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ABSTRACT
Road networks shape traffic mobility in a city. These dy-
namics are often represented as traffic flows in and out of
defined urban travel zones. The functional dynamics of traf-
fic zones can be represented by time-dependant correlations
between time series of traffic flows in and out of these zones.
In this paper we address the question: given the dense time-
varying functional correlations of traffic flow in a city, how
can we derive a sparse representation that explains the time-
varying structural connectivity of traffic zones in a city? We
call this sparse representation the time-varying effective traf-
fic connectivity of the city. We formulate an optimization
problem to infer the sparse effective traffic network from
dense functional correlations of traffic flow for arbitrary lev-
els of temporal granularity, and demonstrate the results for
the city of Doha, Qatar on data collected from several hun-
dred bluetooth sensors deployed across the city to record
vehicular activity through the city’s traffic zones. Prelimi-
nary experiments suggest that our framework can be used by
urban transportation experts and policy specialists to take a
real time data-driven approach towards urban planning and
real time traffic planning in the city, especially at the level
of administrative zones of a city.

1. INTRODUCTION
For the first time in human history more people are living

in urban than rural areas1. The economies of scale that an
urban environment provides creates a natural incentive for

1http://www.un.org/en/development/desa/index.html
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urban populations to grow and for other people to migrate to
urban centers for employment and a better quality of life [6].
It has thus become compelling and important to understand
the dynamics of urban living and manage the growth of cities
in order to provide its citizens both opportunity for work and
a healthy lifestyle.
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Figure 1: Concept: Predicting similarity structure by corre-
lations: (a) Traffic flow between residential and CBD zones.
(b) The traditional trip distribution matrix. (c) Dense zonal
traffic flow (time-series) correlation based structure; H =
High, L = Low. Static trip distributions do not capture
high level similarity between traffic characteristics of zones.
In this paper, the dynamic sparse optimal structure of the
dense (c) is inferred in real time, for arbitrary temporal gran-
ularity.

The availability of highly granular sensor data which records
urban activity, often at very fine spatial and temporal scales,
provides a timely opportunity to understand the patterns
of an urban environment in a deeper way than is possible
through traditional census tracts (that are temporally long
term) or detailed surveys (that provide only samples of pop-
ulations). For example, the movement of vehicles is now



electronically recorded at very fine spatio-temporal granu-
larity and sometimes made publicly available.

An important characteristic of any urban region is the
emergence of correlations between activities and traffic flows
in its subregions or zones during certain time periods. For
example, there will be temporal (lagged) positive correla-
tions between suburbs and the Central Business District
(CBD). Similarly, in a polycentric city with multiple CBDs,
each CBD may have very similar spatial patterns of corre-
lated activity. In other words, the high level pattern we wish
to understand is: which areas or zones of a city behave simi-
larly, spatially or temporally? If these high level patterns are
understood for arbitrary levels of fine temporal granularity,
real time traffic planning will gain a valuable tool.

Travel demand in the city is often inferred using a four-
step model, inferring: (a) Trip generation in N traffic zones,
or the total number of trips originating and ending in zone
i = 1 . . . N , (b) Trip distribution, or the number of trips ac-
tually going from zone i to zone j, i, j = 1 . . . N , (c) Modal
split, or the proportion of trips split according to the dif-
ferent transportation modes, and (d) Trip assignment, the
actual path through the spatial networks for trips originat-
ing in zone i and ending in zone j.

Policies and interventions in traffic and transportation
planning are then planned using this demand. However, tra-
ditionally, OD matrices are developed over long time spans,
and are typically useful for long term traffic planning. To
compute demand, demographic data other than traffic flow
counts is used, and assumptions (such as the well known
gravity model) are used to compute trip distribution [Fig. 1](b).
With new types of sensor data, real time OD matrices can
be developed for short term traffic planning on a day to day
basis. Further, for arbitrarily fine levels of temporal granu-
larity, even when a full dynamic OD cannot be developed,
it could be useful to understand the correlation structure of
traffic flow through travel zones [Fig. 19(c)], and as shown in
Fig. 1, could provide high level insights into the short term
time-varying similarity of how travel zones behave dynam-
ically, which a long term trip distribution matrix may not
provide per se.

