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ABSTRACT 

Urban areas are responsible for consuming up to 80% of the 

energy produced worldwide, mainly as a result of human 

activities. Due to the constantly increasing world population and 

the shift of this population into cities, over 60% of the world 

population is projected to reside in urban areas by 2030 and the 

corresponding increase in human activities will lead to a 

tremendous increase in energy consumption. Current approaches 

to energy consumption take a narrow sectoral approach and 

overlook the effects of individuals’ collective consumption as they 

visit different functional locations in a city in the course of their 

daily lives. They, therefore, underestimate consumption measures 

for exclusive vs. shared energy resources and fail to identify 

patterns of urban energy consumption with respect to consumers. 

Unreliable predictions and poor management decisions regarding 

future patterns of energy consumption and demand may thus lead 

to enormous waste in energy distribution and infrastructure 

investment. This paper explores the potential for developing 

valuable insights into energy consumption patterns in urban areas 

based on human activities inferred from the mobility behavior of 

urban populations. Through a study in Greater London covering 

the month of August, 2014, we analyzed 2,367,967 positional 

records from a location-based online social network (Twitter), and 

energy consumption (i.e., electricity and gas) data across 983 

areas. A spatial autocorrelation analysis revealed clustering 

patterns for both electricity and gas consumption, as well as 

human mobility. Further, our spatial regression models indicate 

that human mobility can account for much of the distribution of 

energy consumption in urban environments and can be used to 

predict energy consumption patterns across urban areas. These 

results suggest data-driven approaches based on combining the 

mobility behavior of urban populations with geographical data 

including energy consumption and point of interest (POI) 

information can lead to further energy discoveries in urban 

functional regions. These findings will be of value to business 

practitioners, policy-makers, and research communities, 

enhancing their future efforts and enabling them to deal with 

overlooked or poorly specified aspects of urban energy 

consumption.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications–Spatial 

databases and GIS; H.4.m [Information Systems Applications]: 

Miscellaneous.  

General Terms 

Experimentation, Human Factors, Measurement. 

Keywords 

Energy Consumption, Human Mobility, Urban Computing  

1. INTRODUCTION 
The way urban environments grow and meet their occupants' 

energy demands has a major impact on our economic, financial, 

and environmental future. Understanding the distribution and 

patterns of urban energy consumption is a significant indicator in 

managing and allocating resources, and this will only become 

more important as world energy consumption is expected to 

increase by up to 56% between 2010 and 2040 [1]. Urban areas 

are responsible for consuming up to 80% of the world's total 

energy production [2, 3] and they continue to grow faster than 

ever in population, creating the most complex built environments 

in human history. A 2014 United Nations report announced that 

54% of the world's population now resides in urban areas, and this 

is predicted to rise to nearly 70% by 2050, adding 2.5 billion 

residents to our urban environments [4]. In addition to being 

dense clusters of population, urban areas are also dense clusters of 

human activities and daily routines involving work, home and 

leisure activities, all of which have an impact on areas such as 

transportation, energy consumption and service utilization. In 

spite of this, our approaches to managing energy consumption 

generally adopt a narrow sectoral approach or focus on specific 

building types (i.e., Residential, Commercial, Transportation, and 

Industrial). Urban areas are not used homogeneously by their 

residents, and this is now beginning to be addressed by a number 

of studies that have sought to analyze and understand the patterns 

of energy consumption in urban areas. Shimoda et al. [5] 

performed a city-scale simulation for energy consumption based 

on household and building types, their appliances, and occupants’ 

activities to evaluate the effects of conservation measures in the 

residential sector. In an attempt to quantify future energy demand 

of buildings in their urban context, Choudhary [6] introduced a 

city-scale Bayesian model to illustrate the distribution and 

variations in the patterns of energy consumption across 

commercial buildings based on information on the existing 

building stock in Greater London. Developing this approach 

further, Choudhary and Tian [7] examined the spatial variability 

of commercial buildings across districts in Greater London to 

reveal the effects of city location and district features in 

comparison to the buildings’ physical characteristics, which 

resulted in a significant decrease in the uncertainties associated 

with evaluating energy consumption of different building types. 

