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ABSTRACT
Congestion is the condition of the road in the traffic networks
which is characterised as slow speed and long travel time.
The detection of unusual traffic patterns including conges-
tions is an significant research problem in the data mining
and knowledge discovery community. However, to the best
of our knowledge, the discovery of propagation, or causal in-
teractions among detected traffic congestions has not been
appropriately investigated before. In this research, we in-
troduce algorithms which construct causality trees based on
temporal and spatial information of identified congestions.
Frequent substructures of these causality trees reveal not
only recurring interactions among spatio-temporal conges-
tions, but potential bottlenecks or flaws in the design of
existing traffic networks. Our algorithms are validated by
experiments on a large real-time travel time data in an ur-
ban road network.

Keywords
Congestion propagation, spatio-temporal, causal, frequent
substructures, urban computing and planning

1. INTRODUCTION
Traffic congestion is considered as one of the most impor-

tant issues in many cities over the world. Congestions usu-
ally happen during peak hours or were caused by aperiodic
events including celebrations, parades, large-scale business
promotions, protests, traffic controls and incidents. When
congestions occurred in one area of the urban traffic net-
work, they are likely to affect the traffic flows of surround-
ing areas, especially to all the traffic leading to the congested
road. Hence, it is essential to develop an efficient methods
to discover frequent patterns of congestion propagations in
the traffic networks. Traffic management systems can po-
tentially benefit from this in preventing and clearing traffic
congestion in time or making appropriate proposal for future
development of the traffic networks.
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Recent research in traffic networks is aided by the increas-
ing availability of location-acquisition technologies including
GPS and WIFI with vast volumes of spatio-temporal data,
especially in the form of trajectories [4, 3, 2, 14, 13, 15,
27]. However, in order to successfully detect congestions and
causal interactions among them, the following challenges
need to be addressed: (i) Heterogeneous traffic patterns:
the traffic patterns on roads vary across days of a week and
hours of a day. Different road segments have often distinct
time-variant traffic patterns. It is difficult to use one model
to detect congestions across the road network at different
time periods. (ii) Data sparseness and distribution skewness:
even though a large number of sensors probing the traffic on
roads are available, there are many roads that have only a
small number of samples given a large size of road networks
in a major city. Moreover, a few road segments are traveled
by thousands of vehicles in a few hours, while some segments
may be only driven on a few times in a day. These two
properties together result in unique challenges in process-
ing traffic data. (iii) Causality among congested segments:
given the large number of congested segments that could
be identified, the challenge is how to detect the appearance,
growth, disappearance and transformation of congestions by
time (e.g., propagation of a congestion).

The method introduced in this paper provides solutions to
the above problems of detecting spatio-temporal congested
sites and causal relationships among them from traffic data
streams. The context of road networks was utilised in this
study, however, the algorithms proposed in this paper can
be generally applied to spatial temporal domains, such as
networking and climate change etc [9, 19]. More specifically,
the system comprises of three components:

1. Congestion tree construction: we propose a STCTree
algorithm based on both spatial and temporal prop-
erties of detected congestions (which are certain “road
segments”in a snapshot) to construct congestions trees,
which uncovers causal relationships among the con-
gested segments.

2. Frequent congestion subtree discovery: we propose a
frequent Subtree algorithm, inspired by association rule
mining, which generates the most frequent sub-structure
(subtree) from all discovered congestion trees. These
frequent subtrees reveal recurrent congestion trees in
the data and suggest inherent problems in existing
road networks.

3. Traffic congestion propagation modelling and causality



probability estimation using Dynamic Bayesian Net-
work.

2. RELATED WORK
Instead of investigating the causal interaction between

congested roads which are dynamic in term of time and
space, there have been a number of efforts on analyses of
flow characteristic at bottlenecks in the networks [22, 24,
10, 23, 8]. In general, the characteristic of real-time traf-
fic flow propagation is extremely complicated to be modeled
because it relates to human behaviour [18]. Thus, when con-
ducting research on the formation of congestions, the traffic
networks were usually simulated using the cell transmission
model and average journey velocity [6, 7]. Then, different
traffic demand conditions could be employed to investigate
the capability of links and identify the distribution of bot-
tlenecks in the network [18].

