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ABSTRACT
Crime prediction based on traditional socio-demographic data
is of limited value because it fails to capture the complexity
and dynamicity of human activity in cities. With the rise
of ubiquitous computing, there is the opportunity to im-
prove crime prediction models with crowdsourced data that
make for better proxies of human activity. In this paper,
we propose the use of Foursquare data for crime prediction.
We employ feature selection techniques to investigate the
power of different features derived from Foursquare check-
ins in predicting crime counts in New York over a period of
5 years. Our study shows that the number of venues (as a
metric of neighborhood popularity) and the venues entropy
(as a metric of neighborhood diversity) are the most discrim-
inative features when considering all incidents. The number
of users and their interactions with the venues in form of
check-ins in specific types of venues (as proxies for the func-
tional decomposition of the neighborhood) become relevant
for certain types of incidents.

CCS Concepts
•Information systems → Data mining; Information
systems applications; •Applied computing→ Law, so-
cial and behavioral sciences;

Keywords
crime prediction; urban computing; open data; feature in-
terpretation; feature selection; LBSN

1. INTRODUCTION
Crime prediction is inherently difficult. Crime is a com-

plex social phenomenon driven by three forces: (1) the of-
fender’s motivation, (2) the victim’s vulnerability, and (3)
the absence of a capable guardianship [4] – or more generally
said, the environment (seen as the time and place support-
ing the victimization) where the offender and victim come
together [22]. This yields a highly dynamic and complex
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system, and scholars are still investigating various charac-
teristics of the three forces for predictive power.

Traditionally, criminological studies have focused solely
on socio-demographic attributes as factors correlating with
victimization and have noticed that specific groups of peo-
ple were facing higher risk of victimization compared with
other groups [8]. But census data has an intrinsic limita-
tion, in that it only offers a static and sometimes obsolete
image of the city, without capturing the people dynamics
over time and space. There is now the opportunity for
non-conventional factors to be integrated in crime prediction
models by tapping into novel data sources that reflect the
structure and dynamics of our cities. With the emergence
of mobile phones and other types of ubiquitous computing,
a plethora of data sources can now offer better proxies for
human activity, from mobile calls to geo-located Tweets or
Foursquare check-ins. In particular, local-based social net-
works (LBSNs) like Foursquare offer a very vivid image of
the city, being able to not only to provide time and loca-
tion of human activity, but also the context (like traveling,
shopping, working, going out, etc.) in which activities occur.

In this paper we assess the predictive power of crime pre-
diction factors derived from information crowdsourced by
Foursquare users. This is an initial but essential step to-
wards deriving robust crime prediction models from data
sources describing human dynamics in urban environments.
To the best of our knowledge, our work constitutes the first
attempt to:

1. use Foursquare data, beyond basic Points of Interest
(POIs) data, as explaining features in a crime context;

2. perform extensive feature interpretation and selection
on this data with the end goal of fine-grained crime
prediction in mind.

The remainder of this paper is structured as follows. First,
the related literature is surveyed in Section 2. This contains
a brief overview of research in the area of urban computing
which exploits similar data sources, followed by a survey of
existing crime prediction models in the data mining com-
munity. Section 3 explains in detail the collected dataset,
while Section 4 elaborates on the used methodology, derived
potential crime correlates, and empirical results of the anal-
ysis. Finally, in Section 5, we discuss the implications of
the results obtained, and conclude with a mention of future
work.



2. RELATED WORK

2.1 Urban Computing
Nowadays, sensing technologies and large-scale comput-

ing infrastructures have produced a variety of big data in
urban spaces: geographical data, human mobility, traffic
patterns, communication patterns, air quality, etc. The vi-
sion of urban computing, an emerging field coined by Zheng
and collaborators [24], is to unlock the power of big and
heterogeneous data collected in urban spaces and apply it
to solve major issues our cities face today. They identify
seven application areas of urban computing: urban plan-
ning, transportation systems, environmental issues, energy
consumption, social applications, commercial applications,
and public safety and security.

For example, within the urban planning and transporta-
tion domains, the authors in [23] attempt to infer the func-
tions of different regions in the city by analyzing the spa-
tial distribution of commercial activities and human mo-
bility traces, while the authors in [3] mine different urban
open data sources for optimal bike sharing station place-
ment. Furthermore, for commercial purposes, researchers
mine online location-based services for optimal retail store
placement [9] or metro data for insights into the financial
spending of public transport users [12].