In this paper, we develop an approach where real time
traffic data is used to compute dense functional correlations
of traffic flow between administrative zones of a city. This
dense functional dynamics signature is then used to infer a
sparse optimal effective traffic connectivity structure, vary-
ing over time, providing a dynamic picture of which zones in
the city are most correlated by traffic flow during different
times of an average weekday.

We do not produce traditional OD matrices (though in
the future our work can be extended to develop dynamic
real time ODs), but focus on the related problem of inferring
the sparsest structure that can explain the dense functional
correlations of traffic flow in different zones in the city, at
arbitrary levels of temporal granularity, and inferring which
areas in the city are most similar in terms of their traffic
flow characteristics.

Specifically, we formulate a sparse optimization problem
to infer the effective structural connectivity of an urban traf-
fic network (Doha, Qatar) from its functional data. Figure
2 captures the workflow of our approach: (i) The city of
Doha is divided into structural/physical zones and data from
bluetooth sensors in the zones will be used to form zone time
series which record traffic activity in and out of the zone, (ii)
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Figure 2: Inferring the Effective Structural Connectivity
from Functional Data. Traffic sensor data from different
zones is aggregated and correlated to describe the functional
connectivity. A sparse optimization problem is then used to
elicit the latent effective structural connectivity matrix.

the recorded time series (at different aggregation levels) will
be the basis of a zone by zone functional correlation matrix
which describes the global functional connectivity between
any pairs of zones, (iii) we will formulate a sparse optimiza-
tion problem where the unknown variable will be the effec-
tive structural matrix which is minimal, non-negative and
best explains the observed functional matrix.

The inferred structural matrix is a highly sophisticated
time-varying summary of a city’s activity. It can be derived
for different time granularities ranging from a few minutes
to days and years. The matrix can be queried by decision
makers and end users to explore how activity in nearby and
distant zones tend to influence and impact each other. To
the best of our knowledge this is the first work in the urban
computing literature which takes a holistic, mathematically
rigorous and global view of explaining the functional con-
nectivity of a city.

The rest of the paper is structured as follows. In Sec-
tion 2 we overview different forms of connectivity that are
prevalent in the literature on network analysis. In Section
3 we formally define the optimization problem and discuss
our design choices. After a brief overview of Alternating
Direction Method of Multipliers (ADMM), in Section 4, we
provide the complete derivation of the iterative algorithm to
solve the optimization problem. In Section 5 we provide pre-
liminary experimental results to validate our approach. In
Section 6 we cover related work and we conclude in Section
7 with a summary and a road map for future work.

2. FORMS OF URBAN CONNECTIVITY
Different forms of connectivity can exist in an urban envi-

ronment. A city is characterized by its movement behavior.
For example, most monocentric cities have a central down-
town area where major businesses and government offices are
located. There is vehicular traffic coming into the downtown
area in the morning and leaving in the afternoon or evening.
Typically the morning rush hour peak into the downtown is
more sharply concentrated than the afternoon/evening one,
which is more spread out in time. Over time, a city can ex-



pand and other central areas can emerge, leading to a more
polycentric city structure. For example, in Doha, besides the
central downtown area (known as West Bay), several other
areas including around the airport, the industrial area and
Qatar Foundation have emerged. Often there is a complex
causal relationship between the road network in a city and
how new pockets of urban activity arise. Sometimes, a new
areas will emerge on the sidelines of a road artery, other
times roads are constructed to service active areas in the
city. We will define three forms of connectivity: structural,
functional and effective [8]. These connectivities are well de-
fined and established in biological spatio-temporal systems
modeling, such as the brain, but their introduction will be
equally relevant to urban spatio-temporal modeling.