Howard et al. [8] estimated the end-use intensity of various 
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building types in New York City using a linear regression model, 

mainly built on the assumption that energy consumption is 

primarily based on building function (e.g., residential, 

educational, etc.) rather than the construction type or age of the 

building. In an effort to explain energy consumption variability in 

residential buildings, Kavousian et al. [9] developed a statistical 

model to disaggregate the underlying determinants of daily energy 

use based on buildings’ characteristics, their occupants and 

appliances, and external conditions such as weather and building 

location. These efforts indicate the need to assess the energy 

consumption of buildings in their urban context, taking into 

account their existing surroundings and any urban dynamics they 

are expected to encounter. In a recent study in Switzerland, 

Fonseca and Schlueter [10] proposed an integrated model to 

characterize city-scale spatiotemporal energy consumption 

patterns and examine the variability of consumption in residential, 

commercial and industrial sectors across urban districts. 

Although representative, the existing approaches to identifying 

patterns of urban energy consumption do not reveal the correct 

per capita consumption measures for a city and overlook the effect 

of individuals’ aggregated daily consumption. An individual may 

exhibit low consumption habits at work, but consume 

disproportionate amounts of energy during later hours of the day 

when they are at home or utilize high-energy-consuming transit 

modes to travel within the city. It is also of particular concern 

whether individuals consume energy from exclusive or shared 

resources during their daily activities. Although the number of 

occupants has been found to be one of the most significant 

determinants of daily maximum energy consumption [9], in the 

existing models they are still quantified based on census data [5]. 

It is apparent that urban energy consumption is spatially 

distributed in cities, and certain types of energy use behavior are 

clustered in specific spatial and temporal locations [10]. The 

complex mix of consumption, required services and technological 

adaptation required of future urban areas, which is largely driven 

by ever-changing patterns of human activities, will inevitably be 

substantially different from that in today's cities. Therefore, it is 

important to identify the drivers of this consumption in different 

regions and explore the patterns and predictors of urban energy 

use. Unreliable predictions and poor management decisions about 

future patterns of energy consumption and demand may adversely 

affect cities' energy resilience, leading to enormous waste in the 

financial resources invested in energy distribution and 

infrastructure.       

2. Related Work 
Until relatively recently it has not been easy to study the dynamics 

of individual activities in different spatial and temporal 

resolutions. Survey data, monthly bills, and conceptual frame-

works were the only measures for effective decision making. 

Today, thanks to the recent advances in technology, computing 

power, and the advent of online social networks, the research 

challenge has shifted from data availability to identifying 

meaningful patterns in individuals' daily consumption to help 

anticipate and manage future demand. Opportunely, recent 

advances in both sensing technologies and urban computing 

methods have boosted relevant data availability in urban spaces 

and supported new discoveries related to these challenges [11]. 

The introduction of Advanced Metering Infrastructure (AMI) has 

made it possible to access and draw inferences from the 

consumption rates and patterns in residential and commercial 

buildings. Humans as sensors have also made available city-wide 

human mobility data [11] through their mobile phone signals, 

including GPS data [12-14], smart card commuting data [15], and 

location-embedded information from online social networks [16-

19], all of which can be used to infer information on the mobility 

behavior of urban populations. Human mobility patterns can also 

reveal important information about the way citizens interact with 

their surroundings. A number of recent studies have linked this 

information with geographical data from city-wide points of 

interest (POI) such as shopping malls, retail stores and restaurants 

to explore activity patterns and discover the root causes of urban 

challenges, thus revealing urban location correlations for human 

behavior [18, 20-22]. Other studies have further classified the 

urban population into representative groups according to their 

daily activities [23] as they visit different functional locations in 

cities and identified a certain number of characteristic trip-

location activity patterns – human mobility motifs [24, 25]. 

Human mobility have been used to infer location choices and to 

strategize optimal accessibility to amenities under the influence of 

human mobility [26, 27]. One recent study has proposed a method 

to find clustered locations in urban areas where individuals 

engage in activities, inferred to be home, work, or “other”, from 

human mobility data [28].  

