
IS 709/809:
Computational Methods for IS Research

Math Review: Algorithm Analysis

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Topics

 Proof techniques

 Proof by induction

 Proof by counterexample

 Proof by contradiction

 Recursion

 Summary

Proof Techniques

 What do we want to prove?

 Properties of a data structure always hold
for all operations

 Algorithm running time/memory usage will
never exceed some limit

 Algorithm will always be correct

 Algorithm will always terminate

Proof by Induction

 Goal: Prove some hypothesis is true

 Three-step process

 Prove the Base case:
 Show hypothesis is true for some initial conditions

 This step is almost always trivial

 Inductive hypothesis: Assume hypothesis is
true for all values ≤ k

 Using the inductive hypothesis, show that
the theorem is true for the next value,
typically k + 1

Induction Example

 Prove arithmetic series

 (Step 1) Base case: Show true for N=1

N

i

NN
i

1 2

)1(

1

1 2

)11(1
1

i

i

Induction Example (cont’d)

 (Step 2) Assume true for N=k

 (Step 3) Show true for N=k+1

2

)2)(1(
2

)1()1(2
2

)1(
)1(

)1(
1

1

1

kk

kkk

kk
k

iki
k

i

k

i

More Induction Examples

 Prove the geometric series

 Prove that the number of nodes N in a complete
binary tree of depth D is 2D+1 -1

 Prove that

N

i

N
i

A

A
A

0

1

1

1

6

)12)(1(

1

2

NNN
i

N

i

Proof by Counterexample

 Prove hypothesis is not true by giving an example
that doesn’t work

 Example: 2N > N2 ?

 Example: Prove or disprove “all prime numbers are odd
numbers”

 Proof by example?

 Proof by lots of examples?

 Proof by all possible examples?

 Empirical proof

 Hard when input size and contents can vary arbitrarily

Another Example

 Traveling salesman problem

 Given N cities and costs for traveling between each pair of
cities, find the least-cost tour to visit each city exactly once

 Hypothesis

 Given a least-cost tour for N cities, the same tour will be least-
cost for (N-1) cities

 e.g., if ABCD is the least-cost tour for cities {A,B,C,D},
then ABC will be the least-cost tour for cities {A,B,C}

A

D C

B
20

10

10100

100

10

Another Example (cont’d)

 Counterexample

 Cost (ABCD) = 40 (optimal)

 Cost (ABC) = 30

 Cost (ACB) = 20

A

D C

B
20

10

10100

100

10

Proof by Contradiction

 Assume hypothesis is false

 Show this assumption leads to a contradiction (i.e.,
some known property is violated)

 Can’t use special cases or specific examples

 Therefore, hypothesis must be true

Contradiction Example

 Variant of traveling salesman problem
 Given N cities and costs for traveling between each pair of cities, find the

least-cost path to go from city X to city Y

 Hypothesis
 A least-cost path from X to Y contains least-cost paths from X to every

city on the path

 E.g., if XC1C2C3Y is the least-cost path from X to Y, then
 XC1C2C3 is the least-cost path from X to C3

 XC1C2 is the least-cost path from X to C2

 XC1 is the least-cost path from X to C1

A

D C

B
20

10

10100

100

100

Contradiction Example (cont’d)

 Assume hypothesis is false
 i.e., Given a least-cost path P from X to Y that goes through C, there

is a better path P’ from X to C than the one in P

 Show a contradiction
 But we could replace the subpath from X to C in P with this lesser-

cost path P’

 The path cost from C to Y is the same

 Thus we now have a better path from X to Y

 But this violates the assumption that P is the least-cost path from X
to Y

 Therefore, the original hypothesis must be true

X C

Y
P’

More Contradiction Example

 Example: Prove that the square root of 2 is
irrational (a number that cannot be expressed as a
fraction a/b, where a and b are integers, b 0)

 Proof: will be derived in the class

 assume root of 2 is a rational number

 assume a/b is simplified to the lowest terms
 can be done with any fraction

 in order for a/b to be in its simplest terms, both a and b must
not be even. One or both must be odd. Otherwise, you could
simplify

Recursion

 A recursive function is defined in terms of itself

 Examples of recursive functions

 Factorial

 Fibonacci

0 if)!1(

0 if 1
!

nnn

n
n

Factorial (n)
if n = 0
then return 1
else return (n * Factorial (n-1))

Example

 Fibonacci numbers

 F(0) = 0

 F(1) = 1

 F(2) = 1

 F(3) = 2

 F(4) = 3

 F(5) = 5

 - - - - - - - - - -

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

Basic Rules of Recursion

 Base cases
 Must always have some base cases, which can be solved

without recursion

 Making progress
 Recursive calls must always make progress toward a

base case

 Design rule
 Assume that all the recursive calls work

 Compound interest rule
 Never duplicate work by solving the same instance of a

problem in separate recursive calls

Example (cont’d)

 Fibonacci (5)

 The Fibonacci numbers are the numbers in the
following integer sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…………

F(5)

F(4)

F(3) F(2) F(1)

F(3)

F(2)

F(2) F(1)

F(1)

F(1) F(0)

F(0)

F(0) F(1)

Summary

 Proofs by mathematical induction, counterexample
and contradiction

 Recursion

 Tools to help us analyze the performance of our data
structures and algorithms

 Next:

 Floors, ceilings, exponents, logarithms, series, and modular
arithmetic

Questions

?