Within the public safety and security sector, very few pub-
licly available studies exploit human dynamics data. Schol-
ars have just recently started to investigate the potential use
of social media [6], of mobile data [2], and of taxi flow data
[17] for the specific purpose of crime prediction.

2.2 Crime Prediction
A basic and widely applied model for understanding crim-

inal patterns is the hot spot model [5]. It clusters past inci-
dents into regions of high risk (the so-called hot spots) using
statistical methods like kernel density estimation (KDE) or
mixture models. In this case the past is prologue for the
future: crime is likely to occur where crime has already
occurred! These models exploit solely the historical crime
records and do not integrate any further information. Their
biggest disadvantage is that they cannot be generalized to
areas without historical data.

The spatiotemporal generalized additive model (ST-GAM)
[18] and the local spatiotemporal generalized additive model
(LST-GAM) [19] start looking at socio-demographic data
(like population density, unemployment rate, education level,
net income, social aid, etc.), temporal data (like time of
day/week/year, temporal proximity to special events such
as football games, etc.), and spatial data (like spatial prox-
imity to bus stations, governmental buildings, pawn shops,
night life establishments, or target type such as household,
store, park, etc.) describing a criminal incident. These mod-
els are extensions of regression models on grids, where the
spatiotemporal features can be indexed by time. The real
effect of such fetures on the level of crime is often not lin-
ear, and the generalized additive models can capture such
non-linearities by modeling the link function of the depen-
dent variable as a linear combination of unknown smooth
functions of the independent variables.

In the same vein, authors in [16] exploit POIs from dif-
ferent sources to build classifiers of urban deprivation (a
composite score of seven domains, with crime being one of
them) at neighborhood level. Furthermore, authors in [15],

assess the potential of metro flow data to identify areas of
high deprivation in the city.

But only very recent research has started to incorporate
human dynamics data into crime prediction models. Gerber
and his co-authors [6, 21, 20] were the first to investigate the
potential of social media for criminal forecasting. First, they
show that an ST-GAM model incorporating Twitter-derived
information performs better than the basic ST-GAM. They
also show that combining topics derived from the Twitter
stream with the historical crime density delivered by a stan-
dard KDE under a logistic regression model leads to an in-
crease in the prediction performance versus the standard
KDE approach for most of the tested crime types. Com-
bining for the first time demographic data and aggregated
and anonymized human behavioral data derived from mo-
bile made public by Telefonica as part of a hackathon, Bo-
gomolov and colleagues were able to obtain an accuracy of
almost 70% when predicting whether a specific area in the
city will be a crime hotspot or not [2]. Finally, researchers
in [17] craft nodal features (using demographics and POIs
data) and edge features (using geographical proximity and
taxi flow data) to explain crime rate of a neighborhood given
information of all other neighborhoods. By employing sim-
ple linear and negative-binomial regressions, they show that
the addition of POI and taxi flow data reduces the prediction
error by up to 17.6%.

3. DATASET
New York City (NYC) is a city that has experienced crime

across time, though the levels have dropped since the 1990s
[11], due to a series of factors including new policing tactics
and the end of the crack epidemic [1]. Furthermore, as part
of an initiative to improve the accessibility, transparency,
and accountability of the city government, the NYC Open-
Data catalog has made over 1300 datasets available online
as of May 20161. The repository provides data in machine-
readable formats on buildings, streets, infrastructure, busi-
nesses, and other entities within the city, including permits,
licenses, crime related data, and 311 complaints.

More importantly, its 8.5 million inhabitants2, leave rich
digital footprints of their daily activity in various local-based
online services, NYC being the most popular city on Foursquare3

with about 132 million checkins as of May 20164.