As individuals engage in daily activities across various locations, 

they drive the energy consumption associated with their location-

based activities. Therefore, researchers have sought to analyze 

human mobility data to identify the energy implications of such 

activities in urban areas [29, 30]. For example, Tulusan et al. 

adopted the eco-feedback technology–as used analogously to 

reduce energy consumption in buildings [31, 3]–in personal the 

transport sector (i.e., eco-driving feedback) to improve fuel 

efficiency and reduce fuel consumption in urban areas [33]. 

Zhang et al. [29] explored city-wide refueling behavior and gas 

usage in the transportation sector and its economic implications, 

while Becker at al. [13] developed new human mobility analysis 

techniques to determine the daily range of travel, the carbon 

footprint of human-to-work commutes, and other mobility 

characteristics in Los Angeles, San Francisco, and New York. 

However, all these efforts are limited to transport energy 

consumptions and we still lack a good understanding of whether 

the mobility behavior of urban populations can be translated into 

spatiotemporal energy consumption patterns in urban areas. Can 

the distribution of urban energy consumption be predicted by 

patterns of human mobility?  

In order to assess the energy use and demand attributable to 

individuals' urban mobility and examine human mobility as a 

predictor of future energy consumption, this study examines the 

relationship and interdependencies of energy consumption with 

intra-urban human mobility behavior in Greater London. The 

impact of human interactions with the urban built environment is 

explored through a spatial regression analysis of 2,367,967 

positional records accounting for human mobility, and energy 

consumption across 983 areas in Greater London over the course 

of a single month (August, 2014). This paper is organized as 

follows: Section 3 describes the data sources used in the study in 

terms of the mobility behavior of the urban population, including 

positional records from an online social networking platform 

(sub-section 3.1) as well as energy consumption (sub-section 3.2) 

for different areas in Greater London and their spatial distribution 

across urban areas. In Section 4 we explore whether intra-urban 

mobility can be utilized as an indicator for energy consumption 

through spatial regression analysis, and examine whether 



clustering patterns for human mobility can indeed explain clusters 

of energy consumption. The paper concludes with the initial 

findings on human mobility as a predictor for urban energy 

consumption and a discussion of future research directions in this 

area. 

3. DATA 
Table 1 lists the datasets used in this study, which consist of the 

electricity and gas consumption figures for 983 areas, and 

2,367,967 positional records accounting for human mobility 

(described in more detail below in Section 3.1). The spatial level 

used here is an administrative boundary for Greater London – 

MSOA (middle layer super output area), which represents a 

minimum population of 5000, with an overall mean of 7200 [34]. 

The closest temporally compatible datasets are selected for study, 

as shown by year in Table 1; the years shown are chosen based on 

the availability of data for both positional records and energy 

consumption (electricity and gas), as well as the compatible 

MSOA digital boundary and energy consumption data. Fig. 1 

shows a 24-hour cumulative distribution of positional records 

across the 983 MSOA boundaries in Greater London. The amount 

of information collected from online social networks is not 

immune from demographic issues such as the tendency of the 

urban population to use online social networks as well as security 

issues. This positional records data has been collected from 

individuals who have voluntarily publicly shared the location-

enabled information for their Twitter accounts in Greater London 

and any results in this study are thus representative of this 

population.  

Table 1. Energy consumption, Digital boundaries, and 

positional records data.  

*Middle Layer Super Output Area—MSOA: Min Population 5000, w/ an overall Mean of 7200 (England # 

MSOA: 6,781). 

 

 

Spatial autocorrelation [35] is used to measure the correlation 

among energy consumption and human mobility variables in the 

spatial dimension. Moran’s I [36] (Eq.1), which ranges from -

1(most dispersed) to 1(most clustered), describes the degree of 

spatial concentration or dispersion for these variables, with larger 

values for I showing clusters of larger values being surrounded by 

other large values (I+)–spatial clustering, and (I–)–spatial 

dispersion indicating larger values being spatially enclosed by 

smaller values. It is also a test of independence to determine 

whether values of human mobility or energy consumption 

observed in one location depend on the values observed at 

neighboring locations. While Moran’s I represents a global spatial 

autocorrelation for our data, Geary’s C [37] (Eq. 2) is also used 

based on the deviations in the responses of each observation with 

one another, ranging from 0 (maximum positive autocorrelation) 

to 2 (maximum negative autocorrelation), with 1 indicating an 

absence of correlation. We have used Moran’s I here as a measure 

of sensitivity to extreme values of energy consumption and human 

mobility, and Geary’s C to evaluate the sensitivity to differences 

in smaller neighborhood MSOAs. 
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Here, n represents observations on variable x at locations i, j 

where x is the mean of the x variable, wij are the elements of the 

weight matrix. 