To the best of our knowledge, the only research that pro-
posed the problem of discovering casual relationships among
spatio-temporal congestions was introduced by Liu et al [17,
25, 5]. However, there are several problems in previous
methods:

1. The traffic networks were modelled by partitioning the
urban area into regions [17, 25] or junctions [5]. How-
ever, the real traffic flows are road-based not region-
based. For example, there are several routes from one
region to nearby region and each route can have differ-
ent traffic conditions or when a congestion happened
at a specific road, it is hard to be modelled by looking
at the whole region status.

2. The recursive implementation of the causal tree algo-
rithm is usually not applicable for large traffic network
given limited time and memory.

3. The completeness of the frequent subtree algorithm is
subject to the order of the frequent nodes during tree
construction process.

In the present work, we have designed several steps to ad-
dress the above limitations. More specifically, the improve-
ments and contributions we make in this paper are:

1. Model the traffic network based on the main roads
in the urban area where sites are sensor points and
segments are the road between two connected sensors.

2. Propose dynamic programming approach to build spatial-
temporal trees which shows the better solution in term
of time-efficiency and memory usage than recursive al-
gorithm.

3. Propose the correctness and completeness frequent sub-
trees algorithm which extends the Apriori approach in
mining frequent item sets.

4. Propose general method for congestion propagation
modelling and estimation using Dynamic Bayesian Net-
work.

A Bayesian network (BN) is a probabilistic graphical model
which comprises of a set of random variables and their con-
ditional dependencies via a directed acyclic graph [26]. A
dynamic BN (DBN) is a Bayesian network that models se-
quence of variables such as a time series or stochastic process

Figure 1: The processing pipeline for out model of detecting
spatio-temporal congestions and their inter-causalities.

[11]. The term “dynamic” means we are modelling a tempo-
ral system, not the network’s structure changes over time.
The simple instance of DBN is the Hidden Markov Model
[12].

3. OVERVIEW
In this section, we introduce our notations, definitions and

the main structure of the proposed model.

3.1 Definitions
The overall traffic map comprises of road segments where

travel times of the vehicles are recorded at every fixed time
interval.

Definition 1. Site: is the location (latitude and longitude)
of the sensor on the road.

Definition 2. Segment: A segment (seg) represents the
connected sites. A segment contains source site and destina-
tion site. The travel time will be recorded for each segment
of the network.

Definition 3. Link: A link (Lnk) is comprised of a pair of
segments (Segs, Segd) indicating a virtual spatial connection
between the source segment and the destination segment.
There exists a link from one Segs to another Segd if the
destination site of the Segs is the same as source site of the
Segd.

Definition 4. Snapshot: is a storage of the travel time from
all segments in the network at a given time. A snapshot is
identified by the time when all the sensors start to record
the travel time of the vehicles within the observed segments.

3.2 Processing Pipeline
The main processing pipeline of our model is illustrated

in Figure 1. The three main steps are processing traffic data
to build the graph of segments, detecting congestions and
finally discover causal relationships between the identified
congestions. The following section presents the details of
the component steps in the pipeline.

4. CAUSAL TREE DISCOVERY



4.1 Constructing the Graph of Segments
In our study, the map of traffic network and the set of

major roads are constant. Because the sites are located at
fixed locations, we first construct the static spatial network
from the data stream received. To reflect the nature flow
of the traffic stream, each segment of the network can be
one-way or two-way corresponding to the characteristic of
the contained road. In case the segment is two-way, each
direction is processed independently because the traffic con-
ditions can be very different between two directions of the
same road. Hence, the sparse adjacency matrix is employed
to represent the spatial traffic network.