Structural The structural connectivity is defined by the
physical road network and spatial locality. It could be
defined on the basis of structural adjacency or conti-
guity of two spaces, but also equally in terms of ease of
access of one place to another in the city. For example,
two contiguous zones are structurally connected but so
are two zones that are connected directly by a high-
way. The complete road network in conjunction with
the spatial contiguity/adjacency relationships charac-
terizes the structural connectivity of a region.

Functional The functional connectivity is defined by the
actual transportation movement dynamics supported
on top of the structural layer. Depending upon the
time scale used for analysis, two distant zones can be
either correlated or uncorrelated. For example, two
areas that are far from each other and connected only
through several intermediate locations or stops, but
hosting complementary activities generating a lot of
connected traffic flow would show high functional cor-
relation, even if their structural contiguity score is low
by both distance or ease of accessibility. The functional
correlation can be both positive and negative. Func-
tional connectivity is derived using time series data.
For example, in our particular case, statistical correla-
tion will be extracted using the data recorded by blue-
tooth sensors. Many zones in Doha have bluetooth
sensor embedded at different road intersections. As
vehicles (which contain bluetooth devices, like smart-
phones) go past sensors, a counter is incremented. As
is well known, statistical correlation between two sen-
sors in zones is not an indication of causality. How-
ever, an important observation is that the functional
connectivity data tends to be dense but of low effec-
tive matrix rank. We will leverage this property in our
problem formulation.

Effective The time-dependant effective or effective struc-
tural connectivity is the latent and generative network
process which explains the functional connectivity of
the system in terms of the structural connectivity. While
the physical structural connectivity is static, the effec-
tive structural connectivity changes with time and has
both a periodic and a non-stationary component. The
easiest way to explain this is by observing that even
though the road network represents a static physical
capacity, effective structural connectivity for the same
road network is different when the network is hosting
low flow and when it is hosting a traffic jam or con-

gestion situtation. In the first case, effective connec-
tivity is lower than the structural, in the latter case,
it is higher than what is permitted by the structural.
For example, in an urban setting, during morning rush
hour a certain part of the network activity is highly
correlated. During off-peak hours, the traffic activity
diffuses throughout the network and then concentrates
again during the evening rush hour. However there are
pockets of connectivity between other zones in the ur-
ban environment which have their own dynamic. For
example, the airport maybe the center of another ef-
fective connectivity process which interacts with other
generative processes. The aggregation of all latent and
generative activity is termed as the effective structural
connectivity. The main objective of this work indeed is
to infer the effective structural connectivity that char-
acterizes the city of Doha.

3. PROBLEM DEFINITION
To set up the problem we begin with a graph G = (V,E)

to represent zones in a city. Two nodes u and v have an edge
between them if they are neighbors. Associated with each
node v is a time series Sv(t) to represent the time varying
activity at the node, for example the number of vehicles
crossing the node v at time t.

Let F Is be the |V | × |V | functional correlation matrix de-
rived from the time series Sv(r) at time aggregation level s
in time interval I. Each element of F Is (u, v) represents the
correlation between u and v. Going forward we will just
represent F Is as F .

Using F as an input, our objective is to infer a minimal
effective structural matrix X which captures the correlations
in F . The dimensionality of X is the same as that of F .

A key modeling decision that has to be made is to hy-
pothesize the relationship between the F and the X matrix.
Since X is supposed to capture the effective correlation in
F , we can treat elements of X as the building blocks (or
basis elements) which combine together to produce F . We
thus hypothesise that

FX = F

In the computer vision community, Elhamifar [3] refers to
this relationship as the self-expression property of high di-
mensional data, i.e., even though sensor data tends to be
high dimensional, it usually lives in a union of low-dimensional
affine spaces and each point in the affine space can be ex-
pressed as a linear combination of other points that share
the space.

