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ABSTRACT
In this work we propose a probabilistic disaggregation frame-
work which can determine the energy consumption of indi-
vidual electrical appliances from aggregate power readings.
Our proposed framework uses probabilistic soft logic (PSL),
to define a hinge-loss Markov random field (HL-MRF). Our
method is novel in that it can integrate a diverse range of
features, is highly scalable to any number of appliances, and
makes less assumptions than existing methods. As the resi-
dential sector is responsible for over a third of all electricity
demand, and delivering appliance level energy consumption
information to consumers has been demonstrated to reduce
electricity consumption, our framework has the potential to
make a significant impact on energy savings.
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1. INTRODUCTION
Reducing household energy consumption in the United

States is critical not only for mitigating the negative health
and environmental effects of air pollution, but for increasing
energy security, resiliency, and stability. Households con-
sume over one third of all electricity in the United States
[1], and opportunities for decreasing this share abound [6].
However, these opportunities are impeded by the lack of in-
formation available to residential consumers.

Consumers have been found to be uninformed as to which
appliances consume the most energy [7, 2], and which actions
have the greatest savings potential. Furthermore, there is
a growing body of evidence [4, 18] that detailed feedback
about energy use can reduce consumption. Currently, this
reduction is hampered by the fact that residents receive only
aggregate energy information. Consider the case of receiving
a shopping bill with a single figure, and being asked to spend
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less on the next shopping trip, from this it would be difficult
to discern how to adjust purchasing habits. Itemized energy
bills would afford more intimate knowledge of which appli-
ances are responsible for how much energy, thus empowering
consumers to take action towards reducing energy usage.

Frequent [19, 4] and specific information can aid con-
sumers with making informed decisions about electricity us-
age. For example, greater savings are achieved when home-
owners are told how much energy is used by each appliance
[5]. Traditional electricity meters are limited by their in-
ability to transmit power readings to remote data-storage
systems, and therefore are inadequate for capturing data at
the level of detail that consumers need.

Advanced Metering Infrastructure (AMI), such as smart
meters, have the ability to transmit power readings wire-
lessly. Smart meters thus offer a unique opportunity to
gather rich amounts of real-time data from which energy
consumption patterns can be learned and ultimately utilized
to offer actionable insight to consumers. While smart me-
ters have been installed in homes across the United States,
their potential in reducing consumption is far from realized.
A critical challenge is with extracting appliance level infor-
mation from aggregate power readings, a process referred to
interchangeably as energy disaggregation, and non-intrusive
load monitoring (NILM).

Energy disaggregation is the process of determining the
energy consumption of individual appliances, given only an
aggregated energy reading. With a successful disaggregation
algorithm one would be able to give consumers an itemized
energy bill, displaying how much energy is consumed by each
appliance, rather than the aggregate monthly reading that
they receive now. While there are existing approaches to
this problem, no sound and complete solution is available.

Here we propose a probabilistic disaggregation framework.
Our framework provides a flexible method for determining
the proportion of total energy consumed by individual ap-
pliances. This framework can integrate data-driven learning
with diverse forms of knowledge, from the expertise of do-
main specialists to information supplied by users. We an-
alyze the benefit of two groups of features: temporal and
appliance features. Temporal features can be mined di-
rectly from data, or given by a user, while appliance fea-
tures require some knowledge about each of the appliances
being disaggregated, such as their average power consump-
tion. Preliminary results show that both types of features
can be successfully applied to this task, however the charac-
teristics of a particular home can influence their respective
performances.



2. RELATED WORK
Hart’s seminal nonintrusive load monitoring paper [8] in-

troduced the problem of energy disaggregation. In NILM,
the goal is to determine the consumption of individual appli-
ances, without installing intrusive equipment, such as me-
ters for each device. Broadly, there are two classes of so-
lutions, those that require additional hardware and those
that do not. As we are striving for a software solution, here
we review only those approaches which do not require any
additional equipment installation and are thus truly non-
intrusive.

Many of the proposed approaches make use of proba-
bilistic graphical models. Factorial hidden Markov models
(FHMM)s and variants thereof, have been a popular choice
for disaggregation algorithms. In this setting each appliance
is represented with a single HMM, where the discrete hid-
den state variables correspond to the state of the appliance,
and the observed continuous random variables correspond
to the power readings. FHMMs allow multiple HMMs to
be joined through a single observed variable in such a way
that approximate inference is tractable. We highlight sev-
eral variants of this approach below.

