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ABSTRACT. In a majority rule voting game, the uncovered set is the set of alternatives 
each of which can defeat every other alternative in the space either directly or indirectly 
at one remove. Research has suggested that outcomes under most reasonable agenda 
processes (both sincere and sophisticated) will be confined to the uncovered set. Most 
research on the uncovered set has been done in the context of voting games with a finite 
number of alternatives and relatively little is known about the properties of the uncovered 
set in spatial voting games. 

We examine the geometry of the uncovered set in spatial voting games and the geometry 
of two important subsets of the uncovered set, the Banks set and the Scbattschneider set. 
In particular, we find both general upper and lower limits on the size of the uncovered set, 
and we give the exact bounds of the uncovered set for situations with three voters. 
For situations with three voters, we show that the Banks set is identical to the uncovered 
set. 

I. I N T R O D U C T I O N  

In situations where there are cyclical majorities and therefore majority 
voting is indeterminate, recent research (e.g., Miller, 1980; McKelvey, 
1983; Shepsle and Weingast, 1984; Banks, 1985; Miller et al., 1985) has 
shown that the uncovered set of  alternatives (first described by Miller, 
1980) contains all of  the outcomes that might arise from a variety of  
common group decision processes, including binary and multiple choice 
processes under both sincere and sophisticated voting. Because outcomes 
within the uncovered set arise with certainty or near certainty under 
virtually every agenda process ever discussed, properties of  the uncovered 
set are of  considerable importance. Until now, most of  the consideration 
of  the uncovered set has focused upon situations with finitely many 
alternatives; consequently, little is known about the geometry of  the 
uncovered set in the spatial context. McKelvey (1983) provided some 
preliminary findings concerning the nature and size of  the uncovered set 
in the spatial context; this paper provides tighter general bounds for the 
uncovered set, and precisely specifies it in the case of  three voters. Also, 
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we examine the geometry of two important subsets of the uncovered set, 
the Banks set and the Schattschneider set, and present some new results 
about each. To simplify our exposition we assume that (1) the number 
of voters is odd; (2) each voter can be identified with his ideal point, a 
point in ~2; and (3) a voter prefers one alternative (point of ~2) to another 
(different point of ~2) if and only the first is closer to the voter's ideal 
point than is the second. 

We show that the size of the uncovered set varies dramatically, depend- 
ing upon the nature of the voter distribution; in some situations, it can 
be as large as the region bounded by the set of voter ideal points (the 
Pareto set); in other situations, it can be an infinitesimal proportion of 
the Pareto set. To the extent that we show that the uncovered set is 
frequently a small subset of the Pareto set, we will have shown that 
agenda processes are generally well behaved. To the extent that we can 
specify conditions under which the uncovered set will be a large subset 
of the Pareto set, we will be specifying the conditions under which 
majority rule processes in the spatial context may give rise to substantial 
indeterminacy. We will show both upper limits and lower limits of the 
uncovered set, and leave the interpretation of how big to observers in 
particular empirical contexts. 

We express the upper and lower limits in terms of the yolk, a geometric 
construct whose radius is a measure of the degree of bilateral asymmetry 
that is present in a spatial array of voters. The yolk is a circle that is 
"centrally" located among the set of voter ideal points (Ferejohn et al., 
1984). 

With any reasonable degree of bilateral symmetry in the distribution 
of ideal points, the yolk tends, for large sets of voters, to be a small subset 
of the Pareto set (McKelvey, 1983). Moreover, the yolk tends to shrink 
with the addition of voters (Feld et al., 1985). 

First we briefly review some important basic definitions. To aid the 
reader, we shall present our discussion in ordinary language rather than 
mathematical symbolism wherever possible. 

DEFINITION 1. (a) The win-set of an alternative, y, is the set of 
alternatives that are majority preferred to y, and analogously (b) The 
inverse win-set of an alternative, y, is the set of alternatives to which y 
is majority preferred. 
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DEFINITION 2. An alternative, y, is covered by an alternative, z, if z 
is majority preferred to y and if, for every x to which y is majority 
preferred, z is also majority preferred to x, i.e., an alternative y is covered 
by an alternative z if the win-set of  y contains the win-set of  z. 