4.2 Detecting Congestions
At the specific snapshot, the travel time between segments

are not comparable because each segment has different char-
acteristics such as length, number of lanes and speed limits.
To identify the congestions, the evaluation of real travel time
was done by different percentiles of travel time range from
each segment. The ith percentile is the value below which i
percent of the observations may be found. In other words,
a segment is considered as congested at a specific snapshot
if its average travel time is longer than ith (i range from 50
to 95) percentile of overall travel time distribution.

Figure 2: The average travel time within a segment in the
network over 4 weeks. The red line represents the 80th per-
centile.

Figure 2 shows the distribution of average travel time
within one segment over 4 weeks data. The 80th percentile
boundary is presented by the red line (52 seconds) which is
used as boundary for classification of segment’s congestion
status for each snapshots. This segment will be marked as
congested in 20 percent of the snapshots which have recorded
the average travel time longer than 52 seconds.

At the end of this step, the list of all congested segments
in the network for each snapshot are identified and they will
be used as inputs to construct the Congestion Trees.

4.3 Constructing Congestion Trees
This section presents an algorithm named STCTree that

finds congestions dependencies by looking at the relationship
of congestions from the earliest snapshot through the last.

Algorithm 1 STOTree: constructing all congestion trees

Input: STC: a set of spatial-temporal congestions of size t
x k where t is the number of snapshot, and k is the number
of congestions to examine in a snapshot.
Output: STOTrees: a list of roots of spatial-temporal trees.

1: STOTrees = empty
2: for Each snapshot Si(i ∈ (1, ..., t)) do
3: for Each congestion j(j ∈ (1, ..., k)) in Si do
4: STORooti,j = FindAllChildren(STCi,j , i);
5: STOTrees = STOTrees ∪ STORooti,j ;
6: end for
7: end for
8: Return STOTrees;

Subroutine: FindAllChildren(STCi,j , i)
9: if Si is the last snapshot then

10: Return STCi,j

11: end if
12: STCi,j .subnodes = empty
13: for Each congestion u(u ∈ (1, ..., k)) in STCi+1 do
14: if STOTrees contains STCi+1,u then
15: continue
16: end if
17: if STCi,u.des = STCi+1,j .src then
18: STCi,j .subnodes = STCi,j .subnodes ∪

FindAllChildren(STCi+1,u, i+ 1)
19: end if
20: end for
21: Return STCi,j ;

The main insight of STCTree is that an congestion STC1

is a parent of another congestion STC2 if STC1 occurred
before STC2 in time and they are spatially correlated.

Algorithm 1 is the previous implementation for construct-
ing congestion causal trees [17]. All possible descendants of
a node was retrieved by a recursive function which is called
on each congestion of the current snapshot to compare with
each congestion of next snapshot. The authors outlined that
the overall time complexity of the congestion tree construc-
tion process on each snapshot is upper bounded by O(n2),
where n is the number of congestions in a snapshot. Firstly,
this is just the upper bound for the number of comparisons
between destinations of current congestions and the sources
of next congestions while the complexity of recursively con-
structing all subtrees for next snapshot was not considered.
Secondly, a lot of repeated work can be observed. For exam-
ple, the construction of trees in snapshot 1 requires the trees
in all following snapshots to be computed. Then the same
processes are repeated for snapshot 2, 3, ...t. As a result,
the complexity of this algorithm can be exponential in the
worst case as demonstrated below.

Denote by Ci (i = 1, 2, ...t) the number of congestions and
by S(i) the number of comparisons required at snapshot i for
constructing the tree. In the worst case, suppose Ci ≥ n > 0
and most connections are made at every snapshot.

The last snapshot contains Ct congestions that need to be
checked with previous snapshot:

S(t) = Ct (1)

The recursive call (lines 13 to 19) is represented as:

S(i) = Ci × S(i+ 1), i = 1, 2, ...t− 1 (2)



Figure 3: An example for demonstrating the process of building a forest of two congestion trees. The subfigure on the left
illustrates top 3 congested segments in three consecutive snapshots, and the one on the right shows two congestion trees
obtained from these snapshots.