Kolter and Jaakola, employed an additive FHMM for dis-
aggregation, where each observed output is an additive func-
tion of the states of the hidden variables [11]. Their method
asserts the strong assumption that only one appliance changes
state at a time, which allows for an efficient convex formu-
lation. Parson [15] et al., employ this additive FHMM, and
take positive steps away from requiring detailed information
about the parameters for the on-duration distribution. They
start with general prior models of appliances, and tune these
models to fit each home.

Perhaps the most exhaustive exploration and adaption of
FHMMs was completed by Kim et al., who used a condi-
tional factorial hidden semi-Markov model (CFHSMM) in
disaggregation. Their CFHSMM is able to remove several
assumptions required by other models, such as: the assump-
tion that on duration distributions are geometric. Addition-
ally, Kim et al. [10] incorporate non-traditional features such
as time of day. Johnson and Willsky[9], introduce a hierar-
chical Dirichlet process hidden semi-Markov model, which
also relaxes the restriction that the state durations be en-
coded with geometric distributions. Their model differs from
others in that it can have multi-state hidden variables while
other models assume that these variables are binary. Ad-
ditionally, Johnson et al. [9] found general parameter val-
ues for the appliance on-state distributions which applied to
a set of homes, rather than learning these values for each
home.

Finally, Makonin et al. [14], uses a super-state HMM,
where the hidden variable can take on any of 2C states,
where any state is a combination of the on/off states of
each appliance. A unique advantage of their approach is
that it can perform exact inference, unlike other approaches
for which inference is approximate. Unlike some of these ap-
proaches our model does not assume that only one appliance
changes state at a time. Additionally the model is agnostic
to the distributions of the on-durations. We can incorporate
multiple states, and additional features easily.

The largest shortcoming with previous approaches, and
which we address with our probabilistic framework, is the
ability to be flexible to real-world demands and constraints.
For example, it is unclear the extent to which available train-

ing data can be applied to new homes and more broadly,
what kind of data guarantees are necessary to ensure qual-
ity disaggregation results. Our framework is flexible in that
it can assimilate and learn from both appliance-level power
readings and data attributes, and human supplied knowl-
edge.

3. DISAGGREGATING APPLIANCES
A disaggregation algorithm takes total power consump-

tion over a given time period as input and returns the con-
sumption of individual appliances over that time period.
Suppose we have a set of appliances, A1 . . . AM . Let Ai,t

be the consumption of the i-th appliance at time t. We are
given a sequence of aggregate power readings

S = {S1, ..., SN},

where each reading is the sum of the power consumed by all
appliances at that time, St =

∑M
i=1Ai,t. For any appliance,

we would like to determine the proportion of total power
consumed by the i-th appliance,

Pi =

∑N
t=1Ai,t∑N
t=1 St

.

Furthermore, certain constraints must be met for a disag-
gregation algorithm to be useful to consumers [20]. These
constraints are designed to evaluate an algorithm not just
on its performance, but on its applicability to home energy
systems. A disaggregation algorithm with perfect accuracy
is not going to be useful for consumers if it requires that sub-
meters be installed in homes, or if it can only return results
once a month, or if it is only able to disaggregate refrigera-
tors. Therefore, deployability is a key metric in evaluating
disaggregation algorithms.

Additionally, all current disaggregation algorithms allow
for the assumption of prior knowledge of the power draw
of the appliances. For each appliance which is being disag-
gregated, one must know how many possible states the it
has, and approximately how much power the appliance con-
sumes in each of its states. For example, a fan may have
three states: low, medium, and high, while a television can
either be on or off. However, the general statistical model
which describes an appliance, such as the distribution of its
power draw in an on state, is not necessarily given as input
to a disaggregation algorithm.

4. DISAGGREGATION FRAMEWORK
We propose a flexible framework which can disaggregate

individual appliances from aggregate power readings. The
framework is designed to adapt to multiple categories of in-
formation. Here, we show how to incorporate knowledge on
appliance behavior, and temporal patterns extracted from
data.

