Computational Methods in IS Research

Graph Algorithms
Shortest Path

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County
Shortest-Path Algorithms

- Find the “shortest” path from point A to point B
- “Shortest” in time, distance, cost
- Numerous applications
 - Map navigation
 - Flight itineraries
 - Circuit wiring
 - Network routing
Shortest Path Problems

- Input is a weighted graph where each edge \((v_i, v_j)\) has cost \(c_{i,j}\) to traverse the edge.

- Cost of a path \(v_1v_2...v_N\) is

 - Weighted path cost \(\sum_{i=1}^{N-1} c_{i,i+1}\)

- Unweighted path length is \(N - 1\), number of edges on path.
Shortest-Path Problems (cont’d)

- Single-source shortest path problem
 - Given a weighted graph $G = (V, E)$, and a distinguished start vertex, s, find the minimum weighted path from s to every other vertex in G
 - The shortest weighted path from v_1 to v_6 has a cost of 6 and $v_1v_4v_7v_6$
Negative Weights

- Graphs can have negative weights
- E.g., arbitrage
 - Shortest positive-weight path is a net gain
 - Path may include individual losses
- Problem: Negative weight cycles
 - Allow arbitrarily-low path costs
 - Shortest path cost from v_5 to $v_4 = 1$?
 - $v_5 v_4 v_2 v_5 v_4 = -5$, still not shortest
 - Shortest path from v_1 to v_6 undefined
 - negative-cost cycle
- Solution
 - Detect presence of negative-weight cycles
Unweighted Shortest Paths

- Problem: Find the shortest path from some vertex s to all other vertices
 - Input: s, the source/starting vertex
 - Output: minimum # of edges contained on the path
 - No weights on edges

- Find shortest length paths
 - Same as weighted shortest path with all weights equal
 - Start vertex is $s = v_3$
 - Shortest path from s to v_3 is 0

- Breadth-First Search (BFS)
 - Process vertices in layers
 - Closest to the start are evaluated first
 - Then most distant vertices
Unweighted Shortest Paths (cont’d)

- For each vertex, keep track of
 - Whether we have visited it (*known*)
 - Its distance from the start vertex (*d*_v)
 - Its predecessor vertex along the shortest path from the start vertex (*p*_v)

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d<sub>v</sub></th>
<th>p<sub>v</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>v₁</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v₂</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v₃</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v₄</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v₅</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v₆</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v₇</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Unweighted Shortest Paths (cont’d)

```cpp
void Graph::unweighted( Vertex s )
{
    for each Vertex v
    {
        v.dist = INFINITY;
        v.known = false;
    }

    s.dist = 0;

    for( int currDist = 0; currDist < NUM_VERTICES; currDist++ )
        for each Vertex v
            if( !v.known && v.dist == currDist )
            {
                v.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                    {
                        w.dist = currDist + 
                        w.path = v;
                    }
            }
}
```

Solution 1: Repeatedly iterate through vertices, looking for unvisited vertices at current distance from start vertex \(s\).

Running time: \(O(|V|^2)\)

<table>
<thead>
<tr>
<th></th>
<th>known</th>
<th>(d_v)</th>
<th>(p_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>(\infty)</td>
<td>0</td>
</tr>
</tbody>
</table>
void Graph::unweighted(Vertex s)
{
 Queue<Vertex> q;

 for each Vertex v
 v.dist = INFINITY;

 s.dist = 0;
 q.enqueue(s);

 while(!q.isEmpty())
 {
 Vertex v = q.dequeue();

 for each Vertex w adjacent to v
 if(w.dist == INFINITY)
 { w.dist = v.dist + 1; w.path = v; q.enqueue(w); }
 }
}

Solution 2: Ignore vertices that have already been visited by keeping only unvisited vertices (distance = ∞) on the queue

Running time: O(|E|+|V|) with adjacency lists

Two groups of vertices based on currDist and currDist+1

known data member is not used
Unweighted Shortest Paths (cont’d)

![Graph](image)

<table>
<thead>
<tr>
<th>v</th>
<th>Initial State</th>
<th>v_3 Dequeued</th>
<th>v_1 Dequeued</th>
<th>v_6 Dequeued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>known</td>
<td>d_v</td>
<td>p_v</td>
<td>known</td>
</tr>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
<td>T</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
<td>T</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
<td>F</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>1</td>
<td>v_3</td>
<td>F</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

Q:
- v_3
- v_1, v_6
- v_6, v_2, v_4
- v_2, v_4

<table>
<thead>
<tr>
<th>v</th>
<th>v_2 Dequeued</th>
<th>v_4 Dequeued</th>
<th>v_5 Dequeued</th>
<th>v_7 Dequeued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>known</td>
<td>d_v</td>
<td>p_v</td>
<td>known</td>
</tr>
<tr>
<td>v_1</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
<td>T</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
<td>T</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
<td>T</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>3</td>
<td>v_2</td>
<td>F</td>
</tr>
<tr>
<td>v_6</td>
<td>T</td>
<td>1</td>
<td>v_3</td>
<td>T</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

