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ABSTRACT 

Kumamoto prefecture, Japan, was hit by enormous (Magnitude 6.5, 

7.3) earthquakes on 14th and 16th of April, 2016. As a result of the 

shocks, more than 10,000 buildings were severely damaged, and 

over 100,000 people had to evacuate away from their homes. After 

the earthquake, it took the authorities several days to grasp the 

locations where people were evacuating, which delayed the 

distribution of supply and rescue teams. This situation was made 

even harder since some people evacuated to places that were not 

designated as evacuation shelters. Conventional methods for 

grasping evacuation hotspots require field surveys, which take time 

and are also difficult to execute right after the hazard in the 

confusion. We propose a framework to efficiently estimate the 

evacuation hotspots using location data collected from mobile 

phones. To validate our framework, we estimated the locations that 

were congested with evacuees after the Kumamoto earthquake 

using GPS data collected by Yahoo! Japan. We also verified that 

our estimation results were very high, by checking the features 

located in each grid with high anomaly value. Moreover, for one of 

the non-designated evacuation hotspots, we accurately estimated 

the population transition of before and after the earthquake, which 

we validated using newspaper reports.  
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1. INTRODUCTION 
At 9:26PM of 14th April 2016, Kumamoto prefecture, located on 

Kyushu Island of Japan, was struck by a M6.5 earthquake. This 

shock was followed by another M7.3 earthquake next day, at 

1:25AM, 16th April 2016. Since the first shock, over 1200 

earthquakes larger than seismic level 1 has occurred in this area [1]. 

As a result of the two large earthquakes and many minor shocks, 

more than 10,000 residential buildings had collapsed, and 

unfortunately 49 people were killed mainly due to building collapse. 

As we can observe from Figure 1, the second and largest shock 

struck near the densely populated central areas of Kumamoto. This 

forced over 100,000 people to move away from their homes to 

evacuation facilities.  

The mass evacuation activities of the victims caused serious issues. 

Grasping the locations of all the evacuation hotspots was extremely 

difficult in the chaos and confusion after the earthquake. This was 

made even harder since some people evacuated to locations which 

were not officially designated as evacuation places, such as parking 

areas of large shopping malls. As a result, many evacuation 

hotspots which were not recognized by the administrative 

organizations as evacuation shelters couldn’t be provided with food 

and supplies efficiently [2]. This increased the burden for the 

evacuees for several days. There is an urgent need for an efficient 

framework for estimating evacuation hotspots right after a natural 

disaster. The framework needs to require less time and less work 

load for the authority members who are busy managing the 

situation after the earthquake, compared to the conventional on-foot 

search for evacuation hotspots.  

Recently, GPS and call detail records (CDR) of mobile phones are 

being used for human mobility analysis [3,4,5,7], and is applied to 

various fields of study such as traffic management [11,12,14], 
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Figure 1. Crosses indicate epicenters of the three >M6 

earthquakes. The thickness of red color in each grid represent 

the usual population density of each grid. The largest 

earthquake occurred near the highly populated area. 
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urban planning [13], and pandemic simulations [16]. Some studies 

have analyzed the irregular human mobility after natural disasters 

such as Hurricane Sandy, Great East Japan Earthquake, and Haiti 

Earthquake [17,18,19], but none have proposed a method for a real-

time evacuation hotspot estimation.  

In this paper, we propose a framework for estimating evacuation 

hotspots using mobile phone GPS data. We used Yahoo! Japan’s 

GPS dataset for analyzing the evacuation hotspots after the 

Kumamoto earthquake. Through the case study in the Kumamoto 

earthquake, we show our framework can accurately estimate 

evacuation hotspots, and also that this process can be completed at 

a significantly high speed and low effort compared to the 

conventional on-foot investigations.  

Our key contributions of this paper are as follows:  

 We propose a framework to estimate evacuation hotspots 

following large natural disasters by using mobile phone GPS 

data.  

 We validate our framework by estimating the evacuation 

hotspots after the Kumamoto earthquake using actual GPS 

data.  

 We verify that the estimations are precise by comparing the 

population transition in one of the evacuation facilities, to the 

information obtained through newspapers and reports.  

2. Related Works 

2.1 Human Mobility Analysis 
The increasing availability and fusion techniques of big and 

heterogeneous data has enabled the analysis for tackling major 

issues that cities face [8,9]. Due to the popularization of mobile 

phones, call detail record (CDR) and GPS data have become 

popular for analyzing people movement [3,4,5,7] and nation-wide 

population distribution [4]. Other studies have applied human 

mobility analysis to many fields such as traffic estimation 

[11,12,14], urban planning [13], and public health [16].  

