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ABSTRACT
Almost all real-world social networks are dynamic and evolving
with time, where new links may form and old links may drop,
largely determined by the homophily of social actors (i.e., nodes
in the network). Meanwhile, (latent) properties of social actors,
such as their opinions, are changing along the time, partially due
to social in�uence received from the network, which will in turn
a�ect the network structure. Social network evolution and node
property migration are usually treated as two orthogonal prob-
lems, and have been studied separately. In this paper, we propose
a co-evolution model that closes the loop by modeling the two
phenomena together, which contains two major components: (1)
a network generative model when the node property is known;
and (2) a property migration model when the social network struc-
ture is known. Simulation shows that our model has several nice
properties: (1) it can model a broad range of phenomena such as
opinion convergence (i.e., herding) and community-based opinion
divergence; and (2) it allows to control the evolution via a set of fac-
tors such as social in�uence scope, opinion leader, and noise level.
Finally, the usefulness of our model is demonstrated by an applica-
tion of co-sponsorship prediction for legislative bills in Congress,
which outperforms several state-of-the-art baselines.
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1 INTRODUCTION
Social network analysis has become prevalent as the variety and
popularity of information networks increase. In the real world, net-
works are evolving constantly with links joining and dropping over
time. Meantime, properties of social actors in these networks, such
as their opinions, are constantly changing as well. One example
is the political ideology migration for two parties in U.S. Figure 1
shows the 1-dimensional mean ideology for members in two politi-
cal parties via ideal point estimation using their historical voting
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records [12]. A similar discovery can be seen in [2]. We can clearly
observe the divergence of ideologies of the two communities (i.e.
the Democrats and Republicans), especially the polarization trend
since 1960s. A natural question raises, why such divergence happens
and is there any possible intervention we can have to alleviate such po-
larization? In this paper, we a�empt to interpret this phenomenon
and thus propose a uni�ed co-evolution model for link evolution
as well as (latent) node property migration in social networks.

Figure 1: Ideology migration of the two parties in U.S.

On one hand, people in social networks exhibit great diversity
and are associated with di�erent properties (e.g., hidden properties
such as political ideology). Interactions between individuals are
more likely to happen within people that are alike, described as
“homophily” in social network analysis [28]. With this principle,
network generative models such as blockmodels [18, 44] and latent
space models [17] have emerged, where each individual is assigned
with a feature vector denoting her latent properties (i.e., a position
in a latent space). Individuals that are close in the latent space are
likely to have interactions in the network.

On the other hand, like �ocks of collectively moving animals,
people in social networks comprise a system of interacting, perma-
nently moving units. In fact, the changing of location is ubiquitous
among many kinds of creatures in real life: �ocks of birds �y and
migrate; colonies of ants and drones work and move to seek for
foods. �is phenomenon is also overwhelming in the realm of
social network analysis, where people’s latent position (e.g., ideol-
ogy) are migrating with their crowds (e.g., parties). In other words,
individuals are likely to be a�ected by their friends or who they
interact with in the social network. �is “social in�uence” [22, 41]
assumption has been widely applied in literature. For example,
in an information di�usion model, a person will be activated (i.e.
the binary status is switched to “on”) if she has enough activated
neighbors [14].

Inspired by these observations, in this paper we propose a proba-
bilistic co-evolution model that explains the evolution of networks



as well as the migration of node properties, which contains two
major components: (1) a network generative model when the node
property is known; and (2) a property migration model when the
social network structure is known. First, in terms of network evolu-
tion, similar to existing work, we assume the network is a re�ection
of node’s latent properties. Our network generative model assumes
(1) individuals have a higher chance to interact with people who
are alike; and (2) opinion leaders a�ract more people and thus in-
teract with more people. Second, in terms of property migration,
we notice how creatures in biological systems and how particles in
molecular systems propagate: they are in�uenced by their spatial
neighbors to a large extent. We generalize the notion of “spatial
neighbors” to “friends” in social network, and people’s moving
direction is in�uenced by their friends’ moving directions.

Simulation shows that our model has several nice properties: (1)
it can model a broad range of phenomena such as opinion conver-
gence (i.e., herding) and community-based opinion divergence; and
(2) it allows us to control the evolution via a set of factors such as
social in�uence scope, opinion leader, and noise level. By learning
system-level parameters via a series of historical snapshots of net-
works, predictions can be made about the evolution of the whole
system in the future. We demonstrate the usefulness of our model
by an application of co-sponsorship prediction for legislative bills
in Congress, which outperforms several state-of-the-art baselines.

�e contributions of our paper are summarized as follows:
• We propose a uni�ed co-evolution model that captures the

evolution of network structure as well as the migration of node
properties.

• Under di�erent system-level parameter se�ings, our model is
able to exhibit di�erent behaviors of network evolution and
property migration.

