IS 709/809: Computational Methods in IS Research

Graph Algorithms: Introduction

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County
Motivation

- Several real-life problems can be converted to problems on graphs
- Graphs are one of the pervasive data structures used in computer science
- Graphs are a useful tool for modeling real-world problems
- Graphs allow us to abstract details and focus on the problem
- We can represent our domain as graphs and apply graph algorithms to solve our problem
Examples

- Given a map of UMBC and the surrounding area, how to get from one place to another?
Examples (cont’d)

- What data structure to use to represent the problem?
- How do you even think about the problem?
Examples (cont’d)

- Let us strip away irrelevant details
- We have a set of vertices \{A, B, C, D, E, F, G, H, I, J\}
Examples (cont’d)

- Let us strip away irrelevant details
- We have a set of edges connecting the vertices
Examples (cont’d)

- Let us strip away irrelevant details
- Edges can be assigned weights
Examples (cont’d)

Let us strip away irrelevant details
Other Examples

Protein-protein interaction

Social network

Internet

Power grid

WWW
Simple Graphs

$G = (V, E)$

V is a set of vertices.
E is a set of edges.

$u \in V, v \in V$
$(u, v) \in E$
Directed Graphs

\[G = (V, E) \]

- \(V \) is a set of vertices.
- \(E \) is a set of edges.

\[u \in V, \ v \in V \]
\[(u, v) \in E \]
\[(v, u) \notin E \]
Weighted Graphs

\[G = (V, E) \]

- \(V \) is a set of vertices
- \(E \) is a set of edges

Diagram:

- Vertices labeled with numbers
- Edges connecting vertices with weights
- Example graph with labeled edges and vertices
Cardinality of a Set

- “The number of elements in a set”
- Let A be a finite set
 - If $A = \emptyset$ (the empty set), then the cardinality of A is 0
 - If A has exactly n elements, n a natural number, then the cardinality of A is n
- The cardinality of a set A is denoted by $|A|$
Definition of a Graph

- A graph $G = (V, E)$ consists of a set of vertices V and a set of edges E
- $E = \{ (u, v) \mid u, v \in V \}$
 - Vertex v is adjacent to vertex u
 - Edges are sometimes called arcs

Example
- $V = \{ A, B, C, D, E, F, G \}$
- $E = \{ (A, B), (A, D), (B, C), (C, D), (C, G), (D, E), (D, F), (E, F) \}$

Cardinality of Vertex Set denoted by $|V|$
- $|V| = 7 = \text{number of vertices in set } V$

Cardinality of Edge Set denoted by $|E|$
- $|E| = 8 = \text{number of edges in set } E$
Definitions

- **Undirected graphs**
 - Edges are unordered (i.e. \((u, v)\) is the same as \((v, u)\))

- **Directed graphs (digraphs)**
 - Edges are ordered (i.e. \(<u, v> \neq <v, u>\))

- **Weighted graphs**
 - Edges have a weight \(w(u, v)\) or cost \((u, v)\)
Definitions (cont’d)

- **Degree of a vertex**
 - Number of edges incident on a vertex

- **Indegree**
 - Number of directed edges to vertex

- **Outdegree**
 - Number of directed edges from vertex

degree(v4) = 6
indegree(v4) = 3
outdegree(v4) = 3

indegree(v1) = 0
outdegree(v1) = 3

indegree(v6) = 3
outdegree(v6) = 0
Definitions (cont’d)

- **Path**
 - Sequence of vertices $v_1, v_2, ..., v_N$ such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq N$
 - Path length is the number of edges on the path (i.e., $N - 1$)
 - Simple path has unique intermediate vertices

- **Cycle**
 - Path where $v_1 = v_N$
 - Usually simple and directed
 - Acyclic graphs have no cycles
Definitions (cont’d)

- Undirected graph is **connected** if there is a **path** between every pair of vertices.
- Connected, directed graph is called **strongly connected**.
- Complete graph has an **edge** between every two vertices.

