
Computational Methods in IS Research

Graph Algorithms
Shortest Path

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Shortest-Path Algorithms

 Find the “shortest”
path from point A to
point B

 “Shortest” in time,
distance, cost

 Numerous applications
 Map navigation

 Flight itineraries

 Circuit wiring

 Network routing

Shortest Path Problems

 Input is a weighted graph where each edge (vi, vj) has
cost ci, j to traverse the edge

 Cost of a path v1v2…vN is

 Weighted path cost

 Unweighted path length is N – 1, number of edges on
path

1

1

1,

N

i

iic

Shortest-Path Problems (cont’d)

 Single-source shortest path problem

 Given a weighted graph G = (V, E), and a distinguished
start vertex, s, find the minimum weighted path from s
to every other vertex in G

 The shortest weighted path from v1 to v6 has a cost of 6
and v1v4v7 v6

Negative Weights

 Graphs can have negative weights

 E.g., arbitrage

 Shortest positive-weight path is a net gain

 Path may include individual losses

 Problem: Negative weight cycles

 Allow arbitrarily-low path costs

 Shortest path cost from v5 to v4 = 1 ?

 v5 v4 v2 v5 v4 = - 5, still not shortest

 Shortest path from v1 to v6 undefined
 negative-cost cycle

 Solution

 Detect presence of negative-weight
cycles

Unweighted Shortest Paths
 Problem: Find the shortest path from some vertex s to all

other vertices
 Input: s, the source/starting vertex

 Output: minimum # of edges contained on the path

 No weights on edges

 Find shortest length paths

 Same as weighted shortest path with all weights equal

 Start vertex is s = v3
 Shortest path from s to v3 is 0

 Breadth-First Search (BFS)

 Process vertices in layers
 Closest to the start are evaluated first

 Then most distant vertices

Unweighted Shortest Paths (cont’d)

 For each vertex, keep track of

 Whether we have visited it (known)

 Its distance from the start vertex (dv)

 Its predecessor vertex along the shortest path
from the start vertex (pv)

Unweighted Shortest Paths (cont’d)
Solution 1: Repeatedly iterate through

vertices, looking for unvisited vertices

at current distance from start vertex s

Running time: O(|V|2)

Unweighted Shortest Paths (cont’d)

Solution 2: Ignore vertices that have already

been visited by keeping only unvisited

vertices (distance = ∞) on the queue

Running time: O(|E|+|V|) with adjacency lists

Two groups of vertices based on currDist

and currDist+1

known data member is not used

Unweighted Shortest Paths (cont’d)

Weighted Shortest Paths

 Dijkstra’s algorithm

 Proceeds in stages just like the unweighted shortest-
path algorithm

 Select a vertex v, which has the smallest dv among all
the unknown vertices and declares the shortest path
from s to v is known

 Use priority queue to store unvisited vertices by distance
from s

 After deleteMin v, update distance of remaining vertices
adjacent to v using decreaseKey

 Does not work with negative weights

Dijkstra’s Algorithm

Dijkstra’s Algorithm Implementation

 Priority queue such as binary heap

 Selection of a vertex v is deleteMin operation

 Once unknown minimum vertex is found it is no longer
unknown

 Must be removed from future consideration

 Update of w’s distance (adjacent to v)

 decreaseKey operation

BuildHeap: O(|V|)

DeleteMin: O(|V| log |V|)

DecreaseKey: O(|E| log |V|)

Total running time: O(|E| log |V|)

•In unweighted case we set dw= dv + 1 if dw= infinity

•Here we lower the value of dw if vertex v offered a shorter path

•dw= dv + cv,w if the new value dw is an improvement

Dijkstra’s Adjacency List

Dijkstra’s

Algorithm

Why Dijkstra Works

 Dijkstra’s algorithm is known as greedy algorithm

 Solves a problem in stages by doing what appears to be
the best thing at each stage

 Prove that it works: Hypothesis

 A least-cost path from X to Y contains least-cost paths
from X to every city on the path

 E.g., if XC1C2C3Y is the least-cost path from X
to Y, then
 XC1C2C3 is the least-cost path from X to C3

 XC1C2 is the least-cost path from X to C2

 XC1 is the least-cost path from X to C1
A

D C

B
20

10

10100

100

100

Why Dijkstra Works

 Assume hypothesis is false
 i.e., Given a least-cost path P from X to Y that goes through C, there

is a better path P’ from X to C than the one in P

 Show a contradiction
 But we could replace the subpath from X to C in P with this lesser-

cost path P’

 The path cost from C to Y is the same

 Thus we now have a better path from X to Y

 But this violates the assumption that P is the least-cost path from X
to Y

 Therefore, the original hypothesis must be true

X C

Y
P’

Printing Shortest Paths

Negative Edge Costs but No Cycles

Running time: O(|E|·|V|)

Negative weight cycles?

Dijkstra’s algorithm does not work

•Vertex u is known but there may be a path from

unknown vertex v back to u that is very negative

•Add a constant value to each edge cost?

•Solve this with the combination of unweighted and

weighted algorithms

// a bit can be set for each vertex to

indicate presence in the queue

Does not work for above graph,

as it has negative-cost cycles

Shortest-Path Problems (cont’d)
 Unweighted shortest-path problem: O(|E| + |V|)

 Weighted shortest-path problem
 No negative edges: O(|E| log |V|)

 Negative edges: O(|E| x |V|) poor time bound

 Acyclic graphs: O(|E| + |V|) in linear time

 No asymptotically faster algorithm for single-
source/single-destination shortest path problem
 No algorithms find the path from s to one vertex (one-to-one)

any faster than finding the path from s to all vertices (one-to-
many)

Shortest Path Algorithms

 Important graph problem with numerous applications

 Unweighted graph: O(|E| + |V|)

 Weighted graph

 Dijkstra: O(|E| log |V|)

 Negative weights: O(|E| x |V|)

 All-pairs shortest paths

 Dijkstra: O(|V| x |E| log |V|) = O(|V|3 log |V|)

 Floyd-Warshall: O(|V|3)