• Our model is capable of inference via learning from real-world
data. Empirical results reveal our advantage over state-of-the-
art approaches in terms of a co-sponsorship prediction task.

2 PRELIMINARY OF COLLECTIVE MOTION
In the realm of biological systems, collective motion is one of the
most common and spectacular manifestation of coordinated behav-
ior [19, 43]. Flocks of birds �y and migrate uniformly as a group;
ants are famous for their large and well-organized hierarchies, and
individuals in each hierarchy exhibit highly coherent behaviors; a
school of �sh swim in a tightly organized way in terms of speed
and direction. Collective motion is also observed in phase transi-
tion process as in many particle systems, and a well known line of
work [42] describes their collective motion model as follows. Each
particle moves at a constant rate v , while the direction of motion is
determined by the average direction of all others within its neigh-
borhood of radius r , plus some random perturbation. Denoting a
particle n’s position at time t by xn (t ), it is assumed to be updated
according to

d

dt
xn (t ) = vn (t ) (1)

wherevn (t ) = v · (cosθn (t ),sinθn (t )) is its moving direction at t .
�e direction will be consistently adjusted by it spatial neighbors:

θn (t + 1) = 〈θn (t )〉 + ∆θ (2)

where 〈θn (t )〉 is the direction averaged by n’s spatial neighbors
within radius r , i.e. {m : | |xn (t ) − xm (t ) | | ≤ r }. v is the absolute
value of each particle’s velocity and is assumed to remain the same
for every particle during the transition process. Noise ∆θ is ran-
domly chosen uniformly from interval [−η/2,η/2], where η controls
the noise level.

Spatial neighbors play a crucial role in above systems. Notice
that, however, in the se�ing of social networks, individuals are
assumed to receive social in�uence only from their friends rather
than anyone who are close to them. �is inspires us to design the
co-evolution model as introduced in next section.

3 THE CO-EVOLUTION MODEL
�e position migration in biological and molecule systems men-
tioned in Section 2 are a good analogy to the opinion migration for
individuals in social networks. Like �ocks of collectively moving
animals, people on social networks also comprise a system of in-
teracting, permanently moving units in terms of latent opinions
or stances. Di�erent from biological systems, in social networks
people form social ties where information propagate through. In
other words, every individual is exposed to a group of “friends”
and receives in�uence merely from them. �is phenomenon is
referred to as “social in�uence” or “social selection” [7, 22, 41] in
literature. In turn, new/old links in social networks may form/drop
as a result of individuals’ opinion migration, due to “homophily”
[28]. Since opinion is an important property of an entity, we use the
terms opinion, property and feature interchangeably in this paper,
to denote the intrinsic characteristics belonging to an individual
on social network.

By pu�ing (1) social in�uence-based opinion migration and (2)
homophily-based network generation together, we then have our
co-evolution model, which is introduced in the remaining of this
section.

3.1 Social Network Generation
Latent space models [17] assume the snapshot of a static social
network is generated based on the positions of individuals in an
unobserved social space. �is latent space consists of unobserved
latent characteristics of people that represent potential tendencies
in network relations. In these network generation models, the
generation of each link is independent on each other, and is based
purely on the positions of two users. We could design any score
function s : RK × RK → R that assigns a score to a pair of node
features (xn ,xm ), which indicates the likelihood of observing the
presence of the link in between. �e score function is crucial to the
network and its properties, and we discuss two possibilities below.

Dot Product-based Score Function. In tons of existing works, dot
product of two features vectors is used to capture the similarity
between them [3, 21, 30, 31, 40]. However, this generation model
contradicts with the following observation.

Obviously, node degree is associated with the choice of score
function. �e higher chance of a node has to issue links to others,
the larger degree it will be. Vector norm plays an important role in
inner product; as a result, those actors with a large norm (i.e. | |xn | |)
tend to a�ract interests from a large group of others, and thus
become opinion leaders in the generation process. To demonstrate



this, we show the 2-dimensional position of two users A and B as
well as their a�ected regions in Figure 2(a). �e a�ected region of a
user is de�ned as the set of people who can be in�uenced by her (i.e.
their score function exceeds some threshold). User A has a position
of (3,3) and B is located at (−1,−0.5). It is obvious from the plot that
user A are far more likely to befriend others (even those with less
cosine similarity) than B, simply because A is further away from
the origin than B is. In other words, people with extreme stances
(i.e. large norms of latent feature vector) will become the opinion
leader. However in most cases, the most popular people are either
around the center of the entire population, or the center in their
community. For example, it is found that radical politicians on the
ideology spectrum are hardly party leaders [34]. In addition, each
actor has limited resources and energy, which sets a constraint on
one’s spreadable radius. Preferably, the score function is invariant
of the scale, and the a�ected region should have limited area (i.e.
bounded).