DEFINITION 3. An alternative, y, is uncovered if there is no alternative 
that covers it. 

We include an equivalent definition of  "uncovered" that is useful for 
understanding and finding the uncovered set. 

DEFINITION 3' (Miller, 1980). An alternative, y,  is uncovered if and 
only if it is majority preferred to all other feasible alternatives either 
directly or at one remove; i.e., for every z, either y is majority preferred 
to z, or there is an x such that y is majority preferred to x and x is majority 
preferred to z. 

DEFINITION 4. The uncovered set is the set of  all uncovered alterna- 
tives. 

It is easy to see that points which are Pareto dominated, i.e., unanimously 
beaten by some point, cannot be in the uncovered set. Hence, the 
uncovered set is within the Pareto set. 

We now proceed to specify bounds on the uncovered set in the spatial 
context. 

II .  M I N I M U M  BOUNDS ON THE U N C O V E R E D  SET 
IN THE S P A T I A L  C O N T E X T  

We consider spatial situations where each point in a space represents an 
alternative that might be chosen by the majority of a group. Each 
individual in the group has an ideal point in the space and prefers 
alternatives that are closer to his/her ideal point to those which are further 
away. Such distance-based preference orderings are commonly assumed 
in modeling voting in the spatial context. We confine our consideration 
to two-dimensional situations for simplicity, but our results generally 
have straightforward extensions to higher dimensions.l 
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We begin by showing that we can easily find some alternatives that must 
be uncovered. First, we need some additional definitions. 

DEFINITION 5. A median line is a line such that no more than half the 
voter ideal points lie on either side of  it; essentially, it divides the set of 
voters in half. (None that each " h a l f "  contains less than half the ideal 
points because at least one ideal point is on the line itself). 

Note that every line,/ ,  has exactly one median line perpendicular to it, 
and that the alternative at the point of  intersection is majority preferred 
to every other point on the l ine/ .  

DEFINITION 6. (a) A voter projection on a line is the intersection of  the 
line with a perpendicular dropped to it from a voter ideal point; (b) the 
median voter projection on a line is the median such projection. 

DEFINITION 7 (Grofman and Feld, 1985). For two dimensions, the 
Schattschneider set is the set of  median voter projections on median lines; 
i.e., the set of  alternatives that are at the perpendicular intersection of  
two median lines. 

THEOREM 1 (Grofman and Feld, 1985). For two dimensions, the 
Schattschneider set is a subset o f  the uncovered set. 

Proof. Using the alternate definition of  an uncovered point, Defini- 
tion 3', we show that a median projection on a median line is directly or 
indirectly (at one remove) majority preferred to all alternatives. For any 
alternative, z, there is some alternative, x, on the median line that is 
majority preferred to z, i.e., the point at the projection of  z on the line. 
Furthermore, the median voter projection on the median line, which we 
shall call y, is majority preferred to every point on the median line. 
Consequently, for every z, either there is an x such that y is majority 
preferred to x and x is majority preferred to z, and/or  y is majority 
preferred to z. Hence y is uncovered. QED 

Figure 1 shows the Schattschneider set for an example with three voters 
whose ideal points are located at (0, 0), (0, 1), and (1, 0). The Schatt- 
schneider set consists of the (heavily lined) cigar-shaped surface in 
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Fig. 1. Schattschneider Set for a right triangle. 

Figure 1. In general the Schattschneider set consists of a collection of arcs 
of circles which together form a continuous closed curve (See Note 1). 

The Schattschneider set is found by tracing out the perpendicular 
intersection of median lines. In a situation with three voters, the median 
lines are those lines that pass through a voter ideal point and either lie 
within the triangle formed by the three ideal points or pass through a 
second voter ideal point. In the right triangle in Figure 1, the angle at B 
is 90 ~ so that one point of the Schattschneider set is B itself. More 
commonly, two median lines which are perpendicular will pass through 
exactly two voter ideal points. It is well known in geometry that the set 
of points at which lines through two given points intersect at right angles 
is the circle passing through the two given points and centered at the 
midpoint of the line joining them. Thus the Schattschneider set consists 
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of the portions falling within the triangle of circles though two voter ideal 
points centered at their midpoint. A similar construction defines the 
Schattschneider set for more than three voters. 