2.2 Disaster Mobility Analysis 
Recently, to understand the irregular people movement under 

disaster conditions, mobile phone CDR/GPS data are used for 

analyzing calling activities after large disasters [6]. Human 

evacuation activities after natural disasters such as the Haiti 

earthquake [17], Hurricane Sandy [18], and the Great East Japan 

Earthquake [19] are also analyzed. However, these studies are 

commonly the analysis of people movement after a disaster and do 

not attempt to infer the real-time evacuation hotspots after the 

disaster.  

2.3 Frameworks for Estimating Evacuation 

Hotspots 
Chen et al. [10] proposed a framework with agent based simulation 

for predicting human mobility after disasters using CDR, however 

used a simple potential model for the mobility prediction and did 

not attempt to estimate the evacuation hotspots. Horanont et al. [21] 

stated the potential usage of GPS data in emergency situations, but 

did not propose a method for evacuation hotspot estimation. We 

also have to note that the analysis was done after the settlement of 

the disaster in these two studies, and their frameworks’ ability for 

prompt analysis and visualization have not been verified.  

3. Proposed Framework 
As shown in Figure 2, our proposed framework is consisted of the 

manual parameter input process and the automated process. The 

manual parameter input could be completed momentarily, since 

shapefiles are available online. The automated process is consisted 

of 4 parts; 1) location data collection, 2) aggregation and smoothing 

the GPS data, 3) calculating the anomaly value of each grid, and 4) 

visualization of estimated evacuation hotspots. This framework is 

performed iteratively after the occurrence of the disaster, to update 

the locations of evacuation hotspots. Our framework is efficiently 

designed so that it could be quickly processed, and also has little 

burden for the framework users since most of the parts are 

automated.  

3.1 Location Data Collection 
GPS data of the Yahoo! Japan app users are collected continuously, 

and they are stored in an internal server. Once a disaster occurs, the 

logs recorded within a period of a few months before the disaster 

are collected. Then, logs located near the disaster hit area are 

extracted for each day. For spatial extraction, shapefile data of the 

area of disaster occurrence are needed as input data. This data 

collection phase can be completed in a few hours.  

3.2 Aggregation and Smoothing of GPS Data 
We aggregate the collected GPS data to obtain the population 

distribution of each day. To calculate the population distribution at 

night, we aggregate the last log for each ID (where he/she is 

sleeping) into 500m~1000m grids to maintain the privacy of the 

users. Then, to overcome the relatively low sample rate (1.2%), we 

perform a kernel density estimation [22] given by equation (1).  

Figure 2. Diagram of our proposed framework. After the occurrence of the disaster, we manually input the a) shapefile of location 

where disaster occurred, b) the preferred grid size for visualization, and c) the dates for the visualization output. All the following 

processes are automated. The system calculates the anomaly value for each grid and visualizes the evacuation hotspots. This output 

contributes to a more efficient supply and rescue distribution plan. The numbers in brackets are section numbers explaining that part 

of the framework.  
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Where there are 𝑛 grids in the Kumamoto area,  𝑥 is the original 

population value, h is the bandwidth, and 𝑓ℎ(𝑥) is the estimated 

population value. We aggregate and smooth the population 

distribution data for all the days where data are available.  

3.3 Calculation of Anomaly Value 
The anomaly value 𝐾𝑖,𝑗  of each grid 𝑗 on day i in the Kumamoto 

area are calculated by equation (2), using the average population 𝜇𝑗 ,  

the standard deviation 𝜎𝑗  for each grid 𝑗, and the population in grid 

𝑗  on day i , denoted by 𝑀𝑖,𝑗 . This anomaly value measures the 

relative congestion of the grid compared to an average day, also 

considering the fluctuation of the population in that grid. Therefore, 

the anomaly value 𝐾𝑖,𝑗  is dependent on the divergence of the grid’s 

usual population.  

𝐾𝑖,𝑗 =  
𝑀𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
 (2) 

3.4 Visualization of Evacuation Hotspots 
After calculating the anomaly value of the grids in the disaster-hit 

area, we visualize the anomaly grids onto a map, so that policy 

makers and administration organizations can check the evacuation 

hotspots easily. Visualization will be performed on a free GIS 

software called QGIS3, and OpenStreetMap4 would be used as the 

background map.  

