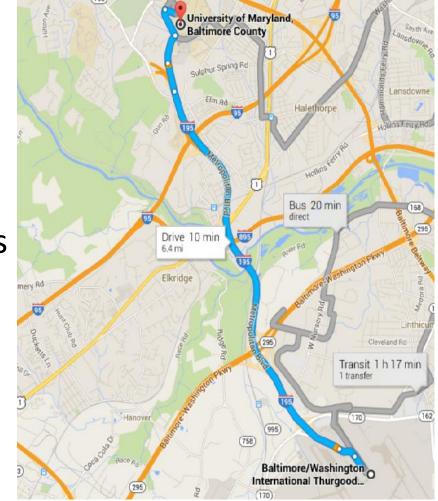
Computational Methods in IS Research


Graph Algorithms Shortest Path

Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

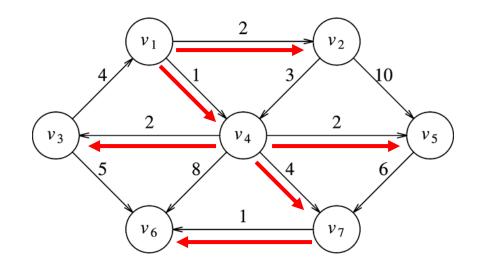
www.umbc.edu

Shortest-Path Algorithms

- Find the "shortest" path from point A to point B
- "Shortest" in time, distance, cost
- Numerous applications
 - Map navigation
 - Flight itineraries
 - Circuit wiring
 - Network routing

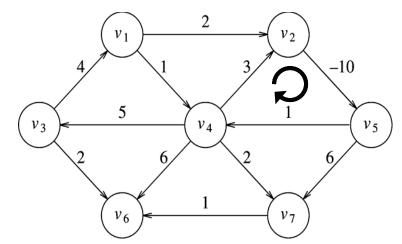
Shortest Path Problems

- Input is a weighted graph where each edge (v_i, v_j) has cost c_{i, j} to traverse the edge
- Cost of a path $v_1v_2...v_N$ is


$$\circ$$
 Weighted path cost $\sum_{i=1}^{N-1} c_{i,i+1}$

 Unweighted path length is N – 1, number of edges on path

Shortest-Path Problems (cont'd)


Single-source shortest path problem

- Given a weighted graph G = (V, E), and a distinguished start vertex, s, find the minimum weighted path from s to every other vertex in G
- The shortest weighted path from v_1 to v_6 has a cost of 6 and $v_1v_4v_7v_6$

Negative Weights

- Graphs can have negative weights
- E.g., arbitrage
 - Shortest positive-weight path is a net gain
 - Path may include individual losses
- Problem: Negative weight cycles
 - Allow arbitrarily-low path costs
 - Shortest path cost from v_5 to $v_4 = 1$?
 - $v_5 v_4 v_2 v_5 v_4 = -5$, still not shortest
 - Shortest path from v_1 to v_6 undefined
 - negative-cost cycle
- Solution
 - Detect presence of negative-weight cycles

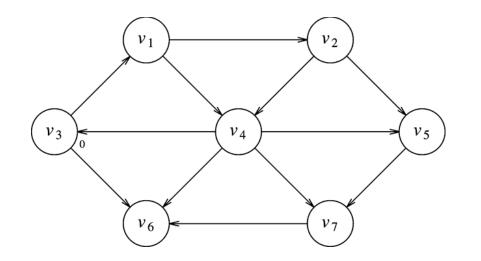
Unweighted Shortest Paths

- Problem: Find the shortest path from some vertex s to all other vertices
 - Input: s, the source/starting vertex
 - Output: minimum # of edges contained on the path
 - No weights on edges
 - Find shortest length paths
 - Same as weighted shortest path with all weights equal

 v_2

 v_4

 v_5


 v_1

 v_6

 v_3

- Start vertex is $s = v_3$
- o Shortest path from ${
 m s}$ to ${
 m v}_3$ is 0
- Breadth-First Search (BFS)
 - Process vertices in layers
 - Closest to the start are evaluated first
 - Then most distant vertices

- For each vertex, keep track of
 - Whether we have visited it (*known*)
 - Its distance from the start vertex (d_v)
 - Its predecessor vertex along the shortest path from the start vertex (p_v)