Our framework integrates diverse sources of information
into a joint probability distribution over the energy usage
for all M appliances. This distribution is a graphical model,
whose potential functions are defined using weighted logical
rules. The weights associated with these rules can be learned
from data. To predict the probability that the i-th appliance
is on at time t, given the evidence, we use hinge-loss Markov
random fields (HL-MRFs)[3].



4.1 Hinge-loss Markov Random Fields
Hinge-loss Markov random fields are a general class of con-

ditional, continuous probabilistic models, parametrized with
a set of weighted hinge-loss functions. Hinge-loss functions
can model a rich diversity of relationships, and critically, ad-
mit highly scalable inference. For example logical rules can
be expressed with hinge-loss functions through  Lukasiewicz
relaxations, a property which we will exploit in the energy
setting. Formally, a HL-MRF describes the following condi-
tional probability density function over continuous random
variables, X,Y ∈ [0, 1]:

P (Y|X) ∝ exp

(
−

m∑
j=1

wjφj(Y,X)

)
Where φj is a hinge-loss potential,

φj = max{lj(Y,X), 0}p

p ∈ {1, 2}, lj is a linear function of X and Y and wj is
the positive weight associated with φj .

4.1.1 Probabilistic Soft Logic
To generate a HL-MRF for our probabilistic disaggrega-

tion model we use probabilistic soft logic (PSL). PSL is a
templating language for HL-MRFs which has been success-
fully deployed in a diverse range of settings, from recom-
mender systems [13] to stance prediction in online forums
[17]. PSL allows us to write weighted rules which can ex-
press the various types of information one might have in the
energy analytics setting. When a set of weighted rules and
observed data is input to a PSL program, a specific HL-MRF
is defined.

A rule in PSL consists of terms, predicates, and weights.
A term is either a variable or a constant, and a predicate
is a relation between terms. To define a predicate one must
specify its name, and the number of arguments it takes.
Weights are positive values associated with each rule. An
example rule is,

λ : Friends(A,B) ∧ Likes(A)→ Likes(B)

where λ is a weight, Friends, and Likes are predicates, and
A,B are variables. By substituting constants, a and b, for
the variables A and B respectively, one obtains three ground
atoms: Friends(a, b), Likes(a), and Likes(b), such that each
ground atom takes a value in [0, 1]. We would like to infer
the value of our target unobserved variable, the probability
that appliance A is on at time T .

With  Lukasiewicz logic, the truth values of logical state-
ments can be relaxed from Boolean values, to the inter-
val [0, 1]. This function can then be input to the hinge-
loss potential functions of a HL-MRF. Suppose that we let
the atoms Friends(a, b), Likes(a), and Likes(b) correspond
to three random variables: f, l1, and l2 respectively. We
will use the  Lukasiewicz rule, which given two continuous
truth values q, r ∈ [0, 1] defines a conjunction of q and r
as q ∧ r = max{q + r − 1, 0}. Finally, using the formula
q → r = q ∧ ¬r, we arrive at the weighted hinge-loss poten-
tial corresponding to the above rule,

λ ·max{f + l1 − l2 − 1, 0}.

The HL-MRF returned by PSL can be used to infer the
maximum a posteriori (MAP) assignments the unobserved
variables, such as the joint probability that a collection of
appliances is on. Finally, PSL enables weights to be learned
from data. This is an especially desirable feature, when
prior knowledge can be used to set only approximate relative
weights, but further information is required to discern the
true importance of proposed rules.

4.2 Probabilistic Disaggregation Model
Our goal is to the find the probability, that the ith ap-

pliance, Ai, is on at time t. We introduce the predicate
IsOn(T,Ai), whose continuous truth values we infer for each
appliance i from [1,M ], and each time t from [1, N ]. We
utilize the information that is both available in the power
readings, and which users may be conveniently able to sup-
ply. To do so we create temporal rules, appliance rules, and
inter-appliance rules. Temporal rules describe the probabil-
ity that an appliance is on given the time of day and day
of the week. Appliance rules utilize the information which
is available purely from the supplied appliance signatures.
Inter-appliance rules describe the relationships between ap-
pliances. An exciting feature of our approach is that addi-
tional rules can be added as they become available, for exam-
ple temperature can be used to predict the use of heating
and cooling appliances, and rules to describe temperature
can easily be integrated into the model.