(a) Inner product-based similarity (b) Distance-based similarity

Figure 2: A�ected regions (colored area) for two users with
di�erent similarity functions. Nodes in the a�ected region
are prone to interact with the corresponding user in the
same color (i.e., red region for User A and blue region for
User B).

Gravity-based Score Function. We recall that herds of animals
have the notion of “spatial neighbors” when they migrate and
collaborate. In molecule systems, nearby molecules also account
for the majority of the interaction. Inspired by these observations,
it is reasonable to set the score function between two users to be
based on their Euclidean distance. We adapt the inverse squared
gravity formula in our de�nition of score function. Using the new
metric, we show the a�ected region of two users in Figure 2(b).
Although the feature vectors of user A and B have di�erent scales,
the spaces of their friend candidates are comparable.

In the graph generation model, when we want to determine
the link between two actors, the score function is mapped to a
probability using Gaussian function:

pnm = exp(− 1
ϵ2 ·

| |xn − xm | |2

bn · bm
) (3)

where ϵ is a model hyper-parameter, and {bn } ⊂ R+ is another set
of parameters which re�ect the popularity of actors. �e link will be
generated ifpnm > d , whered is a system parameter which controls
sparsity of the network, and a larger d means fewer neighbors

an actor can interact with. For geometric interpretation, bn is
proportional to the radius of one’s neighborhood, and opinion
leaders will be the ones with largest values of b. In other words,
opinion leaders are more likely (with higher probability) to interact
with other actors. As the formula bn ·bm

| |xn−xm | |2
resembles the law of

gravity, we call this score function as gravity-based.

3.2 Opinion Migration
Similar to the migration of �sh and �ocks of birds, individuals in
social networks also exhibit collective behaviors, which is modeled
in this section.

Earlier work [6, 16, 36, 37, 45, 46] on modeling property change
is quite straightforward: properties at adjacent timestamps (e.g.
x 〈t 〉, x 〈t+1〉) are forced to be similar via various kinds of regular-
ization/prior in order to avoid abrupt changes. For example, x 〈t+1〉

is assumed to be generated from a Gaussian prior centered on its
previous position x 〈t 〉. However, this plausible strategy has two
major �aws, which greatly reduce the power of the generation
model.

First of all, let us investigate the activity of two actors in Figure
3. Here X-axis denotes the timestamp, and Y-axis denotes the
1-dimensional latent position. According to the migration prior
de�ned above, the behavior of user X and Y are equally possible;
however in real life, it is more likely to observe the trajectory of
user Y (moving along the same direction) rather than X (oscillating).
�e same phenomenon is observed in �ocks of animals as well:
a school of �sh tends to move towards some direction instead of
wandering around some places.

Figure 3: An example of two people’s migration.

Secondly, social in�uence should be involved in the migration
process, and the generation model should be able to express dif-
ferent properties of the random network under di�erent system
se�ings. For example, we may observe the polarization of opinions
in some networks, i.e. multiple clusters of people heading towards
di�erent directions. However, if latent features evolve solely ac-
cording to their previous positions, it is unlikely that individuals
will automatically form several clusters.

In a recent work [16], social in�uence are included in the gener-
ation model. Simply generalizing their binary features into contin-
uous features, we have

x 〈t+1〉
n ∼ N

(
(1 − λ) · x 〈t 〉n + λ · 〈x

〈t 〉
n 〉,σ

2) (4)

where 〈x 〈t 〉n 〉 is the average position of userun ’s neighbors at time t ,
and N (µ,σ 2) is the normal distribution with mean µ and variance



σ 2. A toy example of 2-dimensional feature migration under this
framework is shown in Figure 4. We see that although two clusters
emerge a�er several steps (nodes in the middle are going upwards
and downwards), they are trapped in a local area and refuse to keep
moving upwards or downwards since the clusters are formed. In
other words, people’s opinions will no longer change a�er commu-
nities are developed. �e principal reason lies in that propagation
model: the moving tendency of nodes is never captured; instead, en-
tities update their positions arbitrarily, and they lack the motivation
to move in a stable status.

(a) t = 0 (initial) (b) t = 200 (c) t = 400

Figure 4: Position migration of N = 20 nodes. 3 nearest
neighbors of each node are chosen as friends in the network.

To overcome these problems, a natural approach is to track the
historic features, such as se�ing a global regularization term in
addition to features in adjacent steps. However, the lack of Markov
property would make the generation process less intuitive and
much more complex, and inference would be impossible due to
high computational cost. Here we seek for a solution from the
propagation in the nature. It is rare to observe a �ock of animals
turn around frequently; similarly, a person should gradually change
her interest in some dimension (e.g. her enthusiasm of a topic may
be dropping) instead of keeping switching between two viewpoints.
�erefore, we keep track of velocity, i.e., the direction (which can
be regarded as the �rst derivation of displacement), and punish its
volatile changes.