\[v_6 \text{ to } v_1, \ v_7 \text{ to } v_1 \]
Representations

- Adjacency matrix is a two dimensional array
 - For each edge \((u,v)\), \(A[u][v]\) is true otherwise it is false

![Adjacency Matrix and Adjacency List Diagram](image)
Representations (cont’d)

- It is good to use adjacency lists for sparse graphs
- Sparse means not dense
- Graph is dense means $|E| = \Theta(|V|^2)$
Practical Problem Representations

- Graph represents a street map with Manhattan-like orientation
 - Streets run mainly on north-south or east-west
 - Any intersection is attached with four streets
 - Graph is directed and all streets are two way, then $|E| = 4|V|$
 - Example: Assume 3000 intersections = 3000-vertex graph and 12000 edges
 - Array size for Adjacency Matrix = 9,000,000
 - Most of these entries would contain 0

- If the graph is **sparse** a better solution is **adjacency list**
 - For each vertex we keep a list of all adjacent vertices
 - Space requirement is $O(|E| + |V|)$, linear in the size of the graph
Graph Algorithms:

Topological Sort
Topological Sort

- Order the vertices in a directed acyclic graph (DAG), such that if \((u, v) \in E\), then \(u\) appears before \(v\) in the ordering.

- Example

![Course Prerequisite Structure at a University](image)
Topological Sort (cont’d)

- Topological ordering is not possible if the graph has a cycle, since for two vertices u and v on the cycle, u precedes v and v precedes u
- The ordering is not necessarily unique; any legal ordering will do

Possible topological orderings: $v_1, v_2, v_5, v_4, v_3, v_7, v_6$ and $v_1, v_2, v_5, v_4, v_7, v_3, v_6$.
Topological Sort (cont’d)

- **Solution #1**
 - While there are vertices left in the graph
 - Find vertex v with indegree equals to 0
 - Output v
 - Remove v from the graph together with all edges to and from v

- **Running of Solution #1 is O(|V|^2)**
void Graph::topsort()
{
 for(int counter = 0; counter < NUM_VERTICES; counter++)
 {
 Vertex v = findNewVertexOfIndegreeZero(); // Not been assigned a topological number
 if(v == NOT_A VERTEX)
 {
 throw CycleFoundException();
 }
 v.topNum = counter;
 for each Vertex w adjacent to v
 {
 w.indegree--;
 }
 }
}

CycleFoundException()
Topological Sort (cont’d)

Solution #2
- Don’t need to search over all vertices for indegree = 0
- Only vertices that lost an edge from the previous vertex’s removal need to be searched

Algorithm
- Compute the indegree for every vertex
- Place all vertices of indegree 0 to an initially empty queue (note: we can also use a stack)
- While the queue is not empty
 - Remove a vertex v from the queue
 - Output v
 - Decrement indegrees of all vertices adjacent to v
 - Put a vertex on the queue as soon as its indegree falls to 0
Topological Sort (cont’d)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Indegree Before Dequeue #</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Enqueue: $v_1, v_2, v_5, v_4, v_3, v_7, v_6$

Dequeue: $v_1, v_2, v_5, v_4, v_3, v_7, v_6$
Topological Sort Pseudocode

```c++
void Graph::topsort() {
    Queue<Vertex> q;
    int counter = 0;

    q.makeEmpty();
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );

    while( !q.isEmpty() )
    {
        Vertex v = q.dequeue();
        v.topNum = ++counter;  // Assign next number

        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
                q.enqueue( w );
    }

    if( counter != NUM_Vertices )
        throw CycleFoundException();
}
```
Topological Sort (cont’d)

- **Solution #2**
 - Assume that the graph is already read into an adjacency list
 - Assume the indegrees are computed and stored with the vertices

- **Running time of Solution #2 is** $O(|V| + |E|)$

Possible topological ordering: $v_1, v_2, v_5, v_4, v_3, v_7, v_6$.
Graph Algorithms

- Topological sort
- Shortest paths
- Network flow
- Minimum spanning tree
- Applications