S(i) =

t∏
k=i

Ck (3)

Then the total comparisons for Algorithm 1 is:

S =

t−1∑
i=1

S(i) =

t−1∑
i=1

t∏
k=i

Ck (4)

Because there are at least n congestions at every snapshot:

S >

t−1∑
i=1

ni =
nt − 1

n− 1
− 1. (5)

Consequently, the worst case lower bound complexity of the
recursive algorithm is exponential time Ω(nt−1). In this pa-
per, we proposed an dynamic programming implementation
of the above algorithm which is always executed in poly-
nomial time. Furthermore, the number of comparisons re-
quired to construct all the tree is minimal and not depend
on the number of connections or size of congestion trees. In
other words, the complexity of the present algorithm is only
depended on the number of detected congestions from each
snapshot.

Algorithm 2 demonstrates the process of constructing con-
gestion trees from discovered congested segments. As seen
from the algorithm (line 3), the trees are constructed bottom-
up starting from last snapshot St to previous snapshots.
Hence, at a specific snapshot Si, all the potential subtrees
in the following snapshot Si+1 are generated. In case we
just need to compute the trees for a specific snapshot Si,
the space can be optimized by storing the previously con-
sidered snapshot Si+1 only because that is all we need to
complete the snapshot Si in the time frame. From now, the
term previous snapshot will refer to the previously consid-
ered snapshot from the algorithm.

If there is no congested segments detected at a snapshot,
the forest is set to empty (lines 5-9). When there is no tree
in the previous snapshot, the forest contains a list of sin-
gle root trees (roots are congestions in the current snapshot
(lines 10-14)). These single node trees will then be removed
if there is no later connections to them (line 32). Each tree
is represented by a list of connected segments where first el-
ement is the root (latest segment that has been connected to

the tree). Because the comparisons are only made between
the roots and congestions, this simple data structure allows
easy retrieval of the root from the tree (lines 17-23). Each
subtree is built only once and will be removed later when
there is at least one link to the congestions in the preced-
ing snapshot (line 21 and 29). Then for each snapshot, the
constructed forest is combined by grouping of all trees that
share the same root into single trees (line 27).

S =

t−1∑
i=1

S(i) =

t−1∑
i=1

Ci × Ci+1 (6)

Then the average complexity is:

S =

t−1∑
i=1

n× n = t× n2 = O(tn2) (7)

Now we give an example by using Figure 3 to demonstrate
the process of Algorithm 2 for building congestion trees. Fig-
ure 3 uses top 3 congestions in three consecutive snapshots,
so the input parameters in Algorithm 2 in this case is t =
3. The algorithm starts from snapshot 3 (line 3) with forest
is a list of single root trees, e.g. C → J, C → M, and K →
H (lines 10-14). Then for each of the three congestions in
snapshot 2 (line 17), i.e., H → J, G → B, and E → B, the
algorithm searches in snapshot 3 and checks whether there
is any root that can be a child of these congestions (lines 19
to 24). This allows the algorithm to find segment K → H
as children of H → J. Then similarly it identifies links E →
B and G → B in time frame 2 as a child of B → A in time
frame 1. As can be seen from snapshot 1, there are two trees
with the same root congestion, e.g E → B → A and G → B
→ A.

After combining trees with same root segment and remov-
ing single segment trees, two congestion trees are built up as
shown in the right side of Figure 3. In this way, Algorithm
2 scans through all snapshots of traffic data, and builds a
forest of various congestion trees. The result causal trees
are interpreted as:

• At Snapshot 1, there was a congestion on the route
from site A to site B. Until snapshot 2, this congestion



Algorithm 2 STCTree: constructing all congestion trees

Input: STC: a set of spatial-temporal congestions of size t
where t is the number of snapshots, each snapshot contains
a list of congestions to be examined.
Output: STCTrees: a list of forests of size t where t is the
number of snapshots and each forest contains a list of spatial
temporal trees.