3.1 NYC OpenData crime data
The dataset contains crime data across seven felony types:

grand larceny (which is the theft of another’s property – in-
cluding money – over a certain value), robbery, burglary,
felony assault, grand larceny of motor vehicle, rape, and
murder and non-negligent manslaughter and has been down-
loaded from the NYC OpenData platform on 09.03.2016.
For anonymization reasons, in case the offense has not oc-
curred at an intersection, the New York Police Department
(NYPD) projects the location of the incident to the center of
the block (street segment). Furthermore, crime complaints
which involve multiple offenses are classified according to

1https://nycopendata.socrata.com/
2http://factfinder.census.gov/faces/tableservices/jsf/
pages/productview.xhtml?src=bkmk
3http://www.foursquare.com/
4http://www.4sqstat.com/



the most serious offense5.

Figure 1: Burglaries locations between 2011 and
2015, weighted by number of burglary cases.

To capture as much diversity as possible, we do not limit
space-wise our analysis to Manhattan only, but extend the
area to three other boroughs: Bronx, Brooklyn, and Staten
Island. Time-wise, we keep for analysis the data of the
last 5 complete years (2011 throughout 2015), which is a
long enough timeframe to aggregate crime patterns, and for
which extreme values have not been observed in the crime
statistics.

These preprocessing steps yield a dataset of 423384 inci-
dents across seven types, four boroughs and five years. For
exemplification, Figure 1 presents an overview of the bur-
glary incidents within the 5 years under analysis.

3.2 Foursquare venues data
The Foursquare dataset was collected in May 2016 via the

Foursquare API, using the venues search endpoint6. The
Foursquare API has been serving both the Foursquare 8.0
and the Swarm apps since the 2014 split of the original
Foursquare app7. While Foursquare continues to provide
a local search-and-discovery service for places near a user’s
current location, Swarm lets the user share their location
with friends at different precision levels (at city and neigh-
borhood levels, or by checking-in to a specific venue).

The collected data consists of NYC venues with com-
pact metadata like id, name, location, checkins count (total
checkins ever done in that venue), users count (total users
who have ever checked in), tip count (total number of tips
written by users), associated categories, menu, etc. The
Foursquare categories span a broad ontology, with the fol-
lowing 10 categories on the first level: (1) Arts and Enter-
tainment, (2) College and University, (3) Event, (4) Food,
(5) Nightlife Spot, (6) Outdoors and Recreation, (7) Profes-
sional and Other Places, (8) Residence, (9) Shop and Ser-
vice, (10) Travel and Transport.

We have queried the API by searching for venues in the

5https://data.cityofnewyork.us/Public-Safety/
NYPD-7-Major-Felony-Incidents/hyij-8hr7
6https://developer.foursquare.com/docs/venues/search
7https://developer.foursquare.com/docs/2014update

proximity of every incident location described previously,
and this resulted into an extensive database of 245102 dif-
ferent venues. In total, these venues have experienced over
120 million checkins, distributed unevenly across the afore-
mentioned ten top-categories.

4. FEATURES FOR CRIME PREDICTION

4.1 Problem Definition
We cast the problem as a regression task on the counts of

crimes on each block. For each block present in the NYC
crime dataset and in the boroughs of interest, we aggregate
all crime incidents (total and per crime type) occurring over
the time period of interest. For each type, we keep entries
with at least one count and let this be the dependent vari-
able y. Table 1 presents the descriptive statistics of the
aggregated counts per crime type: number of locations in
the dataset, minimum, first quartile, median, mean, third
quartile, and maximum of the respective counts.

Incident type Locations Min Q1 Median Mean Q3 Max

all 50296 1 2 4 8.37 9 1380
grand larceny 36214 1 1 2 4.76 5 1145
burglaries 22882 1 1 2 2.81 3 213
assault 23383 1 1 2 3.33 4 167

vehicle larceny 17345 1 1 1 1.53 2 35
rape 61 11 48 73 82.03 109 275

murder 1321 1 1 1 1.16 1 8

Table 1: Descriptive statistics of the crime data.

Figure 2 is depicting the histogram of the incidents counts
from 2011 to 2015 in NYC – note that the long tail of the
distribution continues until 1380 and was cut from the graph
for practical reasons. We can observe that the distribution of
the data is positively skewed with many observations having
low count values. The incident types expose similar power
law distributions.

Figure 2: Incidents counts per block from 2011 to
2015.

In what concerns the independent variables x, we craft
a set of geographic and human dynamics features based on
our raw Foursquare dataset, as explained in the following
subsection. We then measure their predictive power by run-
ning different feature selection techniques and consolidating
their results.