To make the discussion more concrete consider the follow-
ing 2× 2 matrix (

f11 f12

f21 f22

)
We would like to infer the X matrix given by(

x11 x12

x21 x22

)
such that FX = F . Now FX is(

f11x11 + f12x21 f11x12 + f21x22

f21x11 + f22x21 f21x12 + f22x22

)
In order to prevent self-referencing, i.e., we would like to
avoid an element being represented in terms of itself, we



will force x11 and x22 to be zero. Now, if we minimize the
sum of the square loss between elements of FX and X and
solve for x12 and x21 we obtain

x12 =
2f11f12

f2
11 + f2

12

(1)

x21 =
2f21f22

f2
22 + f2

21

(2)

(3)

However, our aim is not just to choose an X which mini-
mizes the difference between F and FX but we would like
to obtain a sparse and non-negative X to make our solution
interpretable. Sparsity can be enforced by minimizing the `1
norm of X. However, in order to achieve a solution that is
both sparse and non-negative we need to design an iterative
algorithm as a closed form solution is not achievable.

However, we carry out a further simplification by work-
ing with a low rank representation of F rather than the full
|V | × |V | matrix. The rationale for using a low-dimensional
version is as follows: Row i of F captures the connectivity
of node i with all the other connections. Due to the na-
ture of road traffic distribution many other nodes will have
a similar form of connectivity as node i. Thus we seek a rep-
resentation where a node can be represented as a point in
k−dimensional space, with k << N , with the property that
if two nodes have a similar connectivity then they should
be close to each other in the k−dimensional space. This
can be achieved in several ways, but here we use the sim-
plest possible representation: the spectral representation of
F , or the co-ordinates given by the first k eigenvectors of
F ; F = V DV T , Fk = VkDkV

T
k , where Vk which is k × N

now represents the positions of N nodes in k−dimensional
space Rk. When the transformation X is applied to F , the
components of sparse X will be like weights on the columns
of Vk, “picking out” the most relevant connections of node i
to all other nodes. Thus we have

VkX = Vk (4)

.
This is also the simplest possible representation where the

following constraints can be captured: (a) high functional
connectivity must imply high probability of structural con-
nectivity, but (b) the structural connectivity must be sparse,
since only direct connections must be inferred, and (c) both
the short range and the long range structural connectivity
must be inferred using the functional connectivity.

Thus, the final optimization problem can be stated as

min ||Xp||1
sub to Vk(Xp) = Vk

diag(Xp) = 0

Xp ≥ 0.

(5)

Note that, similar to [3], we want to enforce the diagonals
of the solution variables to be 0, so as to avoid the triv-
ial solution of each node expressing itself as its own linear
combination and none of the others.

4. OPTIMIZATION ALGORITHM
We solve the above optimization problem using Alternat-

ing Direction Method of Multipliers (ADMM) framework [1].
In the next section, we give a brief introduction to ADMM

framework and work out the different intermediate steps in
solving a problem in ADMM framework.

4.1 Alternating Direction Method of Multipli-
ers

ADMM is an extension of lagrangian method for solving
a class of constrained optimization problems. Like in the la-
grangian method, in ADMM the constraints are moved into
the objective and multiplied by a penalty term which cap-
tures the “price” of a solution not satisfying the constraint.
Thus the original constrained problem is transformed into
a series of unconstrained optimization problem. However,
ADMM has two additional variations over the standard la-
grangian method: (i) an additional strongly convex penalty
term (often quadratic) is added to the objective to help im-
prove the convergence of the iterative solution and (ii) a new
variable is introduced to make the objective separable and a
consensus constraint is added which forces the old and the
new variable to agree at convergence. For example, consider
the following constrained optimization problem:

minimize f(x) + g(y)

subject to Ax+By = C
(6)

Augmented Lagrangian for the above equation is

L(x, y, α) = f(x)+g(y)+αT (Ax+By−C)+
ρ

2
‖Ax+By−C‖22

ADMM iterates through the following three steps until
the dual variable converges with ε approximation

x∗ = argmin
x

L(x, y, α)

y∗ = argmin
y

L(x∗, y, α)

α∗ = α+ ρ(Ax∗ +By∗ − C)