�erefore, in terms of opinion migration, we introduce the direc-
tion that a user un is heading as an angle θn , and the latent position
of each user will be updated according to the basic displacement
formula:

d

dt
xn (t ) = v · (cosθn (t ), sinθn (t )) (5)

where v is a constant factor indicating absolute speed, and the
unit vector (cosθn (t ),sinθn (t )) representsun ’s moving direction at
time t . In reality, we observe discrete snapshots of social networks.
�erefore, we write the above equation in its discrete form as

x 〈t+1〉
n = x 〈t 〉n +v · (cosθ 〈t 〉n , sinθ 〈t 〉n ) (6)

�e remaining question is how θ 〈t 〉n propagates. It is worth notic-
ing how every member in a �ock of birds picks its direction. When
some �ocks of birds head west and others head north, an observer
bird is likely to pick either direction instead of south or east. During
a migration, people are likely to take similar paths as their families
and close friends. �is strategy is believed to have advantages such
as more e�cient explorations for resources and improved decision
making in larger groups [43]. In sum, it is very rare that a member

chooses to behave oppositely to its friends. When it comes to social
networks, people also adopt similar behaviors as their neighbors
[22]. We probably have already observed the following facts in our
real life. A scholar tends to raise interest in a research topic that is
trending among her collaborators. A Democrat is likely to become
more liberal, if she feels her acquaintances are going “le�” (and vice
versa). Social network provides exposure to one’s neighbors, and
this factor will be re�ected in the formation of direction variables.
�erefore in our model, a person’s moving direction is assumed to
be in�uenced by her neighbors’ directions, and is subject to a noise
of some magnitude:

θ 〈t+1〉
n ∼ N (〈θ 〈t 〉n 〉,σ

2) (7)

where 〈θ 〈t 〉n 〉 is the average direction of un ’s neighbors’ (including
herself) at time t . In the above case, when a bird observes 10 others
heading west and 20 others heading north, the average direction
of other birds is about 63◦ north of west. �erefore in most cases,
the observer will �y in a similar direction (follows either the west
or north group), as it would incur great penalty if it �ies south
or east instead. Intrinsically, the parameter σ controls how easily
people are in�uenced by their neighbors (or how strictly a person
should follow the trend of their neighbors): larger σ will relax the
regularization.

In the discussion above, the dimension of node feature is set to
2 in order to make the propagation process more intuitive. Nev-
ertheless, our method is not subject to this constraint and can
be easily generalized to higher dimensional latent spaces using
polar/hyperspherical coordinate systems [1]. For example, the di-
rection (cosθn (t ), sinθn (t )) in Equation 5 can be replaced by any
dimensional unit-length vector with polar coordinates. �e average
direction determined by Equation 7 simply becomes the (normal-
ized) vector summation. In the remaining of the paper, we will use
2-dimensional representations for visualization purposes.

Note that our regularization on the direction θ already implies
the regularization of feature x . �is is trivial since the change of a
variable is re�ected in its �rst derivative. In particular, | |x 〈t+1〉

n −

x 〈t 〉n | | is �xed for every t , which means abnormal change in the
feature space is impossible. �erefore, our model has further con-
tributions while inheriting the advantages of existing propagation
approaches.

3.3 Uni�ed Model
Pu�ing them together, the evolution of network and migration
of entity opinions happen iteratively a�er each other in our co-
evolution model. At each timestamp t , a network is generated
given node latent features (homophily), and node directions are
generated according to the network structure (social in�uence),
thus determine the latent feature for the next timestamp t + 1
(migration). System-level parameters include sparsity parameter d
which controls the sparsity of the graph (i.e. the average number
of friends), and noise level σ which implies the deviation of one’s
direction from the expected value. �e generative process of our
co-evolution model is summarized in Algorithm 1.



input : number of users N ; number of timestamps T ; sparsity
parameter d ; noise level σ .

output : a series of graphs and users’ latent positions.
initialization;
for t = 1 to T do

// graph generation

for n,m = 1 to N do
calculate pnm ;
determine the link between n andm as G〈t 〉nm = 1 if
pnm > d ;

end
// opinion migration

if t == 1 then
for n = 1 to N do

sample θ 〈t 〉n ∼ Uniform[0,2π );
update x 〈t+1〉 = x 〈t 〉 +v · (cosθ 〈t 〉n , sinθ 〈t 〉n );

end
else

for n = 1 to N do
sample θ 〈t 〉n ∼ N (〈θ 〈t−1〉

n 〉,σ 2);
update x 〈t+1〉 = x 〈t 〉 +v · (cosθ 〈t 〉n , sinθ 〈t 〉n );

end
end

end
Algorithm 1: Generation model for co-evolution

4 SIMULATION
To reveal the properties of our generation model, we run simu-
lations and show the migration of individuals in the network for
selected parameters. For initialization, every node is randomly as-
signed a 2-dimensional initial position in the la�ice of [−L/2,L/2]×
[−L/2,L/2] where L = 5, as well as a popularityb ∼ Uniform([1,2]).
b will be �xed throughout the migration process. Initializations are
identical across all parameter se�ings.