4.2 Prediction Features
We proceed by introducing the features we have derived

based on the Foursquare dataset of NYC. Each feature rep-
resents a numeric score that assesses the area around a given
incident location. We classify them into two overarching cat-
egories: (1) spatial features which exploit solely the static
information about the venues (like location and category),
and (2) human dynamics features which integrate knowledge
about the way the population interacts with these venues
(like check-ins).

Spatial Features
This category of features describes the urban environment
around the place of interest, as captured by the spatial
distribution of the Foursquare venues set, denoted as V .
Specifically, we measure the density and heterogeneity of
all Foursquare places that lie in a disk of varying radius r
around a given incidents location l, defined as {v ∈ V |dist(v, l) < r},
whereby dist is the Euclidean distance between two locations
in the local cartesian coordinate system NAD83 / New York
Long Island (ftUS)8. As exemplification of this unit of ana-
lyis, Figure 3 depicts the area covered by a disk of 200m
around a central block in the city downtown.

Figure 3: Area of radius r = 200m around the street
segment on 5th Avenue between Rockefeller Plaza
and the Saks Fifth Avenue mall. In violet: incidents
locations, weighted by total number of incidents.
In blue: Foursquare venue locations, weighted by
checkins counts.

Total number of venues: measures the density of venues
around a location and is a static popularity metric of that
area. Formally:

f(l, r) = |{v ∈ V |dist(v, l) < r}|

describes the number of venues v around the location l within
a radius r, which can also be denoted as N(l, r).

Venues entropy: measures the diversity of an area as
captured by the categories of the venues within that area.
Inspired by [9], we use the entropy measurement from in-
formation theory [14] as a diversity index. Intuitively, the

8http://www.spatialreference.org/ref/epsg/2263/

entropy quantifies the uncertainty in predicting the category
of a venue that is taken at random from the area. For a
given location l, we denote the count of neighboring venues
of category c within a radius r as Nc(l, r). Formally, the
entropy measures how many bits are needed to encode the
corresponding vector of category counters {Nc(l, r)|c ∈ C},
with C being the set of the top 10 categories introduced
previously, and is defined as follows:

f(l, r) = −
∑
c∈C

Nc(l, r)

N(l, r)
× log

Nc(l, r)

N(l, r)

The higher this measure, the more heterogeneous the area
is in terms of types of places, and following that, in terms
of functions and activities of the neighborhood, whereas a
least entropic area would indicate an area with a dominant
function. For example, an area dominated by venues from
the Professional and Other Places category, would indicate
a part of the city where people primarly work.

Human Dynamics Features
In this section, we show how information on how the users
engage with the Foursquare venues in an area, can be ex-
ploited to derive metrics of human activity in that area.

Total number of checkins: measures the popularity of
the area. The total number of empirically observed checkins
by Foursquare can be used as another proxy for the rela-
tive popularity of that area in the city, and is computed as
follows:

f(l, r) =
∑

{v∈V |dist(v,l)<r}

vcheckins

whereby vcheckins denotes the total number of checkins ex-
perienced by venue v.

Total number of users: measures popularity and het-
erogeneity of the area, and can be regarded as a more accu-
rate measure of human activity than the traditional popu-
lation density statistics from the census:

f(l, r) =
∑

{v∈V |dist(v,l)<r}

vusers

whereby vusers denotes the total number of users who have
ever checked in venue v.

Total number of tips: measures popularity and quality
of a given area, by looking at the involvement of the users
with the venues:

f(l, r) =
∑

{v∈V |dist(v,l)<r}

vtips

whereby vtips counts the total number of tips users have ever
written about venue v.

Number of checkins per category: measures the in-
tensity of the different activity contexts in which the Foursquare
users engage, and is an empirical metric for the functional
decomposition of that particular area in the city. For in-
stance, an area with many Residence and Outdoors and
Recreation checkins would correspond to a residential neigh-
borhood, which is very different to an entertainment district,
that would in turn be characterized by a high number of
checkins in the Food, Nightlife Spot, and Shop and Service
categories, e.g. For a given incident location l, radius r and



category c, this feature is calculated as follows:

f(l, r, c) =
∑

{v∈V |dist(v,l)<r & vcategory=c}
vcheckins

with vcategory being the primary category of venue v.