ν	known	d_{v}	p_{v}
v_1	F	∞	0
v_2	F	∞	0
v ₃	F	0	0
v_4	F	∞	0
v_5	F	∞	0
v ₆	F	∞	0
v_7	F	∞	0

```
void Graph::unweighted( Vertex s )
    for each Vertex v
        v.dist = INFINITY:
        v.known = false;
    s.dist = 0;
    for( int currDist = 0; currDist < NUM VERTICES; currDist++ )</pre>
        for each Vertex v
            if( !v.known && v.dist == currDist )
                v.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                         w.dist = currDist +
                        w.path = v;
                                               v_3
```

Solution 1: Repeatedly iterate through vertices, looking for unvisited vertices at current distance from start vertex s

Running time: O(|V|²)

```
d_{v}
        known
                                p_{\nu}
           F
                                 0
                       \infty
v_1
           F
                                 0
v2
                       \infty
           F
                        0
                                 0
Vz
                                 0
v_4
                       \infty
V5
                       \infty
v_6
                       \infty
                                 0
                       \infty
v_7
```

void Graph::unweighted(Vertex s)

Queue<Vertex> q;

for each Vertex v
 v.dist = INFINITY;

s.dist = 0; g.engueue(s);

```
while( !q.isEmpty( ) )
```

Vertex v = q.dequeue();

```
for each Vertex w adjacent to v
if( w.dist == INFINITY )
{
    w.dist = v.dist + 1;
    w.path = v;
    q.enqueue( w );
}
```

Solution 2: Ignore vertices that have already been visited by keeping only unvisited vertices (distance = ∞) on the queue

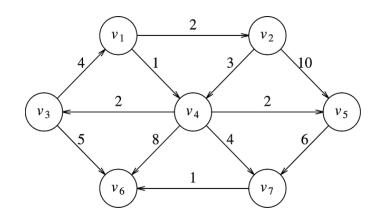
Running time: O(|E|+|V|) with adjacency lists

Two groups of vertices based on currDist and currDist+1

known data member is not used

		Initi	al State		v ₃ De	equeue	d	v_1 Dequeued			v ₆ Dequeued		
(v_1) (v_2)	ν	known	d_v	p_{ν}	known	d_{v}	p_{v}	known	d_v	p_{v}	known	d_v	p_{ν}
		F	∞	0	F	1	v ₃	Т	1	v ₃	Т	1	v ₃
	<i>v</i> ₂	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
$\begin{pmatrix} v_3 \end{pmatrix}_0^{\leftarrow} \begin{pmatrix} v_4 \end{pmatrix} \longrightarrow \begin{pmatrix} v_5 \end{pmatrix}$	v ₃	F	0	0	Т	0	0	Т	0	0	Т	0	0
	v_4	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1
	v_5	F	∞	0	F	∞	0	F	∞	0	F	∞	0
$\left(\begin{array}{c} v_6 \end{array}\right) \leftarrow \left(\begin{array}{c} v_7 \end{array}\right)$	v ₆	F	∞	0	F	1	v ₃	F	1	v ₃	Т	1	v ₃
\bigcirc	v_7	F	∞	0	F	∞	0	F	∞	0	F	∞	0
	Q:		v ₃		v_1, v_6			v_6, v_2, v_4			v ₂ , v ₄		
			v ₄ Dequeued			v ₅ Dequeued			v7 Dequeued				
		v ₂ De	equeue	d	v ₄ De	equeue	d	v ₅ De	equeue	ed	v ₇ De	equeue	d
\frown	ν	v ₂ De	equeueo d _v	$\frac{d}{p_{v}}$	v ₄ De known	equeue d _v	$\frac{d}{p_{v}}$	v ₅ De known	equeue d _v	$\frac{d}{p_{v}}$	v ₇ De known	equeue d _v	$\frac{d}{p_{v}}$
v_1	$\frac{v}{v_1}$		-			-							
v_1 v_2		known	d _v	p _v	known	d_{v}	p _v	known	d_{v}	p_{ν}	known		p_{ν}
	v ₁	known T	d_{v} 1	<i>p</i> _ν ν ₃	known T	<i>d</i> _v 1	p_{ν} ν_3	known T	d_v 1	p _v v ₃	known T	d_{v} 1	p_{v} v_{3}
v_1 v_2 v_2 v_3 v_4 v_4 v_5	v_1 v_2	known T T	d _v 1 2	p_{ν} ν_{3} ν_{1}	known T T	<i>d</i> _v 1 2	p_{ν} v_{3} v_{1}	known T T	<i>d</i> _ν 1 2	p_{v} v_{3} v_{1}	known T T	d _v 1 2	p_{v} v_{3} v_{1}
	v_1 v_2 v_3	known T T T	<i>d_v</i> 1 2 0		known T T T	<i>d</i> _v 1 2 0	$\begin{array}{c} p_{\nu} \\ \nu_{3} \\ \nu_{1} \\ 0 \end{array}$	known T T T	<i>d</i> _v 1 2 0		known T T T	<i>d</i> _v 1 2 0	
v_3 v_4 v_5	v ₁ v ₂ v ₃ v ₄	known T T T F	d _v 1 2 0 2		known T T T T T	d _v 1 2 0 2	$\begin{array}{c} p_{\nu} \\ \nu_{3} \\ \nu_{1} \\ 0 \\ \nu_{1} \end{array}$	known T T T T	d _v 1 2 0 2		known T T T T	d _v 1 2 0 2	
	$ \begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{array} $	known T T T F F F	d _v 1 2 0 2 3	$ \begin{array}{c} p_{\nu} \\ v_{3} \\ v_{1} \\ 0 \\ v_{1} \\ v_{2} \end{array} $	known T T T T F	d _v 1 2 0 2 3	$ \begin{array}{c} p_{\nu} \\ \nu_{3} \\ \nu_{1} \\ 0 \\ \nu_{1} \\ \nu_{2} \end{array} $	known T T T T T T	d _v 1 2 0 2	$ \begin{array}{c} p_{\nu} \\ \nu_{3} \\ \nu_{1} \\ 0 \\ \nu_{1} \\ \nu_{2} \end{array} $	known T T T T T T	d _v 1 2 0 2	
v_3 v_4 v_5	$ \begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{array} $	known T T F F F T F	d _v 1 2 0 2 3 1	$ \begin{array}{c} p_{\nu} \\ v_{3} \\ v_{1} \\ 0 \\ v_{1} \\ v_{2} \\ v_{3} \end{array} $	known T T T T F T F	d _v 1 2 0 2 3 1	$ \begin{array}{c} p_{\nu}\\ \nu_{3}\\ \nu_{1}\\ 0\\ \nu_{1}\\ \nu_{2}\\ \nu_{3} \end{array} $	known T T T T T T	<pre>dv 1 2 0 2 3 1</pre>	$\begin{array}{c} p_{\nu} \\ v_{3} \\ v_{1} \\ 0 \\ v_{1} \\ v_{2} \\ v_{3} \end{array}$	known T T T T T T T	d _v 1 2 0 2 3 1	$ \begin{array}{r} p_{\nu} \\ $