According to [42], we adopt the absolute value of average nor-
malized velocity as a measure for the system status:

vave =
1
N
|

N∑
n=1

(cosθn , sinθn ) | (8)

vave ∈ [0,1] and in general, vave = 1 means completely coherent
moving behavior, while vave = 0 means completely randomness,
or two groups of equal number of people moving towards opposite
directions. In Figure 5 we plot the metric vave under di�erent
parameter se�ings.

Noise level. Noise level σ controls how uniformly individuals
proceed. Intuitively, a large σ will overwrite the direction deter-
mined by one’s neighbors, thus leads to more random migration
behaviors. In Figure 5(a) we can see vave ≈ 0 for large σ . People
tend to behave collectively in groups with small σ values.

Sparsity parameter. Sparsity parameter d plays a role in the
emergence of clusters. A larger value of d leads to a sparser net-
work, therefore people interact with only a few others. In this case,
communities are allowed to maintain their own direction, and it
is more likely to observe several clusters with di�erent migration

directions. On the other hand, when the threshold is small, an
individual is easily linked to most others, therefore information is
prone to spread through the entire network, making almost all the
people to propagate coherently. In Figure 5(b) we can see vave is
larger for smaller d values.

(a) E�ect of noise level σ (b) E�ect of sparsity parameter d

Figure 5: System-level parameter study

We show people’s positions and their moving directions in Fig-
ure 6. Each row corresponds to a set of system-level parameters.
Absolute value of velocity is set to v = 0.03 and moving direc-
tions are shown as unit-length arrows starting from one’s position.
Opinion leaders (top 5% people with largest b) are marked in red.

Observations. We can see in most cases, the opinion leaders are
surrounded by others and appear in the center of a community,
which agrees with our �ndings in Section 3.1. In addition, the ef-
fect of system-level parameters is also revealed in these examples:
networks tend to be very random when noise level σ is large (com-
paring �rst and second row). Under a small noise level, sparsity
parameter d comes into play: a small d makes the network denser,
thus communities have more overlapping entities and are likely to
act coherently; while a large d reduces the scope of individuals, and
clusters may emerge and head towards di�erent directions (com-
paring �rst and third row). In sum, initially, sparsity, small noise
and di�erent directions of opinion leaders are necessary in order
for opinion convergence within each community, which eventually
leads to emergence of clusters.

Intervention. Now back to the question raised in introduction
section: how can we alleviate the divergence of communities? From
the above observations, one solution is to reduce σ and enlarge d .
Under this se�ing, people are exposed to many others, follow their
directions without much perturbation and a uniform global trend
is likely to occur. Another alternative is utilizing opinion leaders to
advertise and propagate similar directions of migration. �anks to
their high popularity, they are likely to interact with more people
in their neighborhood, and thus play a role in deciding others’
directions. In Figure 6(a)-6(c), we already observe the emergence
of two clusters with di�erent directions. Following Figure 6(c), we
�ip and �x the directions of the three leaders in the le� community
as in Figure 7(a); as a result, people in the le� cluster will gradually
alter their directions following the leaders (Figure 7(a)-7(c)).



(a) t = 0 (init) (b) t = 40 (c) t = 80

Noise level σ = 0.5. Sparsity parameter d = exp (−0.4).

(d) t = 0 (init) (e) t = 40 (f) t = 80

Noise level σ = 2.0. Sparsity parameter d = exp (−0.4).

(g) t = 0 (init) (h) t = 40 (i) t = 80

Noise level σ = 0.5. Sparsity parameter d = exp (−2.0).

Figure 6: Migration of entities in the network. Each row corresponds to one setting of system parameters.

(a) t = 80 (b) t = 120 (c) t = 160

Figure 7: Role of opinion leaders (under the same setting: σ = 0.5, d = exp (−0.4)).

5 APPLICATION
Apart from the capability of modeling opinion migration and net-
work evolution, a good generation model should be able to explain

and predict the behavior of objects given observed data. In gen-
eral, node properties could be regarded as vector representations or
explanatory variables of a node, and are also referred to as node em-
beddings in some work (e.g. [40]). �ey usually convey meanings
dependent on the network and context, and are �exible enough



to be inferred given a variety of real-world networks. In this sec-
tion we show an application of our co-evolution model, where we
predict the cosponsors of bills in the future. Here the node latent
properties can be treated as multi-dimensional political ideology as
in [5, 32].