4.2.1 Temporal Rules
Whether or not some appliances are on depends on the

time of day, and day of the week. For example, it is more
likely that a cooking appliance, such as a microwave will be
used in the evening, than in the middle of the night. Thus we
introduce two predicates: Hour(T,H) and DayOfWeek(T,D),
where H ∈ {0, 23} and D ∈ {Sunday...Monday}. We then
use these predicates in the following rule,

wt : DayOfWeek(T,D) ∧Hour(T,H)→ IsOn(T,Ai)

This template is used to generate a set of rules for each
appliance, one for each day of the week and hour pair. Thus
we may arrive at different rules as:

10 : DayOfWeek(T, Sunday) ∧Hour(T, 09 : 00)→ IsOn(T,Microwave)

.01 : DayOfWeek(T, Sunday) ∧Hour(T, 04 : 00)→ IsOn(T,Microwave)

This full set of rules allows us to model a rich variety of
temporal dependencies. Additionally we create a set of rules
to capture the persistence of an appliance being on. To do
so we use a predicate Precedes(Ti, Tj), which is true if index
value i, directly precedes index value j, or i = j − 1. The
following rules allow us to express the probability that an
appliance will be on at time t, if it is on at time t− 1.

wt : IsOn(S,X) ∧ Precedes(S, T )→ IsOn(T,Ai)

wt : IsOn(S,X) ∧ Precedes(S, T )→ ¬IsOn(T,Ai)

4.2.2 Appliance Rules
These rules utilize the information which can be extracted

from prior knowledge of the appliance signatures. Here
we introduce the additional predicates: TotalEnergy(T,B),



Duration(T,D), and PotentiallyOn(T,X), and SwitchedOn(T,X).
These predicates are explained in detail below, beginning
with TotalEnergy(T,B). These rules are designed to pre-
dict if an appliance is contributing to an aggregate reading
over a time period, given the persistence and magnitude of
the total energy over that same period.

We partition the energy readings into buckets, such that
these buckets cover the entire range of possible energy read-
ing values. TotalEnergy(T,B) takes a time, and a bucket id
b, where b corresponds to an interval of possible energy val-
ues. We can now view the input data as a sequence of bucket
ids. To find the a suitable number of intervals we clustered
each home into k clusters from 1 to 16(the total number of
possible combinations of appliances), using k-means cluster-
ing implemented with the python package scikit learn[16].
We chose the best k by first assigning each point to a clus-
ter, and then assigning that point a power value by drawing
a value from a normal distribution fit to that cluster. The
k which generates the least mean squared error is then se-
lected. The best k fluctuated between 6 and 8 for each home,
so we chose 7 as the optimal partition size. To demarcate
the intervals we used the appliance signatures. The low-
est partition corresponds to no target appliances being on.
The highest partition corresponds to a situation where all
appliances could be on.

Ideally, each bucket would be perfectly mapped to some
collection of appliances being on, however that may not be
the case, as appliances have similar distributions and no per-
fect partition exists. For example, we may have a bucket b
which corresponds to the interval 1300 ≤ energy ≤ 2000,
which could be mapped to either, a microwave and a dish-
washer, or a microwave and a lighting appliance. To fur-
ther differentiate appliances we would like to use informa-
tion about the amount of time an appliance is used for. If
we know that the length of the sequence of consecutive b’s
spans an interval of 3 hours, this may lead us to believe
that the combination of appliances is the microwave and
the lights, rather than the microwave and the dish washer,
as dishwashers normally run for one hour or less. To cap-
ture this duration information we introduce the predicate,
Duration(T,D), that takes a time t, and a duration id d,
which corresponds to the duration of a given total energy
bucket, b. We choose four types of intervals, in order to
separate different kinds of appliances. The shortest interval
has length less than 10 minutes, for appliances such as the
microwave, and the longest interval has a length of several
days. PotentiallyOn(T,X), predicts an appliance Ai being
on at time t given the current total energy, St using the
following rule:

PotentiallyOn(t, Ai) =

{
0, if µAi + σAi > St

1, otherwise

where µAi is the mean of the distribution of the on-state
power draw of the i-th appliance, and σAi , is the standard
deviation of that distribution. This allows us to disqual-
ify appliances if their consumption would exceed the total
consumption at time t.