1: STCTrees = empty
2: previous snapshot = empty
3: for i = t downto 1 do
4: congestions = STC[i]
5: if congestions == empty then
6: STCTrees[i] = empty
7: previous snapshot = empty
8: continue
9: end if

10: if previous snapshot == empty then
11: STCTrees[i] == congestions
12: previous snapshot = congestions
13: continue
14: end if
15: new snapshot = empty
16: used trees = empty
17: for each congestion in congestions do
18: new tree = [congestion]
19: for Each tree in previous snapshot do
20: if congestion connectedto tree[1] then
21: used trees.append(tree)
22: new tree.append(tree)
23: end if
24: end for
25: new snapshot.append(new tree)
26: end for
27: new snapshot = combine(new snapshot)
28: STCTrees[i] = new snapshot
29: STCTrees[i+ 1] = previous snapshot− used trees
30: previous snapshot = new snapshot
31: end for
32: STCTrees = STCTrees− singlenodetrees
33: Return STCTrees

was clear however the congestions were transferred to
two neighbour segments where the traffic flows to the
previous congested segment, e.g from site E to site B
and from site G to site B.

• Similarly, the travel time on segment H to J was recorded
as very slow at Snapshot 2 then the slow pattern was
moved to its preceding segment K to H.

4.4 Causal Congestion Detection
Denote by T the forest containing all congestion trees.

The most significant and recurring causal relationships cor-
respond to the most frequent subtrees of T. The mechanism
of discovering frequent subtrees from all congestion trees is
inspired by the process of mining frequent item sets, except
that we design our own strategy to generate frequent subtree
candidates.

In the Frequent Subtree algorithm introduced by [17], they
first find all single nodes whose supports exceed ε. Then the
candidate subtrees are building up by checking whether each
not in the set can be inserted in to the current trees (denoted

Algorithm 3 AprioriSubtree: discovering frequent subtrees
from STCongestion trees

Input: STCTrees: a list of spatial-temporal trees; ε:a sup-
port threshold for frequent substructure selection.
Output: freqentSubtrees: a list of roots of frequent spatial-
temporal subtrees.

1: frequentSubtrees = empty
2: frequentsets = Apriori(STCTrees, ε)
3: for Each frequentset in frequentsets do
4: subtrees = construct subtrees(frequentset)
5: frequentSubtrees = frequentSubtrees ∪ subtrees
6: end for
7: Return frequentSubtrees;

Subroutine: construct subtrees(frequentset)
8: subtrees = [set(node) for node in frequentset]
9: while length(subtrees) > 1 do

10: for tree Ti in subtrees do
11: for tree Tj in subtrees[i+1:end] do
12: if connected(Ti, Tj) then
13: subtrees = subtrees - Ti - Tj + (Ti ∪ Tj)
14: continue WHILE
15: end if
16: end for
17: end for
18: break
19: end while
20: subtrees = subtrees - singlenodetrees
21: return subtrees

by the root). To be completeness, this implementation re-
quires that the parent nodes should be considered before the
insertion of their children. However, the tree order is not re-
served in the frequent single nodes list. An example of when
this algorithm fails to generate the correct subtree is given
in section 5.4.

As described in Section 4.3, each tree is presented by a
list of connected segments. These lists can be considered as
item sets where the Apriori algorithm is applied to identify
the frequent sets [1], [16]. However, there is no constraint
on original Apriori algorithm to guarantee the elements in
the frequent set are all connected to form the subtree. In
this case, each frequent set can comprise of several subtrees.
Hence, we propose an post-processing step to Apriori algo-
rithm to deal with the problem of finding frequent subtrees
rather than frequent item sets.