There are several other "centrally" located points in the Pareto set that 
must be uncovered. To discuss them we must introduce additional defini- 
tions. 

DEFINITION 8. The Copeland value of a point, y, is the area of the 
win-set of y. 

DEFINITION 9 (Grofman et al., 1985; Copeland, 1951). The strong 
point (also known as the Copeland winner) is the point with the minimal 
Copeland value. 

THEOREM 2 (Moulin, 1984; McKelvey, 1983). The strong point is 
uncovered. 

Proof. If the strong point were covered, there would be a point whose 
win-set was within that of the strong point. That point would have a 
smaller win-set, contrary to the definition of the strong point. QED 

In Figure 1, the strong point is (0.25, 0.25). 

DEFINITION 10. The half win-set of a point is the set of points obtained 
by shrinking every ray from the point to the boundary of its win-set by 
a factor of one-half. 

DEFINITION 11 (McKelvey, 1983; Ferejohn et al., 1984). The yolk is 
the circle of minimal radius that intersects all median lines. 

DEFINITION 11' (Feld et al., 1985). The yolk is the minimal circle 
surrounding the half win-set of a point. 

Feld et al. (1985) showed that Definitions 11 and 11' are equivalent. 

THEOREM 3. The center o f  the yolk is uncovered. 
Proof. If the center of the yolk were covered, there would be a point 

whose win-set was within that of the center of the yolk. The half win-set 
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of that other point would be included within a circle smaller than the yolk, 
contrary to the definition of the yolk. QED 

In Figure 1, the center of the yolk is at (1 -  x/2/2, I -  x/2/2)~ (0.293, 
0.293) 

The uncovered set can consist of a single point or a rather oddly shaped 
region. A parameter which provides a measure on the size of the uncover- 
ed set is the radius of the smallest circle enclosing the uncovered set. 

DEFINITION 12. The uncovered circle is the smallest circle that encloses 
all uncovered points. 

COROLLARY 1 to THEOREM 1. The uncovered circle includes a point 
on every median line, i.e., it intersects all median lines. 

Proof. As shown in Theorem 1, the median point on a median line is 
uncovered. Every median line thus has a median point that must be 
included in the uncovered set and thus must be included in the uncovered 
circle. QED 

THEOREM 4. The uncovered circle is at least as large as the yolk. 
Proof. The yolk is defined as the smallest circle intersecting all median 

lines. QED 

THEOREM 5. The uncovered circle overlaps the yolk. In particular, the 
uncovered circle encloses at least (4~r- 3x/3)/67r (~ 0.39) o f  the area o f  
the yolk. 

Proof. Theorem 4 tells us that the uncovered circle has a radius at 
least equal to the radius of the yolk, and Theorem 3 tells us that it includes 
the center of the yolk. It can easily be seen that the least overlap under 
these conditions is achieved when the radius of the uncovered circle is the 
same as the yolk and the center of the uncovered circle is on the 
circumference of the yolk. Under these conditions, some straightforward 
geometry shows that the overlap is (47r-3x/3)/67r of the area of the 
yolk. QED 

THEOREM 6. The points in any Von Neumann-Morgenstern (V-M) 
solution are uncovered. 
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Proof.  See McKelvey (1983) 
In the case of  a 3-voter game the unique V-M solution is the set of  
tangency points of  the yolk with the boundaries of  the Pareto set. (Recall 

that here the Pareto set consists of  a triangle with voter ideal points as 

vertices). If  we take the vertices of  the triangle to be (0,1), (0,0) and (1,0), 
as in Figure 1, then the center of  the yolk is as previously noted at 
(1 - ~t2/2, 1 - x/~/2) ~-. (0.29, 0.29). The tangency points of  the yolk are 

then (0, 1 - 4~/2),  (1 - x/2/2, 0) and 1/2, 1/2). Note that only one of  these 
points is a median point on a median line. Thus, knowing that the points 

in the V-M solution are in the uncovered set can provide us new infor- 

mation about where that set is located. 