4.3 Feature Selection Techniques
Feature selection techniques are meant to lead to better

performing prediction models and to a better understanding
of the underlying phenomena and the structure of the data.
There are mainly two reasons why feature selection is used
in supervised machine learning:

1. To reduce overfitting and improve the generalization of
the subsequent machine learning models by reducing
the number of features. This implicitly leads to shorter
training times and models easier to interpret.

2. To gain a better understanding of the features and
their relationship to the dependent variable.

These two goals are often contradictory and techniques that
work well with one do not necessarily work well with the
other. Especially, methods more suitable for (1) are indis-
criminately applied for achieving (2). In the following we
explore a set of feature selection techniques with the sec-
ond goal in mind: which of the Foursquare-derived features
above are discriminative for predicting the number of crim-
inal incidents in a specific NYC location.

A feature selection algorithm can be seen as the combina-
tion of a search technique for proposing new feature subsets
to be used for learning, along with an evaluation measure
which scores the different feature subsets. The feature selec-
tion methods are typically structured in three classes based
on how they combine the subset selection and the model
building: filter methods, embedded methods, and wrapper
methods [7].

Filter methods are basic methods and use a proxy mea-
sure, a correlation coefficient, instead of the error rate to
score a feature subset. These statistical methods are usu-
ally not computationally intensive, but produce a feature set
which is not tuned to a specific type of predictive model. In
what follows, we employ two popular filter methods which
perform univariate feature selection. These are Pearson cor-
relation and mutual information (MI). MI is not a metric and
not normalized, instead the maximal information coefficient
(MIC) [10] searches for optimal binning and turns mutual
information score into a metric that lies in the range [0;1].
These correlation methods have a major common drawback:
they do not take into account feature interactions. Further-
more, Pearson correlation specifically is unable to recognize
non-linear relationships between the features and the depen-
dent variable.

Embedded methods consist of machine learning tech-
niques that automatically perform feature selection because
of some inherent internal ranking of the features. One class
of such methods are regularized regression models. Regu-
larization is a technique that adds a penalty factor to the
optimization function, with the goal of preventing overfit-
ting and improving the generalization of the model. The L1
or LASSO regularization for regression adds the L1-norm of
the coefficients vector w to the loss function that needs to
be optimized: α

∑
i |wi| This forces weak features to have

zero wi values and yields a sparse model, thus performing
automatic feature selection.

On the other hand, the L2 or Ridge regularization for
regression adds the L2-norm penalty to the optimization
objective, which forces the model coefficients wi to have
lower values and be spread out more evenly: α

∑
i wi

2. The
LASSO regression is unstable, meaning that the coefficients
(and thus feature ranks) can vary significantly even on small
data changes when there are correlated features in the data.
In contrast, Ridge regression is not that volatile and, while
it does not perform feature selection the same way LASSO
does, it is more useful for feature interpretation: a predictive
feature will get a non-zero coefficient that has a magnitude
related to feature’s importance.

Another popular embedded methods are decision trees
and their ensemble extension, random forests. Random forests
are very popular in practice, as they are are easy to use, ro-
bust, and yield relatively good accuracy on many different
tasks. At every node in the decision trees of the random
forest, a test is done on a single feature, with the goal to
split the dataset into two subsets, so that instances with
similar responses to the test end up in the same subset.
The measure based on which the optimal condition is com-
puted is called impurity, and in case of regression trees, it is
variance. While training, one can compute how much each
feature decreases the impurity in a tree and this can be used
for ranking features. In a forest, the impurity decrease per
feature can be averaged across all trees in the forest.

Finally, wrapper methods build on top of other selec-
tion methods, generating models on different subsets of the
data and extracting the ranking from the aggregates. Stabil-
ity selection is a relatively new technique which repeatedly
applies a feature selection algorithm on different subsets of
the data and using different subsets of the features. In the
aggregation step, one can check how often a specific feature
ended up being selected as important when it was present
in the initial subset of features. The most popular form of
feature selection in traditional statistics is recursive feature
elimination (RFE). It is a greedy algorithm that adds the
best feature (or removes the worst feature) at each round.
At the end of the process, features are ranked according to
when they were eliminated.

We let each of the above methods generate a ranked list
of all the available features and then compare and contrast
the results in the coming section.