 

 
Figure 1. 24 hours cumulative distribution of positional 

records on August 1st, 2014 over the 983 MSOAs, Greater 

London. 

 

3.1 Individual Positional Records and Human 

Mobility 
In order to obtain an enhanced understanding of human mobility 

patterns, and thus improve our understanding of the relationship 

between individuals’ mobility and energy consumption behavior, 

we have selected the radius of gyration (Eq. 4) as our metric from 

the three widely accepted indicators for describing large-scale 

human mobility patterns: the radius of gyration rg(t), trip distance 

distribution p(r), and the number of visited locations S(t) [12, 38, 

39]. Of these, we consider the radius of gyration to be the most 

appropriate for capturing individuals’ characteristic travel 

distance within the areas where they habitually move around in 

their daily activities (i.e., rg(t)), as described below:  

Data 
Spatial 

Scale 

Temporal 

Scale 
Organization 

Electricity 

(kWh) 
MSOA* 2013 

DECC  

(Department of 

Energy & Climate 

Change) Gas (kWh) 

Digital 

Boundaries 

(.shp) 

MSOA 

(#983) 
2011 

GLA (Greater 

London Authority) 

Positional 

Records 

(tweets) 

Greater 

London 

August, 

2014 

Twitter (# tweets: 

2,367,967) 
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Here, radius of gyration is calculated at two spatial and two 

temporal levels. First, the individual level rgi(t), is obtained per 

MSOA per individual per day. Second, the MSOA level rga(t) is 

obtained per MSOA over the total time frame (in this case, one 

month). The individual level rgi(t)  represents the characteristic 

distance traveled by a user when observed up to time t [12], so 

every MSOA level rga(t) represents the deviation of the rgi(t)s from 

the corresponding center point (Eq. 3). This indicator is used to 

describe the patterns of human mobility across MSOAs. Figure 2 

depicts the spatial distribution of human mobility in Greater 

London. Statistically significant (p-value < 2.2e-16) positive 

values for I (examined for both row-normalized: 0.227,   and 

binary weight matrices: 0.222) indicate that human mobility 

patterns in Greater London follow a clustering distribution as 

opposed to a dispersed or random distribution. As further 

illustrated in the four quadrants of the Moran Scatter Plot, we 

observe a classification of four types of spatial autocorrelation for 

human mobility. The slope of the regression line corresponds to 

the Moran’s I value. Areas of significance are the high-high 

(upper right), and low-low (lower left) datasets produced in the 

Moran analysis, both of which have significant Local Moran 

statistics with positive autocorrelations.  

Table 2. Spatial autocorrelation analysis results – Human 

mobility. 

 
Weight Matrix Statistic p-value Std 

Moran’s 

I 

Row-Norm.  0.22681 < 2.2e-16 12.20 

Binary  0.22247 < 2.2e-16 12.15 

Geary’s 

C 

Row-Norm.  0.77256 < 2.2e-16 8.73 

Binary  0.77882 4.47e-10 6.13 

 

   
(a)  Human Mobility                       (b) Moran Scatter Plot  

 

Figure 2. Spatial autocorrelation – Human mobility 

 

The positive autocorrelation for the high-high scatter plot 

quadrant areas are interpreted as clusters of regions with high 

human mobility, which are clustered with and dependent on 

neighboring regions with high human mobility. The low-low 

quadrant areas are those MSOAs with low human mobility that 

are clustered with and dependent on other low human mobility 

areas. Moreover, the statistically significant results for Geary’s C 

(examined for both row-normalized: 0.773, and binary weight 

matrices: 0.779) confirm these results. High values of the C 

measures correspond to low values of I and the two measures are 

inversely related. By contrast, the high-low (bottom right), and 

low-high (upper left) quadrants both depict negative spatial 

associations. 