Weighted Shortest Paths

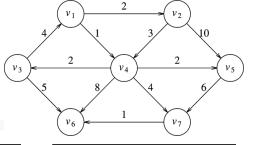

- Dijkstra's algorithm
 - Proceeds in stages just like the unweighted shortestpath algorithm
 - Select a vertex v, which has the smallest d_v among all the unknown vertices and declares the shortest path from s to v is known
 - \circ Use priority queue to store unvisited vertices by distance from ${\ensuremath{\mathbb S}}$
 - After deleteMin v, update distance of remaining vertices adjacent to v using decreaseKey
 - Does not work with negative weights

Dijkstra's Algorithm

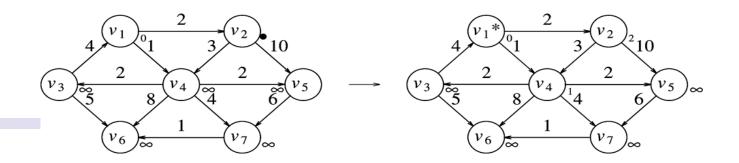
```
/**
* PSEUDOCODE sketch of the Vertex structure.
* In real C++, path would be of type Vertex *,
* and many of the code fragments that we describe
* require either a dereferencing * or use the
* -> operator instead of the . operator.
* Needless to say, this obscures the basic algorithmic ideas.
*/
struct Vertex
{
   List
            adj; // Adjacency list
   boo1
             known;
   DistType dist; // DistType is probably int
   Vertex path; // Probably Vertex *, as mentioned above
       // Other data and member functions as needed
};
```

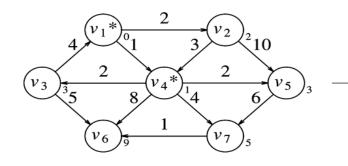
Dijkstra's Algorithm Implementation

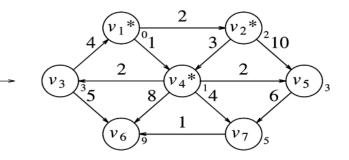
- Priority queue such as binary heap
- Selection of a vertex v is deleteMin operation
 - Once unknown minimum vertex is found it is no longer unknown
 - Must be removed from future consideration
- Update of w's distance (adjacent to v)
 - o decreaseKey operation