5.1 Dataset
Co-sponsorship dataset. A sponsor of a bill is a legislator (usually
a member from the congress) who introduces a bill or resolution
for consideration. A cosponsor is another congress member who
adds his or her name as a supporter to the sponsor’s bill. Cospon-
sorship contains important information about the social support
network between legislators: the closer the relationship between a
sponsor and a cosponsor, the more likely it is that the sponsor has
directly petitioned the cosponsor for support [11]. We crawled the
legislative bills1 from 1983 (98th congress meeting) till now (114th
congress meeting), with a timeframe of 34 years. For bills with
a sponsor, we extract all the cosponsors and build links between
them. �e minimal time unit is set to one month, and we use H 〈t 〉
to denote all the cosponsor links in month t . In order to make the
evolution process smoother, a snapshot of network G〈t 〉 consists of
all the people and their cosponsor links within a 12-month period
up to month t , and the time window is shi�ed forwards one month
at a time. In other words, G〈t 〉 = H 〈t−11〉 ∪ H 〈t−10〉 ∪ · · · ∪ H 〈t 〉.
�erefore, this series of graphs starts at t0 = 12 and G〈t0〉 contains
all the cosponsorship links from Jan. 1, 1983 to Jan. 1, 1984; G〈t0+1〉

contains all the cosponsorship links from Feb. 1, 1983 to Feb. 1,
1984, and so on. �is series of evolving networks contain T = 382
time slices, N = 2,180 legislators, 130,692 bills and 2.1 million
cosponsorship links in total.

5.2 Fitting the Data
A graphical model representing our model is shown in Figure 8.

x 〈1〉

G〈1〉

θ 〈1〉

x 〈2〉

G〈2〉

θ 〈2〉

x 〈3〉

G〈3〉

θ 〈3〉

· · ·

· · ·

· · ·

x 〈T 〉

G〈T 〉

θ 〈T 〉

Figure 8: Graphical model representation of our model.
Shadowed units represent observed variables.

Our model becomes a probabilistic model during the inference
process, therefore each link is no longer deterministically estab-
lished by a threshold d . �e optimal parameters are inferred by
maximizing the joint probability ofG , X = {x 〈t 〉}Tt=1, Θ = {θ 〈t 〉}Tt=1
and b = {bn }Nn=1. From Figure 8 we have

X ,Θ,b = argmax
X ,Θ,b

T∏
t=1

p (G〈t 〉 |x 〈t 〉,b) ·
T∏
t=2

p (θ 〈t 〉 |θ 〈t−1〉,G〈t−1〉)

(9)

1Data are collected at h�ps://www.govtrack.us

s.t.
x 〈t+1〉
n = x 〈t 〉n +v · (cosθ 〈t 〉n , sinθ 〈t 〉n ), ∀n,t (10)

�e constraint (Equation 10) makes it much harder to achieve a
global estimation of parameters. �erefore, we adopt an approach
similar to coordinate ascent algorithm, and updateX , Θ andb given
each other iteratively.

Update b. b can be directly updated using traditional methods
(e.g. stochastic gradient ascent) under a unconstrained optimization
se�ing.

Update X and Θ. Initially (t = t0), the optimal positions x 〈t0〉∗

are estimated by maximizing the likelihood of the �rst observed
graph:

x 〈t0〉∗ = argmax
x 〈t0〉

p (G〈t0〉 |x 〈t0〉,b) (11)

and directions θ 〈t0〉 are initialized uniformly at random in [0,2π ).
Latent features at the next step x 〈t0+1〉 are updated deterministically
by our propagation model (Equation 6).

A�er that, for each timestamp t (t ≥ t0 + 1), given the present
position x 〈t 〉, previous direction θ 〈t−1〉 and the next graph G〈t+1〉,
we are able to estimate θ 〈t 〉∗ according to:

θ 〈t 〉∗ = argmax
θ 〈t 〉

logp (θ 〈t 〉 |G〈t+1〉,θ 〈t−1〉,x 〈t 〉,b)

= argmax
θ 〈t 〉

(
logp (G〈t+1〉 |θ 〈t 〉,x 〈t 〉,b) + logp (θ 〈t 〉 |θ 〈t−1〉,G〈t−1〉)

)
= argmax

θ 〈t 〉

(
logp (G〈t+1〉 |x 〈t+1〉,b) + logp (θ 〈t 〉 |θ 〈t−1〉,G〈t−1〉)

)
(12)

�is concludes an outer-iteration of parameter update. We plot
the objective versus the number of outer iterations in Figure 9.
Empirically, only a few iterations are needed for convergence, and
we let the number to be 3 in all following experiments.

Figure 9: �e log likelihood when parameters are updated
for multiple rounds.