Q:
- v_4, v_5
- v_5, v_7
- v_7
- empty
Weighted Shortest Paths

- Dijkstra’s algorithm
 - Proceeds in stages just like the unweighted shortest-path algorithm
 - Select a vertex v, which has the smallest d_v among all the unknown vertices and declares the shortest path from s to v is known
 - Use priority queue to store unvisited vertices by distance from s
 - After deleteMin v, update distance of remaining vertices adjacent to v using decreaseKey
 - Does not work with negative weights
/**
 * PSEUDOCODE sketch of the Vertex structure.
 * In real C++, path would be of type Vertex *,
 * and many of the code fragments that we describe
 * require either a dereferencing * or use the
 * -> operator instead of the . operator.
 * Needless to say, this obscures the basic algorithmic ideas.
 */

struct Vertex
{
 List adj; // Adjacency list
 bool known;
 DistType dist; // DistType is probably int
 Vertex path; // Probably Vertex *, as mentioned above
 // Other data and member functions as needed
};
Dijkstra’s Algorithm Implementation

- Priority queue such as binary heap
- Selection of a vertex \(v \) is deleteMin operation
 - Once unknown minimum vertex is found it is no longer unknown
 - Must be removed from future consideration
- Update of \(w \)'s distance (adjacent to \(v \))
 - decreaseKey operation
void Graph::dijkstra(Vertex s)
{
 for each Vertex v
 {
 v.dist = INFINITY;
 v.known = false;
 }

 s.dist = 0;

 for(; ;)
 {
 Vertex v = smallest unknown distance vertex;
 if(v == NOT_A_VERTEX)
 break;
 v.known = true;

 for each Vertex w adjacent to v
 if(!w.known)
 if(v.dist + cvw < w.dist)
 {
 // Update w
 decrease(w.dist to v.dist + cvw);
 w.path = v;
 }

 }
}

BuildHeap: O(|V|)

DeleteMin: O(|V| log |V|)

DecreaseKey: O(|E| log |V|)

Total running time: O(|E| log |V|)
Dijkstra’s Adjacency List

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>T</td>
<td>1</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>F</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>3</td>
<td>v_4</td>
</tr>
<tr>
<td>v_4</td>
<td>T</td>
<td>1</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>F</td>
<td>3</td>
<td>v_4</td>
</tr>
<tr>
<td>v_6</td>
<td>F</td>
<td>9</td>
<td>v_4</td>
</tr>
<tr>
<td>v_7</td>
<td>F</td>
<td>5</td>
<td>v_4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>known</th>
<th>d_v</th>
<th>p_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>2</td>
<td>v_1</td>
</tr>
<tr>
<td>v_3</td>
<td>T</td>
<td>3</td>
<td>v_4</td>
</tr>
<tr>
<td>v_4</td>
<td>T</td>
<td>1</td>
<td>v_1</td>
</tr>
<tr>
<td>v_5</td>
<td>T</td>
<td>3</td>
<td>v_4</td>
</tr>
<tr>
<td>v_6</td>
<td>T</td>
<td>6</td>
<td>v_7</td>
</tr>
<tr>
<td>v_7</td>
<td>T</td>
<td>5</td>
<td>v_4</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm
Why Dijkstra Works

- Dijkstra’s algorithm is known as **greedy algorithm**
 - Solves a problem in stages by doing what appears to be the best thing at each stage

- Prove that it works: Hypothesis
 - A least-cost path from X to Y contains least-cost paths from X to every city on the path
 - E.g., if X → C1 → C2 → C3 → Y is the least-cost path from X to Y, then
 - X → C1 → C2 → C3 is the least-cost path from X to C3
 - X → C1 → C2 is the least-cost path from X to C2
 - X → C1 is the least-cost path from X to C1
Why Dijkstra Works

- Assume hypothesis is false
 - i.e., Given a least-cost path \(P \) from \(X \) to \(Y \) that goes is a better path \(P' \) from \(X \) to \(C \) than the one in \(P \)

- Show a contradiction
 - But we could replace the subpath from \(X \) to \(C \) in \(P \) with this lesser-cost path \(P' \)
 - The path cost from \(C \) to \(Y \) is the same
 - Thus we now have a better path from \(X \) to \(Y \)
 - But this violates the assumption that \(P \) is the least-cost path from \(X \) to \(Y \)

- Therefore, the original hypothesis must be true
/**
* Print shortest path to v after dijkstra has run.
* Assume that the path exists.
*/
void Graph::printPath(Vertex v)
{
 if(v.path != NOT_A VERTEX)
 {
 printPath(v.path);
 cout << " to ";
 }
 cout << v;
}
Negative Edge Costs but No Cycles

Running time: $O(|E| \cdot |V|)$

Negative weight cycles?
Dijkstra’s algorithm does not work

• Vertex u is known but there may be a path from unknown vertex v back to u that is very negative
• Add a constant value to each edge cost?
• Solve this with the combination of unweighted and weighted algorithms

Does not work for above graph, as it has negative-cost cycles
Shortest-Path Problems (cont’d)

- Unweighted shortest-path problem: \(O(|E| + |V|)\)
- Weighted shortest-path problem
 - No negative edges: \(O(|E| \log |V|)\)
 - Negative edges: \(O(|E| \times |V|) \rightarrow \text{poor time bound}\)
- Acyclic graphs: \(O(|E| + |V|)\) in linear time
- No asymptotically faster algorithm for single-source/single-destination shortest path problem
 - No algorithms find the path from \(s\) to one vertex (one-to-one) any faster than finding the path from \(s\) to all vertices (one-to-many)
Shortest Path Algorithms

- Important graph problem with numerous applications
- Unweighted graph: \(O(|E| + |V|) \)
- Weighted graph
 - Dijkstra: \(O(|E| \log |V|) \)
 - Negative weights: \(O(|E| \times |V|) \)
- All-pairs shortest paths
 - Dijkstra: \(O(|V| \times |E| \log |V|) = O(|V|^3 \log |V|) \)
 - Floyd-Warshall: \(O(|V|^3) \)