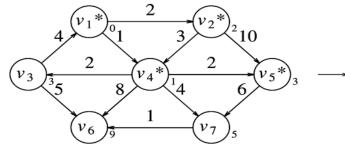


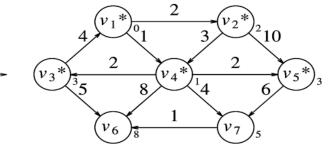

```
void Graph::dijkstra( Vertex s )
    for each Vertex v
    ł
        v.dist = INFINITY;
        v.known = false;
                                                                      BuildHeap: O(|V|)
    }
    s.dist = 0;
    for(;;)
    {
        Vertex v = smallest unknown distance vertex;
                                                                      DeleteMin: O(|V| log |V|)
        if( v == NOT A VERTEX )
             break;
        v.known = true;
        for each Vertex w adjacent to v
                                               •In unweighted case we set d_w = d_v + 1 if d_w = infinity
             if( !w.known )
                                               •Here we lower the value of d_w if vertex v offered a shorter path
                 if (v.dist + cvw < w.dist ) \cdot d_w = d_v + c_{v,w} if the new value d_w is an improvement
                 ł
                     // Update w
                                                                      DecreaseKey: O(|E| log |V|)
                     decrease( w.dist to v.dist + cvw );
                     w.path = v;
                 }
```

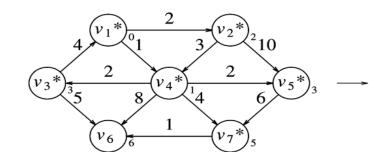

ł

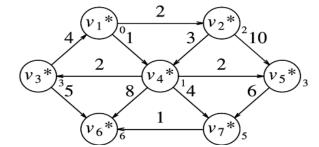

Total running time: O(|E| log |V|)


Dijkstra's Adjacency List

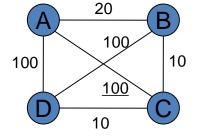

ν	known	d_{v}	p _v	ν	known	d _v	p _v	ν	known	d _v	p _v	ν	known	d_{v}	pν
v_1	F	0	0	v_1	Т	0	0	v ₁	Т	0	0	v_1	Т	0	0
v_2	F	∞	0	v ₂	F	2	v_1	v_2	F	2	v_1	v_2	Т	2	v_1
v_3	F	∞	0	v ₃	F	∞	0	v_3	F	3	v_4	v ₃	F	3	v_4
v_4	F	∞	0	v_4	F	1	v_1	v_4	Т	1	v_1	v_4	Т	1	v_1
v_5	F	∞	0	v_5	F	∞	0	v_5	F	3	v_4	v_5	F	3	v_4
v_6	F	∞	0	v_6	F	∞	0	v_6	F	9	v_4	v ₆	F	9	v_4
v_7	F	∞	0	v_7	F	∞	0	v_7	F	5	v_4	v_7	F	5	v_4
ν	known	d _v	p _v	ν	known	d _v	p _v	ν	know	'n	d _v	p_{ν}			
v_1	Т	0	0	v_1	Т	0	0	$v_{]}$	L T		0	0			
v ₂	Т	2	v_1	v_2	Т	2	v_1	v_2	2 T		2	v_1			
v ₃	Т	3	v ₄	v ₃	Т	3	v_4	v_{3}	3 Т		3	v_4			
v ₄	Т	1	v_1	v_4	Т	1	v_1	v_4	μ T		1	v_1			
ν ₅	Т	3	v ₄	v_5	Т	3	v_4	v	5 T		3	v_4			
v ₆	F	8	v ₃	v ₆	F	6	v_7	ve	5 T		6	v_7			
v ₇	F	5	v ₄	v ₇	Т	5	v ₄	v_7	7 T		5	v_4			

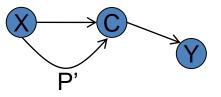






Dijkstra's Algorithm

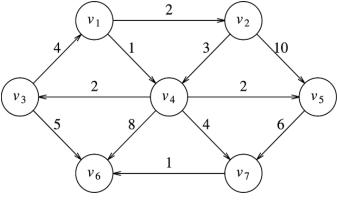


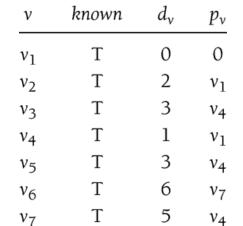

Why Dijkstra Works

- Dijkstra's algorithm is known as greedy algorithm
 - Solves a problem in stages by doing what appears to be the best thing at each stage
- Prove that it works: Hypothesis
 - A least-cost path from X to Y contains least-cost paths from X to every city on the path
 - E.g., if $X \rightarrow C1 \rightarrow C2 \rightarrow C3 \rightarrow Y$ is the least-cost path from X to Y, then
 - $X \rightarrow C1 \rightarrow C2 \rightarrow C3$ is the least-cost path from X to C3
 - $X \rightarrow C1 \rightarrow C2$ is the least-cost path from X to C2
 - $X \rightarrow C1$ is the least-cost path from X to C1