The process of discovering frequent substructures from
constructed congestion trees is shown in Algorithm 3. Given
a predefined support threshold ε, the algorithm first finds
all item sets whose supports exceed ε (line 2), then this set
of segments is used to reconstruct the component subtrees
(lines 4). For each pair of trees in the current list, the al-
gorithm checks whether they are “connected” to each other
(line 12). The two trees are “connected” if there exists a link
between a segment of first tree and a segment of second tree
or vice versa. When a combination is made, the length of
tree list is reduced by 1 (line 13) and the process is restarted
immediately (line 14). The construct subtrees subroutine
combines (union) the connected segments together until no
further combination can be made or there is only one tree
left (line 8-21). As a result, this routine outputs a list of
subsets (subtrees) that satisfies the two conditions below:



• There exists a route between any two segments in the
same subset.

• There is no link between any two segments in different
subsets.

Because each subtree belongs to at least one item set
whose support has already exceed ε, the subtree’s support
rate definitely exceeds the given support threshold (correct-
ness). Furthermore, each subtree can be represented by one
item set, the frequent items sets should cover all frequent
subtrees that satisfy the support threshold ε. As a result,
the algorithm guarantees to generate all possible frequent
subtrees given ε (completeness).

5. MODELLING CONGESTION PROPAGA-
TION

In this section, the approach of modelling the congestion
propagation network using DBN is presented. We then pro-
posed a practical method to calculate the distribution of a
given congestion propagation structure.

5.1 A Dynamic Bayesian Network Approach
DBN is a popular approach for modelling spatial-temporal

data [11]. A DBN is a BN which associates variables to each
other over consecutive time frames (snapshot). This network
is usually referred as a 2-Time slice BN (2TBN) because it
states that at any given time T, the value of a variable can
be computed from the internal regressors and the immediate
prior value (time T-1). The idea of DBN is closely similar to
the real-world phenomenon of traffic congestion propagation
where the condition of a segment at a specific snapshot S can
be determined by the previous conditions of its connecting
segments. However, to the best of our knowledge, there
is no research on modelling traffic congestion propagation
using DBN.

To construct the DBN congestion network, the segments
are represented in term of a set of Nh random variables,

Q
(i)
t , i ∈ {1, ..., Nh}, each of which can take on 2 possible

values, Q
(i)
t ∈ {0, 1} where 1 means segment i is congested

at time t. The observation can be represented in terms of
N0 random variables [20].

In a DBN, the transition (denoted as B→) and observa-
tion models are then defined as a product of the conditional
probability distribution (CPD) in the 2TBN:

P (Zt|Zt−1) =

N∏
i=1

P (Z
(i)
t |Pa(Z

(i)
t )) (8)

where Z
(i)
t is the ith node in snapshot t and Pa(Z

(i)
t ) are

the parents of Z
(i)
t , which may be in the current or previ-

ous snapshot. The unconditional initial state distribution,
P (Z1:N

1 ) can be presented using a standard BN, namely B1.
Together, B1 and B→ define the DBN.

Figure 5 illustrates the process of constructing the DBN
for analysing the congestion propagation for a traffic network
with three connected segments. Suppose we have a simple
traffic network which comprises of three segments: EB and
GB are connected to BA. As EB and GB both lead to BA,
when BA is congested, it becomes the potential cause for
congestions at EB and GB in the next time frame. Conse-
quently, the causal links from BA to EB and GB are trans-
ferred over the two consecutive time frames. Furthermore,

the status of each segment usually depends on its previous
condition so the link between the same segment is added
over the time. In this example, Pa(BEt−1) includes three
segments, e.g. BAt−2, BEt−2 and BAt−1.

Figure 5: Modelling congestion propagation of a traffic net-
work by DBN.

After modelling the congestion traffic network, all the gen-
eral inference and learning can be performed based on DBN.
The following section describes the use of DBN to calculate
the distribution of congestion propagation.

5.2 Parameter Learning for Completed Data
Set

The above modelling method describes the construction
of the congestion propagation DBN given the static traffic
network. This section focuses on the problem of estimating
maximum likelihood (ML) parameters for a model given the
structure and completed data.