5.3 Baselines
We compare our co-evolution model of network structure and node
opinions (CoNN) with the following baseline methods. For fair
comparison, we compare with several models designed for dynamic
networks, and dimension of latent features is set to K = 2 in all
methods. �e absolute value of velocity is �xed to be v = 3 × 10−3

in order for the process to be smoother. We let σ = 1 and ϵ = 0.8
in our method for now. Parameter studies at the end of this section
reveal that our method is not sensitive to these parameters.

https://www.govtrack.us


• CoNNdot : �e �rst baseline is a variant of our model where
the probability of a link involves a dot product: p (Gnm = 1) =
1/(1+e−(xn ·xm+bn+bm ) ). {bn } is a set of variables with meaning
similar to our CoNN model.

• Latent feature propagation model (LFP) [16]: �e second base-
line is the binary latent feature propagation model. Local opti-
mization is adopted in order for their method to scale with our
data. �e authors kindly share their code.

• Dynamic social network with latent space models (DSNL) [36]:
We implement the dynamic social network analysis approach
where no social neighbors are considered in propagation. Latent
features evolve purely according to their previous positions.

• Phase transition model (PTM) [42]. �is approach is proposed
to model the behavior of molecules during a phase transition.
Directions of molecules are treated as the parameter, and they
propagate according to the average of their spatial neighbors.
We use our estimated features at the beginning as their initial-
ization, and run simulation for T steps.

We also compare with a state-of-the-art baseline method de-
signed for static networks.
• Large-scale information network embedding (LINE) [40]. �is

approach embeds information network into low-dimensional
vector spaces. We apply LINE on static snapshots of the social
graph, and treat the embeddings as node features.

5.4 Co-sponsorship Prediction
In this task, we demonstrate the advantage of our co-evolution
model by predicting cosponsors in the future. Speci�cally, given
the observed cosponsor links up to time t1, a bill in future time t2
(t2 > t1) and its sponsor un , our goal is to predict the users who
will cosponsor it.

Given G〈t0:t1〉, we are able to learn θ 〈t0:t1−1〉 and x 〈t0:t1〉. A�er
that, the latent features propagate according to our evolution model,
namely

θ 〈s〉n ∼ N (〈θ 〈s−1〉
n 〉,σ 2)

x 〈s+1〉
n = x 〈s〉n +v · (cosθ 〈s〉n , sinθ 〈s〉n )

(13)

for s = t1, · · · ,t2 − 1 and every user n. Finally, we calculate the
pairwise probability of a link from un to all other users, rank them
and evaluate the AUC score in Figure 11. �e X-axis denotes time
gap between now and the prediction (in months) (∆t = t2 − t1), and
Y-axis denotes the cosponsor prediction AUC for all bills at time t2,
averaged over all pairs of (t1,t2) which satisfy t2 − t1 = ∆t .

For baseline methods which purely model the propagation of
latent features, we have

x 〈s+1〉
n ∼ pm (x 〈s〉n ),∀n (14)

for s = t1, · · · ,t2 − 1, where pm (x 〈s〉n ) is the prior (propagation
probability) for the corresponding baseline method m. For baseline
methods designed for static networks (i.e. no propagation in terms
of latent features), we use the node representation at time t1 to
predict the cosponsors at t2.

It would also be interesting to study the time delay that a legis-
lator cosponsors a bill. A�er a bill is initialized, the sponsor may
expend considerable e�orts recruiting cosponsors with personal
contacts so that others will add their names to support the bill later.

Only those cosponsors who join within a year are considered. �e
distribution of the time delay between the initial sponsorship and
cosponsor date is shown in Figure 10. When a legislator cospon-
sors a bill immediately a�er its initialization, it may indicate that
the sponsor and cosponsor are close in some sense. �erefore,
we assign a relevant score to cosponsors according to the date of
cosponsorship: those who signed their names within the �rst quar-
tile (most promptly) are assigned with the highest relevance score
of 4; those between the �rst and the second quartile have a rele-
vance score of 3, and so on. �us, based on the ranking given by the
likelihood of a cosponsor, we are able to calculate the normalized
discounted cumulative gain (NDCG) of the cosponsorship predic-
tion. �e macro-average NDCG10 score for each bill is reported in
Figure 12. X-axis has the same meaning as the previous task, i.e.,
the time gap between now and the prediction.

Figure 10: Distribution of time delay. �artiles: Q1 = 24, Q2
= 58, Q3 = 125.

Figure 11: AUC score for cosponsor prediction.

In Table 1 we also show the top 10 people with largest b values in
our timeframe (1983-present). �ey are popular in that many others
legislators are likely to cosponsor the bills they dra�ed. We interpret
them as opinion leaders, since cosponsorship implies endorsement
and their ideas spread more widely among others. Among the



Figure 12: NDCG10 for cosponsor prediction.

results, we identify John Kerry (68th U.S. Secretary of State), Albert
Gore (45th U.S. Vice President) and Mitch McConnell (the majority
leader of the Senate since 2015). �erefore, the opinion leaders and
the actual leaders in the legislature have some overlap, and our
approach can detect leaders from another perspective.