SwitchedOn(T,X) is designed to catch the event of a cer-
tain appliance turning on. Whenever the difference in two
consecutive total energy readings is within one standard de-
viation of the average power of an appliance, SwitchedOn(T,X)
of that appliance is set to true. Denoting ∆St = St − St−1,

we have

SwitchedOn(t, Ai) =

{
1, if |∆St − µAi | ≤ σAi

0, otherwise.

5. EXPERIMENTS
We evaluate our framework on a publicly available Ref-

erence Energy Disaggregation Dataset (REDD) [12]. The
goal is to determine Pi, the proportion of energy consumed
by the i-th appliance, for each i. Additionally we evaluate
the ability of the model to correctly classify the on and off
states of each appliance.

5.1 Data
To preprocess the dataset we used an open source script

written by Makonin et al. for this dataset [14]. We select
four homes, homes 1, 2, 3, and 6. Each home has roughly
two weeks of data. For each home we split the data into
three parts: training, validation and test. Parameter tuning
is done using only the validation set, withholding the test
set until the final evaluation.

For disaggregation we choose four of the five appliances
used by both Makonin [14], and Johnson [9]: microwave,
dish washer, fridge, and lights. We refrain from using the
furnace as it is only included in one home, and for a short
length of time. The power consumption of these appliances
is shown in figure 1.
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Figure 1: Each appliance has a unique signature.

We modeled each appliance with only two states: on or
off, though this choice is not imposed by the framework,
which can accept appliances with any number of states. For
the off state, we assumed the appliance consumed no power,
which is not necessarily true, and could easily be changed in
future versions.

The on state of the appliance is assumed to have a Gaus-
sian distribution, with parameters µ and σ, representing the
mean and standard deviation. While all appliances of a
given type, such as a refrigerator, use similar amounts of
energy, the values of µ and σ can vary considerably across
homes, as can be seen in figure 2. We used two approaches
to find values for µ and σ for each home.

In the first approach, we found the mean and standard
deviation of the power readings for each appliance, with the
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Figure 2: The duration and power used by the refrigerator
varies by home.

single modification that we only considered readings greater
than a small value of 50 watts, which is approximately the
average minimum aggregate value across homes. In the sec-
ond approach, the power readings of each appliance were
grouped into two clusters (one for each state), using the
python package SciKit Learn’s [16] implementation of k-
means clustering. Then, we found the mean and standard
deviation of each cluster, and set the mean and standard
deviation of the on-state distribution to equal those of the
cluster with the higher mean. This latter approach was more
successful when tested on the validation data, and was thus
chosen for the remaining experiments. We include these val-
ues in the table 1.

Home Microwave Dish Washer Lighting Refrigerator

House 1 N (1520, 612) N (1085, 942) N (160, 792) N (201, 572)
House 2 N (1839, 782) N (1199, 212) N (149, 382) N (171, 482)
House 3 N (1716, 532) N (734, 102) N (317, 1472) N (126, 502)
House 6 NA NA N (125, 442) N (149, 312)
Average N (1692, 642) N (1006, 622) N (188, 772) N (162, 462)

Table 1: Though similar, individual household pa-
rameter values can differ.

5.2 Evaluation Metrics
Evaluating the effectiveness of the disaggregation algo-

rithm involves inspecting both the quality of the prediction
of the on/off states, and of the estimation of the total en-
ergy consumed. To evaluate the quality of the prediction
task we look at the F-measure for each appliance and each
home, finding surprising results. Although the estimation
accuracy is a popular metric we decided not to use it here,
as it requires the assumption that the total predicted energy
always equal the total true energy, which we do not enforce.

There are two testing protocols for disaggregation, the
total energy being disaggregated can be noisy or de-noised.
In the de-noised setting, the total energy is set to be the sum
of the appliances being disaggregated, in the noisy setting
the true total energy is unadjusted. We use the noisy setting,
as it is the more realistic of the two.

5.3 Results
We evaluate our framework in two ways. First, in figure

3 we show the estimated relative consumption of the four

appliances being disaggregated, and next we evaluate the
ability of the model to predict the on/off states of the ap-
pliances. Additionally, we look at the effect of integrating
temporal features into the appliance feature model.