Assume a data set of independent and identically dis-
tributed observed segments D = {Z(1), ..., Z(N)}, then the
likelihood of the data set is:

P (D|θ,M) =

N∏
i=1

P (Z(i)|θ,M) (9)

where M is implicit conditioning on the known structure
of the model. For the representation convenience, M will be
dropped from the following equations. The ML parameters
are obtained by maximizing the log likelihood:

`(θ) =

N∑
i=1

logP (Z(i)|θ). (10)

In case the observation includes all the segments in the
network, then each term in the log likelihood further factors
as:

logP (Z(i)|θ) = log
∏
j

P (Z
(i)
t |Pa(Z

(i)
t ), θt)

=

T∑
t=1

logP (Z
(i)
t |Pa(Z

(i)
t ), θt)

(11)

where θt is the parameter that define the conditional prob-
ability of Zt given its parents. Hence, the likelihood is de-
composed into local terms involving each segment and its
parents, simplifying the ML estimation problem [11]. For
instance, θt is the conditional probability table for Zt given



(a) The frequent subtree covering the “Olympic Park”. (b) The frequent subtree covering the “Etihad Stadium”.

Figure 4: Top two frequent subtrees (frequency of 10 over 4 weeks) and areas they cover (“Olympic Park” and “Etihad
Stadium”). Each subtree is visualised on the map with additional information of where and when the congestion is transferred
to its surrounding area.

its parents, then the ML estimate of θt is simply a nor-
malised table containing counts of each setting of Zt given
each setting of its parents in the data set.

5.3 Distribution Estimation for Congestion Trees
This section proposes the method for calculating the prob-

ability for the causal trees. After constructing the causal
frequent trees, the joint distribution for a known-structure
tree which includes T consecutive snapshots (slices) can be
obtained by “unrolling” the network until we have T slices,
and then multiplying together all of the CPDs:

P (Z
(1:N)
1:T ) =

N∏
i=1

PB1(Z
(i)
1 |Pa(Z

(i)
t )×

T∏
t=2

N∏
i=1

PB→(Z
(i)
t |Pa(Z

(i)
t ))

(12)

6. EXPERIMENTS AND ANALYSIS
In this section we report on the experiments carried out

on the road network of a major Australian city. Our exper-
iments are conducted on a 64 bit server with 3.4 GHz CPU
and 16 GB memory. Although road traffic data was utilised
in this experiments, the present methods and algorithms can
be easily adapted into other domains such as finding bottle
necks in the internet traffic data and water pipe data.

6.1 Data
The algorithms are tested based on a real travel time

records generated by the road sensors in a period of 4 weeks
(from 17/06/2013 to 14/07/2013). There are 281 sites and
586 segments in the examined network. The average sam-
pling interval is 5 minutes and the total number of recorded
snapshots over 4 weeks is 8064.

The current experimental data just covers the main roads
of the Victoria traffic network where the sensors are located.
However, with the quadratic running time for trees construc-
tion on each snapshot, our proposed method is applicable to
more detailed and complicated networks.

6.2 Experiment on Congestion Trees
In this experiment, the value of percentile used to iden-

tify the congested segments was bounded between 50% and
90%, then its effects on constructing congestion trees were
evaluated.

The minimum size of a tree (i.e. total number of seg-
ments) was set to 2, and hence singles segments (trees of
size 1) were ignored in counting final congestion trees. The
results from Figure 6 shows that although the maximum
numbers of trees increase substantially when the percentile
decreases, the maximum size of all trees has a smoothly
increasing trend from 8 to 15 segments. With lowest per-
centile threshold of 50% for detecting congestions, the max-
imum number of trees in one snapshot is 66 and the largest
tree contains 15 segments. Hence, the maximum number of
consecutive snapshots involved is also 15 and the maximum
duration for the congestion propagation is 75 minutes (15
snapshots x 5 mins). This observation validates our earlier
belief that congestions caused by one single accident nor-
mally do not last very long, and that the maximum size of
trees is usually small.

In Section 4.3, the time complexity of the congestion tree
construction algorithm STCTree for each snapshot was proved
to be upper bounded by n2 where n is the maximum num-
ber of congestions in a single snapshot. Because n increases
almost linearly when percentile is reduced, the average time
used for building trees increases almost quadratically with
n. Consequently, STCTree can potentially be used in an
online setting to detect congestions causalities on the fly.