3.2 Urban Energy Consumption 
A similar spatial autocorrelation analysis can be performed for 

energy consumption (i.e., domestic electricity and gas) across the 

983 MSOAs in Greater London. Figure 3 shows the clustering 

patterns and spatial dependencies of neighboring areas for 

domestic gas consumption and Figure 4 depicts the same results 

for domestic electricity consumption. We found statistically 

significant (p-value < 2.2e-16) results for both Moran’s I and 

Geary’s C, representing spatial dependencies for both electricity 

(examined for both row-normalized: I = 0.590 and C = 0.428, and 

binary weight matrices: I = 0.582 and C = 0.443) and gas 

consumption (examined for both row-normalized: I = 0.622 and 

C = 0.385, and binary weight matrices: I = 0.626 and C = 0.389). 

Positive autocorrelations are illustrated in the Moran Scatter 

Plots.  

Table 3. Spatial autocorrelation analysis results – Domestic 

Gas Consumption. 

 
Weight Matrix Statistic p-value Std 

Moran’s 

I 

Row-Norm.  0.62217 < 2.2e-16 33.15 

Binary  0.62602 < 2.2e-16 30.23 

Geary’s 

C 

Row-Norm. 0.38552 < 2.2e-16 33.87 

Binary  0.38824 < 2.2e-16 26.87 

 

      
(a)  Gas Consumption                      (b) Moran Scatter Plot  

 
Figure 3. Spatial autocorrelation – Domestic Gas 

Consumption. 

 

Having found spatial dependencies and clustering distribution for 

both human mobility and energy consumption across urban areas 

in Greater London, we examined whether a spatial regressive 

model can be used to identify meaningful relations between the 

two distributions. The following section describes the statistical 

methods used to determine the relationships between the MSOA 

level rga(t)s and the corresponding MSOA level energy 

consumptions, including the spatial regression analysis. 



Table 4. Spatial autocorrelation analysis results – Domestic 

Electricity Consumption. 

 
Weight Matrix Statistic p-value Std 

Moran’s 

I 

Row-Norm.  0.59045 < 2.2e-16 31.46 

Binary  0.58195 < 2.2e-16 31.50 

Geary’s 

C 

Row-Norm. 0.42819 < 2.2e-16 28.20 

Binary  0.44331 < 2.2e-16 24.60 

 

   
(a)  Electricity Consumption         (b) Moran Scatter Plot  

 

Figure 4. Spatial autocorrelation – Domestic Electricity 

Consumption. 

 

4. HUMAN MOBILITY and ENERGY 

CONSUMPTION 
Spatial regression models are used to examine the relationships 

between variables and their neighboring values and allow us to 

examine the impact that one observation has on other proximate 

observations. The energy use in different areas of a city cannot be 

regarded as being independent of each other in a regression 

analysis due to spatial autocorrelation. The same statement holds 

true for urban human mobility. However, considering the intrinsic 

spatial autocorrelation of energy consumption and human 

mobility in the 983 different areas of Greater London, does the 

correlation between human mobility and energy consumption 

manifest itself spatially in urban areas?  To answer this question 

we performed a spatial regression analysis as follows. 

4.1 Spatial Regression Analysis 
To model the spatial interdependencies of our datasets, we applied 

an autoregressive model to implicitly incorporate the spatial 

dependence of the human mobility data into the covariance 

structure. The two main autoregressive models for areal data 

tested in this study are the conditional autoregressive model 

(CAR) [40], which represents the first order (local) dependencies, 

and the simultaneous autoregressive model (SAR) [41], which 

represents more global dependency conditions. We used both 

models to produce spatial dependence in the covariance structure 

as a function of fixed parameters such as the number of energy 

meters per MSOA to examine various conditions. Figures 5 and 6 

show the spatial regression results from the SAR and CAR 

models, respectively, for energy consumption (in this case, 

electricity and gas) compared to human mobility for Greater 

London over the course of one day in August 2014. We have also 

compared the results using a simple linear model. All spatial 

parameters are statistically significant, as indicated by p-values 

lower than 0.0001 for both electricity and gas consumption in 

Greater London. Figures 5 and 6 also show the spatial distribution 

of the fitted SAR model, as well as the residuals for gas and 

electricity, respectively, which is the most representative model 

for energy consumption per human mobility.   