4.2 Solving Our Problem Using ADMM
We present an ADMM based solution framework for solv-

ing the optimization problem given in Equation 5. The com-
plete algorithm is shown in Algorithm 1. We introduce aux-
iliary variable A corresponding to the optimization variable
Xp, and indicator function I+(Xp) for the non-negative con-
straint of Xp, we have:

minimize L[A,Xp,∆1] =

‖Xp‖1 +
λt
2
‖Vk −AVk‖22 +

tr[∆T
1 (A−(Xp − diag(Xp)))] +

ρ1

2
||A− (Xp − diag(Xp))||22 + I+(Xp),

(7)

where I+(Xp) = 0 when Xp ≥ 0 and ∞ otherwise.
Now we solve this using a standard iterative ADMM pro-

cess, in which, we minimize L by differentiating it with re-
spect to one primary variable at a time by keeping others
constant (partial gradient equating to zero, since the prob-
lem is convex) and followed by updating the Lagrange mul-
tiplier (dual variable) ∆1. We represent with A∗, X∗p ,∆

∗
1,

the updated variables corresponding to A,Xp,∆1 at each
iteration.



4.2.1 Updating A

A can be updated by computing its gradient and setting
it to zero. Since L is differentiable, considering terms con-
taining A only, we get

∇AL = ∇A
[
λt
2
‖Vk −AVk‖22+

ρ1

2
‖A−Xp + diag(Xp)‖22

+ tr
[
∆T

1 (A−Xp + diag(Xp))
]]

∇A‖Vk −AVk‖22=

=∇Atr
(
(Vk −AVk)T (Vk −AVk)

)
=tr

(
∇A
(
− V Tk AVk − V Tk ATVk + V Tk A

TAVk
))

=− 2VkV
T
k + 2AVkV

T
k

Similarly,

∇A‖A−Xp + diag(Xp)‖22 =

= tr

(
∇A
(
ATA−ATXp +AT diag(Xp)−XT

p A

+ diag(Xp)A
))

= 2A− 2Xp + 2 diag(Xp)

Lastly,

∇A
(

tr
[
∆T

1 (A−Xp + diag(Xp))
])

= ∆1

Combining all terms and setting it to zero, we get

A∗ = (λtVkV
T
k + ρ1I)−1[λtVkV

T
k + ρ1Xp −∆1]

4.2.2 Updating Xp

∇XpL =

∇Xp

(
‖Xp‖1+tr

[
∆T

1

(
A−

(
Xp − diag(Xp)

))]

+
ρ1

2
||A− (Xp − diag(Xp))||22 + I+(Xp)

)

∇Xp‖Xp‖1 = sign(Xp). ∗ I (Xp 6= 0)

In the above .* indicates the entrywise product and sign
function is applied entrywise.

∇Xptr

[
∆T

1

(
A−

(
Xp − diag(Xp)

))]
=

−∆1 + diag(∆1)

∇Xp‖A−Xp + diag(Xp)‖22 =

− 2A+ 2 diag(A) + 2Xp

combining the individual terms and equating it to zero,
we get

sign(Xp)−∆1 + diag(∆1) + ρ1(−A+ diag(A) +Xp) = 0

Now, considering the positivity constraint of Xp, we get

X∗p =
1

ρ1

[
ρ1

(
A− diag(A)

)
+ ∆1 − diag(∆1)− 11T

]
+

4.2.3 Updating ∆1

Finally, we update the dual variables as

∇∆1L = A−Xp
We update dual variable as mandated by the ADMM pro-

cedure as,

∆∗1 = ∆1 + ρ1(A∗ −X∗p ),

Algorithm 1 ADMM Algorithm

Input: F, k,λt, ρ1

Output: Xp
Initialize Xp, A,∆1

1: F ← V DV T

2: Use Vk from VkDkV
T
k (first k eigenvectors)

3: repeat
4: A← (λtV

T
k Vk + ρ1I)−1[λtV

T
k Vk + ρ1Xp −∆1]