Figure 6: Comparison of STOTree and STCTree algorithms in the number of constructed trees and running time.

6.3 Experiment on Frequent SubTrees
The route indicated by the most frequent (i.e. with high-

est support) subtrees are the ones that have strategic de-
sign drawbacks from the perspective of urban road network
planning. For example, the top two frequent subtrees (using
80th percentile) with at least 5 connected segments are both
located in the CBD as shown in Figure 4. They are both
occurred 10 times during weekday’s rush hours in the period
of 4 weeks.

Given the congestion was first happened at the root seg-
ment BA, we then modelled the structure of the congested
tree using DBN as describe in Section 3 and estimated the
joint distribution using Equation 10. The propagation prob-
ability of the first frequent tree is 2.24% and the second one
is 0.77%. These probabilities are expected to be higher dur-
ing the rush hours. The same experiment was run with
the samples limited to afternoon rush hours between 4pm
and 6pm. The results increased to 4.26% and 3.42% respec-
tively. These probabilities seem small as compared to a pair
of propagation but are relatively high with a 5-segment tree
formation. It is really difficult for the propagation pattern
to follow the exact order within fixed period of time. These
subtrees indicate that both of the two areas were more fre-
quently overloaded with vehicles and there may have poten-
tial design flaws in the current road network spanning.

7. DISCUSSIONS
In this paper, the proposed method for mining the con-

gestion propagation patterns is a combination of STC and
DBN. Each method individually has its own advantages and
limitations which are discussed in this section.

The proposed dynamic programming implementation of
STC algorithm has a running time of O(n2) where n is
the maximum number of segments within a single snapshot.
This makes STC efficient enough for discovering frequent
sub-structures within large spatial-temporal traffic networks.

The frequent congestion subtrees algorithm is mainly based
on the support rate which is calculated by divide the sub-
tree’s frequency to the total number of causal trees. The
subtree is selected if its support rate exceeds the given sup-
port threshold ε. Hence, it requires the construction of all
possible causal tree within the whole network to estimate
the subtree’s support rate. The support rate cannot reflect
the probability for the forming of a tree given the congestion

at the root segment.
Modelling the congestion propagation using DBN is a gen-

eral method to describe the “nature” of the congestion prop-
agation. The model can be used for inference and joint dis-
tribution estimation with both completed and hidden data.
In our method, DBN model is used to support the STC by
providing the congestion propagation distribution of a fre-
quent subtree. For any given sub-structure with congestion
at the root segment, the DBN’s joint distribution estima-
tion is solely depended on the observations of the involved
segments rather than requiring data from the whole large
network.

Discovering the most frequent or most probable sub-structures
in DBN may require learning the whole network. Because
of several NP-hardness results on learning BN, many algo-
rithms for learning DBN are approximate, that employ ei-
ther local search such as greedy hill-climbing, or a meta
optimization framework such as genetic algorithm or simu-
lated annealing [28, 21]. These algorithms are not efficiently
in term of running time given a large network.

Our proposed method can utilise the advantages and over-
come the disadvantages of individual approach by:

• Use the STC algorithm to discover the frequent causal
trees which is applicable for the large network.

• Use DBN to calculate the distribution of congestion
propagation from the small sub-structures which were
discovered by STC.

8. CONCLUSION
In this paper, the problem of detecting spatio-temporal

congestions and their causal interactions from traffic data
streams has been studied. We have proposed STCTree, the
algorithm for discovering spatio-temporal congestions and
causal relationships between them. Furthermore, the fre-
quent subtree algorithm can be used to reveal recurrent in
the road network. Based on the STCTree and frequent sub-
tree algorithm we were able to identify real and valid in-
stances of congestions propagations in network traffic data.
This suggests that our approach has the potential of con-
tributing to a new data driven approach towards road traffic
analysis.
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