4. Experiment on Kumamoto Earthquake 

4.1 GPS Dataset 
 The Yahoo! Japan Disaster App collects the GPS data of each 

individual, who have agreed to provide their location data to 

Yahoo! Japan when installing the app. Each GPS record contains 

an anonymized user ID, longitude, latitude, and timestamp. The 

GPS data are collected every day, when the smartphone is turned 

on, and when the individuals move around. In total, GPS data of 

around 1 million individuals (sample rate around 1% from all over 

Japan) have been collected, which makes Yahoo! Japan’s GPS 

dataset one of the richest datasets in the world. As shown in Table 

1, for the experiment, we used a total of 22,124 users’ 418,119 total 

GPS logs from a period of January 1st to May 16th of 2016 which 

were located in Kumamoto area.  

4.2 Visualization of Anomaly Map 
Figure 3 shows the map of Kumamoto area with grids with K>3 

colored in red, and 2<K<3 colored in orange. We can observe very 

few anomaly grids on the 1st April before the earthquake, meaning 

that the majority of the grids have a population within usual range. 

However on the 18th, after the large earthquakes, we can observe a 

significant increase in the number of anomaly grids, especially near 

the city center and the southern part when many people evacuated. 

These grids indicate the “evacuation hotspots”, where people 

evacuated at a significant rate compared to the usual population in 

that grid. It is also interesting to observe K>3 grids located on roads 

passing near the coastline. The high anomaly values in these grids 

infer that many people stayed in their cars away from their houses. 

However, after a month from the earthquake, we can see a decrease 

in congested areas in Kumamoto area. This implies that many 

evacuees returned home (if their house was not completely 

damaged) or moved away to other areas of Japan for shelter.  

 Figure 4 shows the temporal transition of the percentage of K>3 

and K>2 grids. By analyzing the anomaly value of usual days, we 

found that the probability distribution of usual anomaly values 

follow a normal distribution. Therefore, before the earthquake, 

around 0.2% of the grids have K>3, and around 3% of the grids 

have 2<K<3. However after the earthquake, more than 7% of the 

grids had a K>3, and 8% had 2<K<3, resulting in a significant 

increase in high density evacuation hotspots compared to usual 

days. We can clearly see the impact of the earthquakes, and also 

how the situation gradually returns to normal state as time passes. 

Period of 

data  

Average daily 

number of IDs in 

Kumamoto area 

Average daily total GPS 

logs in Kumamoto area 

2016/01/01 

~ 

2016/05/16 

22,124  

(1.2% sample rate) 

418,119 

(avg. 19 logs/user/day) 

Figure 3. Map of Kumamoto area; before, 2 days after, and 1 month after the earthquake. The grids with anomal values K>3, 

2<K<3, and 1<K<2 are colored red, orange, and yellow, respectively. We can observe the increase in irregularly congested grids 

right after the earthquake, and its decrease as time passes and start to get back to normal from the shock.  

 

3 http://www.qgis.org/en/site/ 

4 https://www.openstreetmap.org/ 

Table 1. Number of unique IDs, number of logs of GPS data 



Using our method, not only were we able to estimate the evacuation 

hotspots after the earthquake, but also the impact of the earthquake 

and the length of time it takes for a city to recover from a certain 

type of disaster.  

4.3 Validation of Estimated Hotspots 
Figure 5 shows a map of central Kumamoto and the grids with K>3 

colored in red. We validated our estimation of evacuation hotspots 

by checking the features located in each grid. The type of feature 

located in each of the grids are written beside the grid. Many of the 

estimated hotspots contained features that have the capacity to 

contain large evacuation population, such as schools, city halls, 

convention centers and parks. From these results, we can conclude 

that our framework successfully estimated the evacuation hotspots 

after the earthquake. To verify our results more, in the next 

subsection, we will focus on a convention center called Grand 

Messe Kumamoto, which was not designated as an evacuation 

shelter before the earthquake but hosted a large number of evacuees, 

and analyze the transition of population density in that particular 

grid.  

4.4 Case Study of Grand Messe Kumamoto 
To analyze the evacuation activities with more detail, we focus on 

one evacuation hotspot where K>3 anomaly was detected, and plot 

the transition of the daily population in that selected hotspot. We 

focused on “Grand Messe Kumamoto (GMK)” (circled in blue in 

Figure 5), a convention center in Kumamoto area, and analyzed its 

daily transition of population in that facility. According to 

newspaper articles [20], many evacuees gathered in the parking 

area of GMK right after the earthquake, despite the fact that this 

facility was not designated as an evacuation location.  