Rank Name Party-State Time in Congress
1 Paul Simon Democrat-IL 1975-1997
2 Jay Rockefeller Republican-WV 1985-2015
3 John Kerry Democrat-MA 1985-2013
4 �omas Harkin Democrat-IA 1975-2015
5 James Terry Sanford Democrat-NC 1986-1993
6 Albert Gore Democrat-TN 1983-1993
7 Kent Conrad Democrat-ND 1987-2013
8 Edward Kennedy Democrat-MA 1962-2009
9 Mitch McConnell Republican-KY 1985-present
10 Frank Annunzio Democrat-IL 1965-1993

Table 1: Popular legislators ranked by b in recent 34 years.

Parameter Study. We plot the performance curve under di�er-
ent choices of hyperparameters (σ , ϵ) in Figure 13. For intuitive
comparison, we calculate the average evaluation measure over all
possible lengths of time gap (i.e. from ∆t = 1 to 36) as the value
on Y-axis. In sum, our inference model is not sensitive to these
parameters as long as they lie within a reasonable range.

6 RELATEDWORK
Understanding the evolution of link structure and node property
has been a promising research topic recently. Traditional inter-
pretations of dynamic networks treat the two problems separately,
i.e., the evolution of link structures [4, 9, 24–26, 39, 47] and the
evolution of node a�ributes [13–15, 22].

Under a �xed network structure, various node property prop-
agation models have been proposed, which are be�er known as
the information di�usion model when the node features are bi-
nary. �e binary feature of each node can be considered as a status,

Figure 13: Parameter study on σ and ϵ for CoNN. In the le�
�gure, ϵ is �xed to be 0.8. In the right �gure, σ is �xed to be
1.

as whether the node is infested or activated, and it may change
according to the network structure. Typically, information di�u-
sion process occurs between nodes that are linked to each other.
For example, linear threshold model [14] involves an aggregation
of neighbors’ weights, and a node is activated if the aggregated
weight of its active neighbors exceeds some threshold. Indepen-
dent cascade model [13] assumes an activating probability for each
neighbor of a newly activated node. While binary features re�ect
the activation status of a node, probabilistic or real-valued features
embed every node onto a continuous spectrum, which indicates the
relative position between actors. In the DeGroot learning process,
every time the opinions of agents are assumed to be updated ac-
cording to the weighted average of their neighbors [8]. Adjustment
in user features a�er interaction is studied in [7], where similarity
of connected users are found to be increasing over time. �ese
methods are limited to the case where network structure does not
change over time, and more principled approaches are desired to
model user behaviors in dynamic networks.

�e evolution of networks is usually modeled as a result of the
migration of individuals’ features. To model the static snapshots
of networks, a variety of methods assume vertices in the network
are associated with a latent feature representation, and the ob-
served links are a result of their interaction. Latent class models
(blockmodels) assume the probability of a link depends on the com-
munities that the corresponding users engage in [6, 16, 45, 46], and
continuous latent feature models embed each node in the network
as a position in a lower dimensional Euclidean space, where the
features constitute a continuous spectrum that conveys more mean-
ingful messages such as a user’s stance (e.g. extreme/moderate)
towards a speci�c topic. �ese approaches have broad applications
in clustering, visualization and so on [17, 29, 33].

Migration of users’ latent features is usually modeled as a hidden
Markov model (HMM), with network structure being the observed
sequence and node features being the latent variables [6, 16, 45, 46].
�e distribution of the latent variables depends only on the their
previous values, and the value of observed network depends only
on the latent variables at the same timestamp. Optimization is usu-
ally done using standard forward-backward algorithm [16]. Feature
dimension may also be learned automatically from the data, leading
to nonparametric methods [10, 20, 23, 35]. �e evolution of la-
tent features is modeled as regression of a node’s future features to
accommodate dynamic networks [27, 36–38]. However, these meth-
ods fail to consider the feature migration as part of co-evolution



process. In other words, in�uence from network structure to node
feature migration is totally ignored. In addition, as far as we are
concerned, all of the existing approaches simply posit the propaga-
tion of node features can happen arbitrarily, without considering
the direction or tendency when people change their opinions.

7 CONCLUSION
In this paper we present a novel approach for understanding the
co-evolution of network structure and opinion migration. Our
approach models both the migration of latent features by virtue
of network structures, and the evolution of link structures as a
result of the change of node features. We analogize the motion of
entities in biological and molecular system to propose the latent
feature migration model, and social in�uence is explicitly exhibited
in terms of user’s moving directions. Various properties of network
can be charactered by adjusting the system-level parameters of our
generation model, and applications on a real-world dataset reveal
our advantage over the state-of-the-art co-evolution approaches.
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