4.4 Experimental Results
As some of the used methods below such as the regularized

models are sensitive to the magnitude of the features, we first
standardize all features by removing the mean and scaling to
unit variance (by applying a standard scaler). Furthermore,
we set the lookup radius r to a value of 200m, a choice that
is in agreement with what the urban community considers
as the optimal neighborhood size [13], and has been used
before in the urban computing literature [9]. In case the
algorithms needed hyper-parameter tuning, like in the case
of the regularization parameter α for regularized regressions
or the number of trees n in the case of random forests, these
were determined by cross-validation.

We first use the opportunity to look at the correlations
matrix of the features themselves presented in Figure 4, as
we expect multi-collinearity. Indeed, the total counts of
venues in the proximity correlates with the total amount



Figure 4: Features correlation matrix.

of checkins, users, and tips generated in the same area, and,
furthermore, with the specific checkins in the food establish-
ments. The venues entropy metric is uncorrelated to any of
the other metrics, making it a promising discriminant. Also
the specific checkins in the domains education and events
seem uncorrelated to the rest of the features set.

We are now ready to run each of the above listed methods
on the dataset and normalize the scores so that that are
between 0 (for lowest ranked feature) and 1 (for the highest
feature). By convention, for RFE, the top five feature will
all get a score 1, with the rest of the ranks spaced equally
between 0 and 1 according to their rank.

The following subsections describe for each method the
ranks achieved by each feature, on the dataset of all inci-
dents. Table 2 summarizes then the results.

4.4.1 Pearson Correlation
With Pearson correlation, each feature is evaluated inde-

pendently, so the scores for the aggregated human dynam-
ics features checkins-total200m, users-total200m, tips-
total200m are very similar and relatively high. From the
per-category checkins, the food specific checkins are the only
ones having a score in the same value range. Still, the geo-
graphic features venues-total200m and venues-entropy200m

are rendered as most discriminative by this method!

4.4.2 Maximal Information Coefficient (MIC)
MIC is similar to the correlation coefficient in identify-

ing the same features as relevant. Additionally, it identifies
venues-residence200m and venues-shops200m as similarly
important.

4.4.3 LASSO Regression
The LASSO regression renders seven out of the 15 fea-

tures as irrelevant. From the remaining ones, only the pure
geographic features have considerably higher ranks.

4.4.4 Ridge Regression
In a similar way, the pure geographic features score highest

also based on the L2 penalty in Ridge Regression. From the
collinear factors of the total venues count, the only remain-
ing feature with higher rank remains tips-total200m. The
total number of check-ins and users receive lower weights.

4.4.5 Random Forest
The Random Forest experiment delivers a slightly differ-

ent picture, with venues-total200m, tips-total200m, and
checkins-residence200m scoring highest. We can see that
random forest’s impurity based ranking is typically aggres-
sive in the sense that there is a sharp drop-off of scores after
the first few top ones.

4.4.6 Recursive Feature Elimination (RFE)
Finally, RFE results seem to consist of the superset of fea-

tures identified by the other methods: venues-total200m,
venues-entropy200m, tips-total200m, checkins-food200m,
and checkins-residence200m. users-total200m follows closely.

4.4.7 Mean
To summarize, the features scoring high consistently across

all methods are venues-total200m, venues-entropy200m,
tips-total200m, checkins-residence200m, and users-total200m

(in this order). So, for the aggregated incident counts, there
is a strong preference towards the static features based solely
on location and category, seconded by aggregated check-ins
values and residence checkins. This will not necessarily hold
for each crime type, as we show in the following.

We continue by repeating the set of experiments for the
subsets of instances of each type of crimes (see Section 3.1)
and report in Table 3 only the resulting mean ranks of each
feature for each crime type. While the burglary and vehi-
cle larceny results show similar patterns to when consider-
ing all incidents, the results for the other types of incidents
show particularities. In the case of rape cases the meth-
ods identify that regions with higher number of checkouts
in the categories arts and entertainment, shop, and food are
at higher risk, while the highest ranking features for grand
larceny cases are the number of checkins at home and in
food establishments. For assaults, the venues entropy is fol-
lowed by the activity in the food, shop and travel venues.
Finally, in the case of murder cases, all of the aggregated
values of venues and checkins score high, together with the
food, outdoors and residence checkins. Event check-ins score
low across all crime types, with the exception of rapes.

