-to-
one mapping from a node in the decomposition tree to a
piece in a graph.

A set of redundant pieces can be constructed via a binary
tree decomposition as shown in [4]. This set is provably
useful to represent arbitrary piecewise-constant graph data.
The main idea is to recursively partition a piece into two dis-
joint pieces until all the pieces are individual nodes. Figure 3
shows an example. A node in Plot (a) represents a piece in
Plot (b) and an edge represents a kinship where a parent
node partitions into two children nodes. The top node (in
orange) represents the entire vertex domain and the bottom
nodes represents all the individual nodes. The green path in
Plot (a) is a decomposition in Plot (b), where the same color
indicates the one-to-one mapping from a node in a decom-



position tree to a piece in a graph. We use the 2-means clus-
tering to implement graph partitioning [4]. For each piece,
we select two nodes with the longest geodesic distance as the
community centers and assign all the other nodes to their
nearest community center based on the geodesic distance.
Then, we recompute the community center for each commu-
nity by minimizing the summation of the geodesic distances
to all the other nodes in the community and assign each
node to its nearest community center. We repeat the above
procedures for several iterations until the community centers
converge. Please find more details in [4].

By using the binary tree decomposition, we obtain (2N −
1) pieces, where each piece corresponds to a node in the
binary tree. The binary tree decomposition is redundant
and captures various sizes and shapes of pieces. We then
prune the obtained set of pieces and select the best series
of nonoverlapping pieces according to historical traffic data.
Let C = {1Ci}

2N−1
i=1 represent the set of constructed pieces.

We aim to select a subset of pieces that minimizes the fol-
lowing objective function,

D∗,Z∗ = arg min
Di∈C,Z

‖X−D Z‖2F + λ dim(Z), (1)

subject to D1 = 1,

where X ∈ RN×L is the matrix representation of historical
traffic data, D ∈ RN×K is the matrix representation of the
selected pieces with Di being the ith column, Z ∈ RK×L is
the matrix that stores the constants of all the pieces and
dim(Z) = KL. Note that the number of pieces K is a vari-
able to be optimized during the optimization because we do
not know how many pieces in advance.

The first term in the objective function pushes the piecewise-
constant approximation to fit the given data. The second
term punishes a large size of the constant matrix Z and
avoids overfitting; that is, when λ is large, we tend to se-
lect fewer pieces from C to fit data and when λ is small,
we tend to select all the pieces in C to fit data. The con-
strain requires that all the selected pieces are nonoverlap-
ping and covers the entire vertex domain. Since each col-
umn in D is a one-piece graph data, the optimization prob-
lem (1) finds the best piecewise-constant approximation for
the given traffic data. Since the constructed pieces in C have
a nice tree structure, we can easily obtain the global opti-
mum of (1) by pruning the tree, which follows the paradigm
in [5, 11]. The main idea is to compare the representation
based on a parent piece to the representation based on its
two children pieces and see which representation minimizes
the objective function (1). For example, C1 is a parent piece
and C2, C3 are its children pieces. Since the parent piece
and two children pieces represent the same vertex domain
(C1 = C2 ∪ C3), to satisfy the constraint, we either choose
the parent piece or its two children pieces. The cost of us-

ing the parent piece is minz

∥∥X−1C1z
T
∥∥2

F
+ λL, with opti-

mum
∥∥X−1C11

T
C1

X
∥∥2

F
+λL, and the cost of using the child

pieces is minZ∈R2×L

∥∥X−
[
1C2 1C3

]
Z
∥∥2

F
+ 2λL, with opti-

mum
∥∥∥X−

[
1C2 1C3

] [
1C2 1C3

]T
X
∥∥∥2

F
+2λL. Each time,

we compare their costs and choose the one with a smaller
cost to update the representation at the parent piece. The
pruning process starts from the bottom level of the decom-
position tree and move to an upper level iteratively until we
reach the top level. Through the pruning process, we obtain
the global optimum of (1).

Super-graph construction and sampling. We next
model each selected piece as a super-node and construct a
super-graph. Since the selected pieces already capture the
local similarities, the connections among super-nodes are
not relevant to the geodesic distance any more. We need
to learn a super-graph to promote smoothness for historical
traffic data and then design which super-nodes to sample. In
graph sampling, we usually model a smooth graph data as
a bandlimited graph data [3] whose sampling strategy is de-
signed based the corresponding graph Fourier basis. Thus,
instead of constructing a full super-graph, we directly con-
struct a graph Fourier basis. Recall that the bandlimited
assumption requires that most energy of a graph data is
concentrated in the low-pass band; that is, we need to find a
graph Fourier basis that pushes the energy to the subspace
spanned by its first few basis vectors. Thus, all we need is
the first few columns in the graph Fourier basis, which can
be simply obtained by principal component analysis. Prin-
cipal component analysis uses an orthogonal transformation
to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables [1],
which exactly fits our requirement. Mathematically, let the
constant matrix Z∗ ∈ RK×L be a matrix of graph data on
the super-graph, we obtain the first M graph Fourier ba-
sis vectors (principal components) by solving the following
optimization problem,

V∗ = arg min
V∈RK×M

∥∥∥Z∗−V VT Z∗
∥∥∥2

F
, subject to VT V = I .