The broad black line in Figure 6 shows the daily transition of the 

night-time population in GMK from March 20th to 14th May 2016. 

The dotted gray line denotes the average population μ of usual days 

in GMK, and the gray, orange, and red lines indicate the K=1, K=2, 

K=3 lines for GMK, respectively. We can observe a rapid increase 

after the earthquakes on April 16th, and a significant anomaly in 

population density for more than a week over K=3. We can also 

spot an instantaneous K>3 on Saturday, March 26th. There was 

actually a large music festival on this day at GMK, which is an 

example of an anomaly within usual days. After April 18th, we can 

observe a decrease of population in GMK, and a gradual return to 

a usual level of population. By the beginning of May, the 

population in GMK has transferred back to the normal state.  

The increase of population on April 16th coincides with the 

information on the newspaper article [20]. We can conclude that 

the population in GMK, one of the evacuation hotspots, was 

accurately inferred.  

5. Discussion 
Our framework for estimating evacuation hotspots using GPS data 

can provide useful information to administrative organizations 

quicker and with less effort than conventional methods. Providing 

Figure 6. Transition of population density near “Grand Messe 

Kumamoto”, a large shopping mall which was not designated 

as an evacuation place. We can observe high congestion of K>3 

after the earthquake, on April 15th ~ 21st.  Figure 5. Map of central Kumamoto with K>3 grids colored in 

red. Close investigation on these grids revealed that most of 

these grids contain features that have a large capacity for 

evacuees such as schools, city halls, and convention centers. The 

blue circle shows Grand Messe Kumamoto (GMK). 

Figure 4. Percentage of K>3, 2<K<3 anomaly grids by days. In normal days before the earthquakes, around 1% of K>3 and 3% 

of 2<K<3 grids are observed. However, after the shocks, irregularly congested grids increase at a significant rate. As time passes, 

the number of anomaly grids decrease, and by May 15th, the percentage of anomaly grids almost reach normal state.   



useful and accurate information can contribute to making efficient 

supply distribution and rescue operation plans after disasters.  

By calculating the anomaly value of each grid in Kumamoto after 

the earthquake, we were able to estimate the distribution of 

irregularly congested grids. Also, we were able to observe the 

significant increase in number of grids with high anomaly values 

right after the occurrence of the earthquake. Also, the gradual 

decrease of grids with anomaly values showed the settling down of 

irregularity after a few weeks from the occurrence of the 

earthquakes. Through the analysis, we were able to observe the 

impact of earthquakes on the people’s evacuation activities.  

Checking the features in each grid verified the accuracy of our 

framework. We were able to even detect locations where 

administrative organizations had not designated as evacuation 

shelters, such as Grand Messe Kumamoto.  

Analyzing the daily transition of population in one of the non-

designated evacuation hotspots has showed that our estimated 

population fluctuation pattern was similar to the newspaper report. 

Also, by comparing the peak with a usual event (music festival), we 

were able to relatively understand the level of congestion caused by 

the evacuation activities, which was significantly higher than the 

anomaly in usual state.  

To decrease the processing time and burden for the people who use 

the framework, we automated most of the processes and only 

parameter input has to be done manually.  

6. Conclusion 
In this paper, we proposed a framework for estimating evacuation 

hotspots by checking each grid’s anomaly value after large disasters, 

using mobile phone GPS data. To the best of our knowledge, this 

framework is the first to focus on estimating evacuation hotspots 

using GPS data. Our framework can function quicker and with less 

effort compared to conventional methods that involve on-foot 

searches for evacuation centers where people are gathering.  

To validate our method, we analyzed the population density 

anomaly after the Kumamoto earthquake (M7.3), and observed the 

sharp increase of high anomaly value grids in Kumamoto area 

caused by the evacuation activities of the victims. We then verified 

our estimation by looking at the features included in each grid, and 

also newspaper articles that mentioned the population transition in 

one of the evacuation hotspots.  

Through the validation case study of Kumamoto, we have 

confirmed the high accuracy of this framework’s estimation. Also, 

it is quicker and requires low workload compared to conventional 

on-foot survey methods. We have constructed the system, and is 

planned to be actually used in the next disaster.  
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