4.5 Supervised Learning for Crime Counts
As an initial validation of the potential of these novel fea-

tures for crime prediction, we briefly introduce in this section
the first results in a supervised learning setting. We there-
fore train a LASSO linear regressor, a Ridge linear regressor,
and a Random Forest regressor, all optimizing the root mean
squared logarithmic error (RMSLE)9 on the total number of
incidents y. We choose this metric instead of the traditional
root mean squared error (RMSE) to account for the posi-
tively skewed distribution of the dependent variable. The
regressors use the complete set of features x introduced ear-
lier. The hyper-parameters of the algorithms (regularization
parameter alpha for the regularized regressions and number
of trees n for the Random Forest) have been identified by a
5-fold cross-validation.

Table 4 summarizes the results of the three regressors.
The Random Forests yield the lowest error in both cases,
with RMSLE = 0.65 on the geographic features only, and
RMSLE = 0.47 on the whole set of features. Also, we can ob-
serve that the set of human dynamics features was not able

9https://www.kaggle.com/wiki/
RootMeanSquaredLogarithmicError



Feature ID Feature Name Pearson Corr. MIC LASSO Reg. Ridge Reg. Random Forest RFE Mean

Geographic Features
0 venues-total200m 0.79 1.0 0.82 1.0 1.0 1.0 0.93
1 venues-entropy200m 1.0 0.93 1.0 0.93 0.12 1.0 0.83

Human Dynamics Features
2 checkins-total200m 0.44 0.91 0.0 0.0 0.11 0.2 0.28
3 users-total200m 0.41 0.94 0.01 0.09 0.32 0.9 0.45
4 tips-total200m 0.45 0.89 0.13 0.31 0.63 1.0 0.57
5 checkins-arts200m 0.22 0.57 0.0 0.02 0.04 0.4 0.21
6 checkins-college200m 0.13 0.53 0.01 0.06 0.02 0.6 0.23
7 checkins-event200m 0.0 0.0 0.0 0.03 0.0 0.3 0.05
8 checkins-food200m 0.44 0.93 0.0 0.06 0.34 1.0 0.46
9 checkins-nightlife200m 0.35 0.61 0.11 0.1 0.02 0.5 0.28
10 checkins-outdoors200m 0.29 0.58 0.0 0.0 0.05 0.1 0.17
11 checkins-professional200m 0.31 0.85 0.01 0.1 0.43 0.8 0.42
12 checkins-residence200m 0.38 0.94 0.05 0.13 0.63 1.0 0.52
13 checkins-shop200m 0.33 0.93 0.0 0.08 0.28 0.7 0.39
14 checkins-travel200m 0.12 0.71 0.0 0.01 0.33 0.0 0.19

Table 2: Total incidents: the ranks of the individual features according to each selection criterion and the
mean rank across all criteria.

Feature ID Feature Name All Burglary Grand Larceny Assault Vehicle Larceny Rape Murder

Geographic Features
0 venues-total200m 0.93 0.73 0.6 0.36 0.95 0.56 0.62
1 venues-entropy200m 0.83 0.68 0.62 0.83 0.9 0.61 0.72

Human Dynamics Features
2 checkins-total200m 0.28 0.5 0.63 0.49 0.68 0.29 0.53
3 users-total200m 0.45 0.5 0.59 0.48 0.66 0.23 0.65
4 tips-total200m 0.57 0.47 0.42 0.49 0.77 0.44 0.59
5 checkins-arts200m 0.21 0.23 0.29 0.27 0.23 0.64 0.3
6 checkins-college200m 0.23 0.24 0.23 0.33 0.26 0.48 0.25
7 checkins-event200m 0.05 0.03 0.08 0.0 0.03 0.34 0.01
8 checkins-food200m 0.46 0.48 0.57 0.54 0.66 0.55 0.59
9 checkins-nightlife200m 0.28 0.32 0.52 0.4 0.38 0.47 0.38
10 checkins-outdoors200m 0.17 0.28 0.49 0.29 0.34 0.36 0.43
11 checkins-professional200m 0.42 0.46 0.39 0.47 0.46 0.29 0.39
12 checkins-residence200m 0.52 0.45 0.72 0.32 0.52 0.3 0.43
13 checkins-shop200m 0.39 0.29 0.49 0.49 0.46 0.64 0.41
14 checkins-travel200m 0.19 0.23 0.45 0.49 0.27 0.53 0.38

Table 3: The ranks of the individual features for each of the crime types.