It is true that we can obtain a truncated graph Fourier ba-
sis directly from X, which is equivalent to set λ to be zero
in (1); however, the computation is less efficient and the
obtained principal components are learned from noisy and
limited historical data and do not take advantage of the lo-
cal grouping1, which is explored by (1). Next, we design a
sampling operator by using graph sampling techniques. For
example, we solve Ψ∗ = arg maxΨ σmin(Ψ V∗) ∈ RM×K by
using a greedy method, which is shown in [3]. Note that
we sample super-nodes, instead of individual intersections.
To directly operate on individual intersections, the sampling
operator is Ψ∗(D∗)T ∈ RM×N , which means that Ψ∗ selects
some pieces from D. We then need to sample all the nodes
in the selected pieces, or sample several nodes in selected
pieces and estimate the average values. In the experiments,
we find that the selected pieces happen to be single nodes,
then we only need to sample at the selected intersections.

3.2 Real-time Phase
In the learning phase, we obtain three important oper-

ators: selected pieces D∗, truncated graph Fourier basis
V∗, sampling operator Ψ∗. Given a real-time traffic data
x ∈ RN , we first take samples at the selected intersections,
y = Ψ∗(D∗)T x. Then we use the interpolation operator
to recover all the constants, z = V∗(Ψ∗V∗)†y. Finally, we
obtain a piecewise-constant approximation to the real taxi
pickups by x̂ = D∗ z = D∗V∗(Ψ∗V∗)†Ψ∗(D∗)T x, where
the interpolation operator is Φ = D∗V∗(Ψ∗V∗)†. Figure 4
illustrates the procedure in real-time phase.
1Piecewise-constant approximation can be regarded as a de-
noising module. Many experiments indicate that reducing
the dimension to N/2 provides the best recovery perfor-
mance in the end, which is better and faster than directly
working with X.



Figure 4: In real-time phase, we sample the selected nodes,
recover all the constants, and finally obtain the piecewise-
constant estimation to the real-time traffic data.
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Figure 5: Approximation error as a function of the number
of pieces. Piecewise-constant approximation (red) signifi-
cantly outperforms smooth approximation (blue).

4. VALIDATIONS
We validate the proposed method on a dataset of Manhat-

tan’s taxi pickups. We sample the number of taxi pickups
at several intersections and recover the taxi pickups at the
rest intersections.

Dataset. We consider a public dataset about taxi pick-
ups in Manhattan2, which is particularly interesting because
taxis are valuable sensors of city life [6–8]. Here we use the
dataset in the year of 2014 and 2015. We focus on rush hours
during workdays (6 pm from Monday to Friday). We accu-
mulate the taxi-pickup activities within a hour and project
each taxi pickup to its closest intersection, obtaining 261
graph data in the year of 2014 for learning and 261 graph
data in the year of 2015 for real-time processing.

Results. We first validate the proposed adaptive piecewise-
constant approximation. We solve (1) based on 261 graph
data in 2014 by varying the regularization parameter λ.
Two metrics are used to quantify the performance, includ-
ing mean square error (MSE = 1

261N

∑261
i=1 ‖x̂i − xi‖22) and

mean absolute error (MAE = 1
261N

∑261
i=1 ‖x̂i − xi‖1), where

x̂i is the recovered taxi pickups in the ith day and xi is

2Data is downloaded from http://www.nyc.gov/html/tlc/
html/about/trip record data.shtml

(a) Global view. (b) Zoom-in plot.

Figure 6: Selected 5 intersections. Two adjacency intersec-
tions around Penn Station are sampled.

(a) Real distribution. (b) Recovered distribution.

Figure 7: Recovered taxi pickups at 6 pm, Jan. 6th, 2015.
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Figure 8: Daily recovery error in the year of 2015. Plot (b)
shows that the average error at each intersection is merely
0.6 taxi pickups during the rush hour.

the real taxi pickups in the ith day. Figure 5 compares
the approximation errors between the graph Fourier basis
based on the Laplacian matrix (VL, in blue) and adaptive
piecewise-constant approximation (PC, in red). We see that
PC significantly outperforms VL in terms of both metrics.
We then set λ = 1 ( corresponds to 3788 pieces) and ob-
tain 5 samples provided by the optimal sampling operator,
as shown in Figure 6. As discussed before, these 5 pieces
happen to be individual nodes. Two adjacency intersections
around Penn Station are sampled, indicating that Penn Sta-
tion is the weathercock of Manhattan’s traffic.

We next validate those learned operators to the graph data
in 2015. Figure 7 shows the recovery of taxi-pickup activity
at 6 pm, Jan. 6th, 2015 by only using 5 samples. Even we
just use 5 samples, the recovered taxi-pickup distribution is
very close to the real taxi-pickup distribution. Finally, we
show the daily recovery errors in Figure 8. We see that the
recovery errors are particularly large at three days: March
20th, Memorial day and Labor day, which means that the
proposed method fails to model abnormal days. But in gen-
eral, the recovery error is small. For example, Figure 8 (b)
shows that the average error at each intersection is merely
0.6 taxi pickups during the rush hour every weekday.

5. CONCLUSIONS
We set a goal to monitor Manhattan’s traffic from a few

intersections. Finally, we are able to obtain a decent re-
covery of the taxi-pickup distribution by taking samples at
only 5 selected intersections. The main techniques involves
adaptive pieceiwise-constant approximation via decomposi-
tion tree pruning, super-graph Fourier basis construction via
principal component analysis and sampling of graph data.
Other than monitoring traffic, the proposed method can be
used to anomaly detection and traffic prediction in the fu-
ture.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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