Here we examine the percentage of total energy allocated
to each appliance by the combined, appliance and temporal
feature model. These percentages are over the test set, which
is 25% of all data for each home, ranging from one and a half
to three and a half days. We see that the lighting is error is
greatest for the lighting appliance, where the proportion of
true energy is 44.4%, but only 41.4% is assigned.
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Lighting

44.1

True Energy

Dishwasher
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Refrigerator
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Microwave
8.5

Lighting

41.4

Estimated Energy

Figure 3: Our framework can determine the relative con-
tributions of each appliance.

It is also useful to see the results which might be shared
with a user. Instead of a plot of total power over time, users
would receive a similar plot but for each appliance. For
example, here are the plots which might be received for the
dish washer and microwave.

5.3.1 Disaggregating with Appliance Features
We use prior information about the distribution of the

power consumed by each appliance to predict if an appliance
is on given total energy. This prior information is essential
in disaggregating heavily consumptive appliances, which can
be identified by the current amount of energy being con-
sumed. However disaggregating smaller loads can be more
difficult as these appliances can be confused for each other,
and a combination of these lightly consumptive appliances
can have the same consumption as a single larger load. We
see in table 2 that some homes are easier to disaggregate
than others.

Home One Home Two Home Three Home Six Average
Accuracy 81.3% 85.6% 78.6% 72.1% 79.3%
F-measure 50.3% 57.0% 45.8% 80.7% 58.4%
Precision 36.1% 50.2% 32.6% 72.1% 47.7%

Recall 87.8% 84.9% 100.0% 100.0% 93.1%

Table 2: The appliance feature model does well on
recall.

5.3.2 Effect of Temporal Features
Here we add temporal features to the appliance model,

and see a slight boost in F-measure. The extent to which
residents follow regular temporal patterns in their every day
lives is varied. Exploring the effect of using temporal fea-
tures in disaggregation allows us to learn both how reliable
these features can be, and to evaluate homes based on their
temporal regularity. The extent to which temporal patterns
can be found in energy usage can be useful for utility com-
panies. Homes which do not display temporal patterns may
be good candidates for real-time pricing programs; as resi-



dents’ schedules are less structured they may be better able
to respond to flexible pricing structures.

Home One Home Two Home Three Home Six Average
Accuracy 80.9% 85.6% 75.4% 72.1% 78.5%
F-measure 53.4% 59.9% 43.5% 80.7% 59.3%
Precision 37.3% 49.2% 29.6% 72.1% 47.0%

Recall 100.0% 100.0% 100.0% 100.0% 100.0%

Table 3: Adding temporal features improves recall,
and the F-measure scores.

Though both models earn similar F-measure scores, they
are not actually predicting the same values as being on or off.
This can clearly be seen in figure 4 below, which shows the
true power used by the microwave in home one, as well as the
power estimated by the model trained only with temporal
features, and the power estimated by the model trained only
with appliance features.
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Figure 4: The power consumed by the microwave is over-
estimated by both methods, but slightly more by the model
which incorporates temporal patterns.

6. FUTURE WORK
A considerable weakness for disaggregation algorithms is

the extent to which their quality depends on good prior
knowledge of appliance behavior. In future work we would
like to address this shortcoming. Additionally, current al-
gorithms need access to sub-metered data. Discovering the
full extent to which such data can be replaced with strong
prior knowledge, or user supplied information, is imperative
for determining the feasibility of disaggregation algorithms
when limited disaggregated training data is available. To
the best of our knowledge no such feasibility study has been
done.

7. CONCLUSION
We have introduced a probabilistic disaggregation frame-

work for non-intrusive load monitoring. Our framework can
determine the relative consumption of individual appliances
to a total energy bill. We have introduced two categories
of features and shown that together they have the ability to
predict if an appliance is on.

Energy disaggregation is still an open problem. Results
are sensitive to good prior information about the amount of

power an appliance may use, which may be difficult to ob-
tain in the real world. We have proposed a framework which
is flexible to these constraints. We can easily incorporate
additional features into our framework, and require less as-
sumptions to be met than existing solutions. Additionally,
we have the ability to disaggregate across homes, simultane-
ously learning inter-home relationships, and disaggregating
appliances. An adaptive framework for identifying appliance
energy consumption has great potential to decrease energy
demand, and we propose the first steps towards such a so-
lution.
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