Method Geographic Features All Features
Hyper-parameter RMSLE Hyper-parameter RMSLE

LASSO Regression alpha=0.02 0.96 alpha=2.3 1.01
Ridge Regression alpha=50000 0.97 alpha=25000 0.98
Random Forest n=50 0.65 n=50 0.47

Table 4: Results of the regressors on the total inci-
dents counts.

to decrease the error of the regularized regression models.
While the ensemble method manages to optimally leverage
the set of all features due to its non-parametric nature, the
simpler linear models perform better on the subset of the
top discriminative features identified by the selection meth-
ods in the previous section.

5. CONCLUSIONS
In this paper, we have presented first results on the in-

vestigation of LBSNs as data sources of static and dynamic
features for crime prediction models. Crime is investigated
at a fine-grained level: data has been segmented at city block
scale and across several crime categories. The experiments
have shown that from all features derived from Foursquare
data, the best performing ones across all types of crimes
are the venues counts and entropy, as proxies for the neigh-
borhoods popularity and diversity. The feature selection
algorithms prefer next different types of check-ins for spe-
cific types of crimes: e.g. residential and food check-ins for
grand larcenies, and entertainment, shop, and food, for the
rape incidents.

As future work, we plan to extend the Foursquare dataset
along the time dimension, by segmenting the dynamics fea-
tures across days of the week and opening hours. The same
methodology could then be applied on data from other ma-
jor cities around the globe where crime statistics are avail-
able and Foursquare is widely used, such that we can make
more general claims about the predictive power of such fac-
tors globally. Furthermore, the same feature selection and
interpretation techniques above could be applied to further
ubiquitous data sources describing the fabric and pulse of
our cities, like additional POIs, public transport turnstile
data, or 311 calls.
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Urban nuclei and the geometry of streets: The
’emergent neighborhoods’ model. Urban Design
International, 15(1):22–46, 2010.

[14] C. E. Shannon. A Mathematical Theory of
Communication. The Bell System Technical Journal,
27(3):379–423, 1948.

[15] C. Smith, D. Quercia, and L. Capra. Finger on the
pulse: Identifying deprivation using transit flow
analysis. In CSCW’13, pages 683–692, New York, New
York, USA, 2013. ACM Press.

[16] A. Venerandi, G. Quattrone, L. Capra, D. Quercia,
and D. Saez-Trumper. Measuring Urban Deprivation
from User Generated Content. In CSCW’15,
Vancouver, BC, Canada, 2015.

[17] H. Wang, D. Kifer, C. Graif, and Z. Li. Crime Rate
Inference with Big Data. In KDD’16, San Francisco,
California, USA, 2016.

[18] X. Wang and D. E. Brown. The spatio-temporal
generalized additive model for criminal incidents. In
ISI ’11, pages 42–47, 2011.

[19] X. Wang and D. E. Brown. The spatio-temporal
modeling for criminal incidents. Security Informatics,
1(1):2, 2012.

[20] X. Wang, D. E. Brown, and M. S. Gerber.
Spatio-temporal modeling of criminal incidents using
geographic, demographic, and Twitter-derived
information. In ISI ’12, pages 36–41, 2012.

[21] X. Wang, M. Gerber, and D. Brown. Automatic Crime
Prediction using Events Extracted from Twitter Posts.

In SBP ’12, volume 7227, pages 231–238, 2012.

[22] P. Wilcox. Theories of Victimization. In L. Grove and
G. Farrell, editors, Encyclopedia of victimiology and
crime prevention, pages 978–986. Sage Publications,
Inc., 2010.

[23] J. Yuan, Y. Zheng, and X. Xie. Discovering regions of
different functions in a city using human mobility and
POIs. In KDD ’12, page 186, New York, New York,
USA, 2012. ACM Press.

[24] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
Computing: Concepts, Methodologies, and
Applications. ACM Transaction on Intelligent Systems
and Technology, 5(38), 2014.