5: Xp ← 1
ρ1

(
ρ1(A−diag(A))+∆1−diag(∆1)−11T

)
+

6: ∆1 ← ∆1 + ρ1(A∗ −X∗p )
7: until convergence

5. EXPERIMENTS
We have carried out preliminary experiments on both syn-

thetic and real world dataset to demonstrate the effective-
ness of our proposed inference scheme. We used synthetic
data to demonstrate the general applicability of our math-
ematical formulation based on ADMM to retrieve a sparse
representation of data. For the real world data, we used
bluetooth sensor data of Doha city provided by QMIC 2. We
briefly describe our dataset and provide empirical results at
the end.

5.1 Synthetic Data
We create synthetic data based on a simple formulation

based adjacency matrix. When we represent a graph us-
ing adjacency matrix, the kth power of an adjacency matrix
gives us the number of paths of length k between two nodes.
Since the observed functional connectivity of any network is
a result of the dynamics (traffic flow) occurring on both di-
rect as well as indirect paths between nodes, a good approx-
imation to the functional connectivity would be the sum of
the powers of the adjacency matrix. Starting with a synthet-
ically generated dense functional matrix, we show that our
mathematical formulation retrieves an approximate sparse
matrix which captures most of the original data in the ad-
jacency matrix, and thus enables inferring vital information
contained in the original matrix.

Given a sparse adjacency matrix S, we create a dense
representation F as

F = S + S1 + S2 + . . .+ Si

We multiply the value of the original matrix S by a constant
term, 0.9

σ
, such that the sum converges for large values of i.

2http://www.qmic.com/
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Figure 3: Synthetic Data Experiments. (a) Original sparse matrix. (b) Generated dense matrix. (c) Inferred sparse matrix
that accurately reconstructs (a), the original sparse matrix.

Here σ denotes the largest singular value of the matrix S
i.e. the positive square root of the largest eigen value of the
matrix STS.

We retrieved an almost identical sparse representation
from the dense matrix. Precision of our sparse representa-
tion was 100% and recall was 76.8%. The plots of the spar-
sity pattern of the original sparse matrix S, derived dense
matrix F and derived sparse matrix S′ is given in Figure 3.

5.2 Traffic Data
The traffic data consists of sensor readings from different

locations of the city of Doha. The city is officially divided
into 66 zones, and the zones are equipped with bluetooth
sensors which logs the vehicle traffic in the corresponding
zones. Whenever a vehicle equipped with a bluetooth device
passes a zone sensor, the bluetooth id is recorded. This
approach not only allows us estimate the aggregate count of
vehicles in the zone during a time interval but we can also
track if a particular vehicle appears in another zone after a
certain time lag. The zone details of the Doha city is given
in Figure 4. Except for few zones, all zones are equipped
with at least one sensor. For our experiments, we excluded
zones which either did not have a sensor or where the sensor
was faulty. As a result we used traffic data from 59 zones.
Sensor data was represented as a time series containing the
bluetooth counts for every second. In practice, working with
data of such small granularity (here per second data) can be
problematic as the inherent random noise can overwhelm
the signal. Also, traffic undergoes different phases during
the day which suggests the relevant, informative time-scales
are dynamic: one can not study a large city always at the
same temporal resolution, because the traffic “accelerates”
and “calms down” at different times. Sometimes having a
tick in the time series every 2 seconds is enough to capture
patterns, sometimes time scales are longer.

Here it will be important to differentiate between short
range and long range spatio-temporal effective connectiv-
ities. Intuitively, we expect that shorter time scales will
capture local spatial and temporal traffic dynamics while
the longer time periods will capture long range spatial and
temporal traffic dynamics. It is worth noting that even the
definition of short and long time scales is hierarchically or-
ganized: whole day traffic data is long term with respect to

Qatar University

Qatar Foundation
West Bay

Aspire / Villaggio

Industrial Area / Wholesale Market

HIA Airport

(from Al Khor)

(to Al Wakra)

Figure 4: The zones of Doha City. The black arrows indi-
cate the pattern that was used to linearly order the zones.
Important areas of the city (e.g., West Bay and Airport) are
highlighted.

a 2 second time window data, but short term with respect
to a weekly, monthly, or yearly time window data.