Why Dijkstra Works

- Assume hypothesis is false
 - i.e., Given a least-cost path P from X to Y that go is a better path P' from X to C than the one in P




- Show a contradiction
 - But we could replace the subpath from X to C in P with this lessercost path P'
 - The path cost from C to Y is the same
 - Thus we now have a better path from X to Y
 - But this violates the assumption that P is the least-cost path from X to Y
- Therefore, the original hypothesis must be true

Printing Shortest Paths

```
/**
```

```
* Print shortest path to v after dijkstra has run.
 * Assume that the path exists.
                                                       v_1
 */
                                                       2
void Graph::printPath( Vertex v )
                                                v_3
ł
    if( v.path != NOT A VERTEX )
                                                       v_6
    {
         printPath( v.path );
                                                      ν
         cout << " to ";
                                                      v_1
                                                      v_2
    }
                                                      V3
    cout << v;
                                                     v_4
```

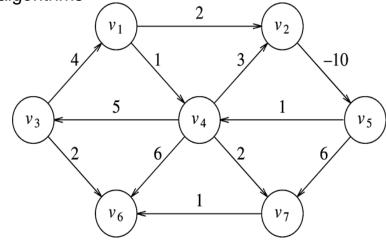

Negative Edge Costs but No Cycles

void Graph::weightedNegative(Vertex s)

```
Queue<Vertex> q;
```

```
for each Vertex v
v.dist = INFINITY;
```

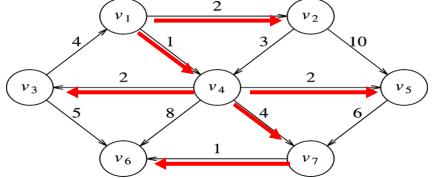
```
s.dist = 0;
q.enqueue( s );
```


```
while( !q.isEmpty( ) )
```

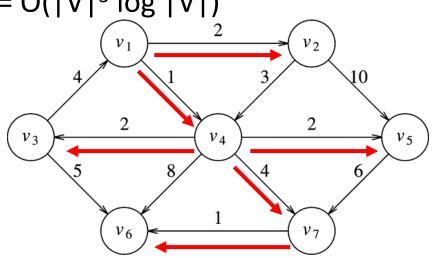
```
Vertex v = q.dequeue( );
```

```
for each Vertex w adjacent to v
    if( v.dist + cvw < w.dist )
    {
        // Update w
        w.dist = v.dist + cvw;
        w.path = v;
        if( w is not already in q )
            q.enqueue( w ); // a bit can be set for each vertex to
    }
        indicate presence in the queue
</pre>
```

Running time: O(|E|·|V|) Negative weight cycles? Dijkstra's algorithm does not work


Vertex u is known but there may be a path from unknown vertex v back to u that is very negative
Add a constant value to each edge cost?
Solve this with the combination of unweighted and weighted algorithms

Does not work for above graph, as it has negative-cost cycles


Shortest-Path Problems (cont'd)

- Unweighted shortest-path problem: O(|E| + |V|)
- Weighted shortest-path problem
 - No negative edges: O(|E| log |V|)
 - Negative edges: $O(|E| \times |V|) \rightarrow poor time bound$
- Acyclic graphs: O(|E| + |V|) in linear time
- No asymptotically faster algorithm for singlesource/single-destination shortest path problem
 - No algorithms find the path from s to one vertex (one-to-one) any faster than finding the path from s to all vertices (one-tomany) $(v_1) = \frac{2}{v_2}$

Shortest Path Algorithms

- Important graph problem with numerous applications
- Unweighted graph: O(|E| + |V|)
- Weighted graph
 - Dijkstra: O(|E| log |V|)
 - Negative weights: O(|E| x |V|)
- All-pairs shortest paths
 - Dijkstra: $O(|V| \times |E| \log |V|) = O(|V|^3 \log |V|)$
 - Floyd-Warshall: O(|V|³)