III. MAXIMUM BOUNDS ON THE UNCOVERED SET 
IN THE SPATIAL CONTEXT 

The size and location of  the uncovered set depends upon the exact 
distribution of  voters and the resultant win-sets. In particular, it is easy 
to see that any point that is outside the win-set of  every point in the win-set 

of  a point r is covered by r. Furthermore,  the set of  points not covered 
by any point in some set S must contain the uncovered set. In particular, 

the set points not covered by any specific point s must contain the 

uncovered set. 
We can determine general outer bounds on the uncovered set using 

information on the minimum and maximum bounds on the win-sets for 

all points that are a specified distance from the center of  the yolk. We 
will show that the maximum win-set of  a point a specified distance from 
the center of  the yolk is contained within the minimum win-set of  a point 

a specified greater distance from the center of  the yolk in the opposite 
direction. Therefore,  the inner point covers the outer point. Hence, we 
shall be able to find a distance such that all points which are at least that 
far f rom the center of  the yolk must be covered. 

To determine the minimum covering set for a point, we make use of  
the minimum and maximum win-sets for a point specified by McKelvey 
(1983) and Feld et al. (1985). Given the distance of  a point from the center 
of  the yolk, it is possible to specify the minimum and maximum distances 
that the win-set of  that point can extend in any particular direction relative 
to the center of  the yolk in terms of  a cardioid. 
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• 

Fig. 2. 

Let the point x be a distance d from the center of the yolk, o. Label 
as 0 (theta) the angle between the line ~ and a specified direction, as 
shown in Figure 2. Let r be the radius of the yolk. 

THEOREM 6 (Feld et al., 1985). Maximum and minimum bounds on the 
size and direction o f  the win-set o f  any point can be given in terms of  the 
yolk as follows: 
I. Maximum bounds: 
(a) l f  cos 0 <_ - r/d, then x may be beaten by all points in the 0 direction. 
(Note that i f  0 > Jr/2, then cos 0 < 0). 
(b) I f  cos 0 > - r/d, then x may be beaten by all points within 2d cos 0 + 2r 
from x along the 0 direction. 

The maximum bounds take the form o f  a (heart-shaped) "'cardioid'" 
around o, with the cusp at x and with positive eccentricity 2r. 
II. Minimum bounds: 
(a) I f  cos O<_r/d, then x may be beaten by all points in the 0 direction. 
(b) I f  cos O>r/d, then x may be beaten by all points within 2dcos O-2r 
from x in the 0 direction. 

The minimum bounds take the form of  a "'fish-shaped'" cardioid 
around o, with the cusp at x and with negative eccentricity -2r .  
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Fig. 3. 
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Cardioid bounds on the win-set of x, d=2.5r. (Figures only approximate). 

Proof. See McKelvey (1983), and Feld et al. (1985). 
Figure 3 provides an illustration of  the maximum and minimum win-sets 
of  a point. 

McKelvey (1983) has shown that the uncovered set is always contained 

within a circle centered at the center of  the yolk and of  radius 4r, where 
r is the radius of  the yolk. Using Theorem 6, we can improve upon this 

bound. 

COROLLARY 1 to T H E O R E M  6. A point 3.7r from the center o f  the 
yolk is always covered by a point 0.4r from the center o f  the yolk in the 
opposite direction. 

Proof. Computer calculation of  the maximum win-set of  0.4r and the 
minimum win-set of  the point 3.7r in the opposite direction shows that 
the maximum win-set of  the first point is contained within the minimum 
win-set of  the second; therefore, the first covers the second. QED 

THEOREM 7. All points outside o f  a circle 3.7r around the center o f  the 
yolk are covered; i.e., the uncovered set is contained within a circle o f  
radius 3.7r around the center o f  the yolk. 
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Fig. 4. Points in the shaded region are in the Pareto set but known to be covered by the 
center of the yolk. 

P r o o f .  From Corollary 1 to Theorem 6, the maximum win-set of a point 
0.4r in any direction is contained within the minimum win-set of a point 
3.7r in the other direction. But this minimum win-set is contained within 
the minimum win-sets of all points further out in that same direction. 2 
Therefore, x covers those points as well. QED 

The set of points covered by any point cannot be in the uncovered set. a 
In particular, the set of points not covered by the center of the yolk 
contains the uncovered set. Since all uncovered points lie in the Pareto 
set, the intersection of the Pareto set and the set of points not covered 
by the center of the yolk is also an upper bound for the uncovered set. 
Sometimes, this bound will be well below our general 3.7 radii limit. For 
a three voter situation, we show the construction of this set in Figure 4.  
Points in the shaded area cannot beat the center of the yolk either directly 
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or indirectly and therefore must be covered. The construction used, based 
upon the win-set of the win-set of the center of the yolk, generalizes to 
any number of voters. 