Table 5. Spatial regression analysis results – Domestic gas 

consumption per human mobility. 

 

Simple Linear 

Model 

SAR 

Model 

CAR 

Model 

P-value 0.8618 < 2.22e-16  < 2.22e-16 

AIC -1270.241 -1955.9 -1973 

R-squared -0.0009884  - - 

Statistics  0.03033 0.13097 0.15561 

 

  

(a)  Gas Consumption                     (b) Residuals  

 

Figure 5. Spatial regression – Domestic gas consumption per 

human mobility. 

 

Table 6. Spatial regression analysis results – Domestic 

electricity consumption per human mobility. 

 

Simple Linear 

Model 

SAR 

Model 

CAR 

Model 

P-value 0.03211 < 2.22e-16  < 2.22e-16 

AIC -1837.744 -2435.7 -2445 

R-squared 0.003659 - - 

Statistics  4.606 0.12879 0.1555 

 

  

(a)  Electricity Consumption            (b) Residuals 

 

Figure 6. Spatial regression – Domestic electricity 

consumption per human mobility. 

 

These models explicitly test the impact of human mobility 

variables on energy consumption. At a global scale, the SAR 



models imply that the state of the energy consumption per human 

mobility for each MSOA in Greater London is influenced by that 

of its neighboring MSOAs. Taking a more local perspective, the 

CAR models imply that this holds true for a particular MSOA and 

its neighboring MSOAs. 

5. CONCLUSIONS and FUTURE WORK 
We examined how human mobility and energy consumption are 

spatially distributed within UK Greater London, and how the 

strength of the association between human mobility and energy 

consumption vary by area. Using 2,367,967 positional records 

gathered during a single month, we quantified human mobility 

across 983 areas of the city. A spatial autocorrelation analysis 

revealed clustering patterns as well as positive spatial associations 

for human mobility, electricity, and gas consumption among these 

areas. Our spatial regression analysis results indicate that the 

strength of the association between human mobility and energy 

consumption depends on spatial location, which can further be 

contextualized more locally based on POIs. Therefore, human 

mobility across different areas in Greater London can be regarded 

as a proxy indicator of energy consumption behavior.        

This study is a step towards linking human mobility patterns to 

urban energy consumption. Variations of energy consumption in 

relation to human mobility across different areas remain to be 

examined in future research. However, we still lack appropriate 

data and analysis methods that will enable us to identify and 

utilize the full spectrum of energy consumption rates and patterns 

for each individual across time and location. Knowing individuals' 

movements around urban open spaces and across the physical 

infrastructure of our urban environments (both communal and 

private infrastructure) will enable us to build a comprehensive 

understanding of how certain types of energy behavior are 

clustered in specific geographical spaces and temporal locations 

within urban areas. In addition, it will enable us to identify the 

interdependencies between energy consumption, individual 

activities, and specific urban spatiotemporal features. The results 

presented in this paper suggest that human mobility can account 

for the collective energy consumption in urban areas, and further 

research should be considered to quantify and contextualize this 

relationship. Our ongoing research is seeking to understand urban 

activity patterns across different functional locations using human 

mobility data and then utilize the activity patterns identified to 

develop integrated predictive models that incorporate temporal 

elements of activity patterns (for example, recreation, nightlife, 

shopping, or education) and energy consumption. Identifying 

spatial regions with similar temporal activities should allow us to 

assess their energy consumption and thus identify the distribution 

of energy consumption. 

To cope with the continuing growth in population and the 

corresponding increase in urban activities, we need to develop a 

better understanding of the root causes of societally significant 

phenomena such as energy consumption. The relationship 

between energy consumption and human mobility is a key 

element for creating effective policies for urban areas. A clear 

picture of the demand-side diversity will facilitate the appropriate 

decentralization of the urban energy distribution infrastructure to 

reduce both waste and the vulnerabilities that lead to service 

disruptions. 
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