We note here that our analysis can be done for both (i)
short term effective structural connectivity and (ii) long
term effective structural connectivity, where short term and
long term can be relatively defined with respect to each
other. The short term connectivity in hours between zones
might explain the short-term spatial and temporal latent
causal relationships between road traffic and other depen-
dent factors. For example, a small temporary closure of a
service road, maintenance work etc. may lead to small local
diversions for a limited span of time. Long term effective
structural connectivity over weeks, months, or years, gives
a bigger picture of the evolution of the relationship between
road traffic and other entities. It can clearly provide an in-
dication of the rise of new pockets of urban activity in the
city.

In this work, we focus on a two-hour window traffic flow
data to form the functional connectivity matrix. This will
provide us with an effective connectivity picture that is for



the spatial range of the entire city, and for a temporal range
of daily weekday variations of traffic flow. We averaged the
data over a period of two hours with one hour overlap i.e. a
sliding window of two hours with one hour overlap between
consecutive frames. Thus for each two hour window with
one hour overlap, for a day, we have total of 59 vectors each
with size 23 containing the aggregated traffic data.

We denote the functional matrix representing the inter-
traffic dependencies between zones using Fi (i = 1 . . . 23)
measured by the correlation of hourly aggregated data. We
aim to derive the effective structural connectivity matrix
from the given functional matrix. The functional matrix ex-
plained above captures the traffic flow among different zones
for the two hour window and may contain dependent com-
ponents. We approximate the original function matrix Fi to
low ranked approximation matrix preserving the 95% of the
information contained in the original matrix using spectral
decomposition. We empirically estimate the number of di-
mensions in the low rank approximation to be 44. We apply
our algorithm onto the low rank approximation of Fi, and
perform the inference of the resulting time-varying effective
structural connectivity signatures over the overlapping two
hour windows.

5.3 Results
Figure 5 visualizes the time-varying effective structure

evolution of Doha traffic over a day. Since effective con-
nectivity is a matrix, to visualize it spatially, we can define
one zone as a “query” region (colored blue in Fig. 5), and
use a color scale to define a chloropleth map where the color
of each zone depicts the derived effective connectivity at a
particular time point for the “query” region. The plots de-
pict the derived sparse effective connectivity of the zones
in Doha, showing the latent relationships among different
zones at specific points of time with respect to a reference
point. We considered a zone in West-Bay area, the busi-
ness and financial center of Qatar, as our reference point,
for demonstration.

At 5AM, early morning of the day, the effective connectiv-
ity between West-Bay and northern neighbourhood are very
strong, indicating a strong correlation between West-Bay
and public beach area including the area of Lusail and Pearl.
This connectivity can be explained as a result of strong ac-
tivity in the Lusail area where construction is in full swing
for FIFA world cup 2022. The effective connectivity of the
West-Bay and the public beach area carries over for the next
hour as well. By 7AM and 8AM, the effective connectivity
concentrates just around West-Bay area, and other connec-
tivity evolves between West-Bay and other residential areas
like “Al Sad”. The effective connectivity between “Al Sad”
and West-Bay can be explained as the daily working class
commuting.

By 11 in the morning the effective connectivity subsides
and concentrates again over the West-Bay area. The connec-
tivity gets stronger by mid-noon between the neighbouring
area and West-Bay area. The couple of hours just after mid-
noon keeps the same type of effective connectivity. We can
see patterns similar to the office starting hours (7AM-9AM)
at the office end hours (3PM-5PM).

Here, we explained the connectivity with respect to a sin-
gle fixed point. However, any zone can be picked up as a
query zone, and the resultant effective connectivity visual-
ized. Thus, we can do the same for multiple focal points

like University, Industrial Area etc. In our experiments, we
could infer university timing connectivity pattern for the
zones corresponds to Qatar University and Qatar Founda-
tion Education City.

In addition to the regular patterns, we could also infer
some uncommon activities developed during specific time
period at specific zones. Since our data does not include an
activity log of the events, a one-to-one mapping between
the patterns and activity is hard to establish. But our
model captures the heterogeneous dynamics of the zone-
traffic data.

A main point to note is that the derived effective struc-
tural connectivity is sparse, as opposed to the dense func-
tional dynamics. Thus, this analysis performed for arbi-
trary short, medium or long time spans will provide differ-
ent perspectives of time-varying effective connectivities for
any query zone for any time window. This will be particular
useful to understand how the local and global dynamics of
the traffic of the whole city is behaving with respect to a
single area in the city.

6. RELATED WORK
The literature on Urban Computing is rapidly growing

and blends research methodologies from diverse areas in-
cluding data mining, machine learning, transportation, visu-
alization, data management,urban planning, network anal-
ysis. See the recent special issue in ACM TIST [12]. A
comprehensive survey article gives a broad overview of the
area [13].

The elicitation of effective structural connectivity as pro-
posed in this paper, has been more actively pursued in com-
putational neuroscience [8, 5, 4]. However, even here, most
approaches are derived using the physiological basis in the
domain in conjunction with techniques related to commu-
nity detection and network analysis [8]. In the data mining
and ML literature, the work on inferring functional connec-
tivity from fMRI data is partially relevant[9, 2, 7]. Note
however our work is inferring the structural from functional
connectivity.

There has been some work on inferring the functional re-
gions of city. For example, Yuan et. al. [11] have proposed
the DRoF framework which uses techniques from topic mod-
eling to predict the function of a zone in a city based on mo-
bility patterns. Similarly the work by Toole et. al. [10] uses
spatio-temporal change detection in mobile phone activity
to infer land use of regions and zones in a city. Integrat-
ing inference of functional regions in our framework can be
potential direction of future work.

7. CONCLUSION AND FUTURE WORK
The paper proposes a novel optimization based framework

to infer the effective structural connectivity of Doha, Qatar
using functional data acquired from bluetooth sensors. The
optimization problem is based on the premise that a latent
structural connectivity gives rise to the functional observa-
tions as measured by correlation between activity time series
between different zones. The inferred effective connectivity
is a sparse time-varying explanation of how traffic between
different zones of Doha interact. For example, by fixing one
zone as the query region we can clearly see the evolution of
the effective structure over time with respect to the fixed
zone. The effective structural matrix consists of both short



(a) Effective Connectivity 5AM (b) Effective Connectivity 6AM (c) Effective Connectivity 7AM

(d) Effective Connectivity 8AM (e) Effective Connectivity 9AM (f) Effective Connectivity 10AM

(g) Effective Connectivity 11AM (h) Effective Connectivity 12PM (i) Effective Connectivity 1PM

(j) Effective Connectivity 2PM (k) Effective Connectivity 3PM (l) Effective Connectivity 4PM

Figure 5: Doha zone traffic effective structure evolution over a day. The blue zone is the query zone. Red signifies high
connectivity, green signifies low connectivity. It can be seen that in the morning rush hour, parts (b) to (e), strong positive
structure is observed between the western suburbs and the CBD. Further, throughout the day, positive structure is observed
in regions closer to and around the CBD, for example, Lusail and the airport zones to the north and south respectively.



range and long range dependencies as would be expected in
an urban environment where different dynamics are simul-
taneously at play.

At the moment the experiments provide a preliminary and
qualitative validation of our approach. For future work we
will design a suite of experiments (both synthetic and real)
to both calibrate the model (e.g., the choice time scale and
aggregation level) and determine if the structural matrix
inferred has properties which are physically realizable. One
approach would be to relate it to a forward dynamical model
rooted in the physics of transportation theory. Another pos-
sible application of our approach is to help model and simu-
late traffic staggering mechanisms as a solution to alleviate
rush hour congestion.
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