In the case of an arbitrary right triangle, a construction like that in 
Figure 4 can be shown to imply that the uncovered set lies within roughly 
3.42r of the center of the yolk. For the isosceles right triangle, this 
construction merely gives the Pareto set as the bound. 

For the case of three voters, it is possible to obtain an exact specifi- 
cation of the uncovered set. In general, the uncovered set is a proper 
subset of the win-set of the win-set of the center of the yolk. This 
specification and related results arc given in the next section. 

IV. O T H E R  BOUNDS FOR THE U N C O V E R E D  SET 

We wish to consider how large or small the uncovered set may be relative 
to the Pareto set, the region defined by the set of voter ideal points. When 
one alternative is a majority winner, then that alternative is the median 
point on all median lines and the yolk shrinks to that single point. In 
general, as we move closer toward a single majority winner, the yolk 
shrinks and the uncovered set becomes arbitrarily small relative to the 
Pareto set (Cox, 1985; McKelvey, 1985; Feld et al., 1985). On the other 
hand, there are cases in which the uncovered set is the entire Pareto set; 
specifically, when there are three voters with ideal points arranged in an 
equilateral triangle, the uncovered set is the entire triangle, i.e., the entire 
Pareto set. 4 

As we might expect, the situation where the uncovered set is maximal 
relative to the Pareto set is also the case where the yolk is maximal relative 
to the Parcto set. For the equilateral triangle, no point of the Pareto set 
is more than two yolk radii from the center of the yolk. Thus, the 
uncovered set is within two radii of the yolk, and is small relative to the 
yolk, but nonetheless includes the entire Pareto set. 

Bounds for the Uncovered Set for the Case of  Three Voters 

McKelvey (1983) has shown that the uncovered set is always within 4 radii 
of the center of the yolk and our previous theorem is the stronger result 
that the uncovered set is always within 3.7 radii of the center of the yolk. 
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B' 

C 

Fig. 5. The uncovered set is the entire triangle A B C  (Pareto Set) except for the shaded 
region at C. The ellipse has foci A and B and major axis equal in length to line A'B'. 

However, there are many cases where the uncovered set is much smaller 
than these upper bounds might suggest. 

The previously discussed bounds are general upper (outer) and lower 
(inner) limits; for particular cases, with the number and location of voters 
specified, the actual size and shape of the uncovered set can often be 
specified precisely. In particular, for the case of three voters, the uncover- 
ed set is exactly described by a dosed form analytic expression based on 
a geometric construction. Furthermore, preliminary calculations suggest 
that in the three voter situation, the uncovered set always lie within a circle 
centered at the center of the yol k with radius 2.83r. 

THEOREM 8. For the three voter case, the uncovered set can be deter- 
mined by the ellipse-based construction method illustrated in Figure 5. 

Proof sketch. The central idea is that, for each point, one can construct 
the win-set: any alternative in the Pareto set which is excluded from the 
win-set of the win-set of some point is automatically covered. The 
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uncovered set than consists of all those points which are never excluded, 
regardless of which initial point was chosen. 

The construction of the win-set of a win-set was illustrated in Figure 4, 
in which the initial point chosen was the center of the yolk. For the acute 
triangle shown, it is apparent that the limits of the win-set of the win-set 
near C are determined by the extreme points W and V of the "petals" 
(Figure 4), which, with the third petal oU, constitute the 
win-set of o. For obtuse triangles, the construction may be different (see 
Hartley and Kilgour 1987). The points near C, which lie closer to B than 
W or closer to A than V belong to the win-set of the win-set of o. This 
explains why the points shaded in Figure 4 are known to be covered. 

Now suppose that the original point is moved from o to some nearby 
poinf q. Then W moves to Wq, the reflection of q in AC, and V moves 
to Vq, the reflection of q in BC. Let A' be the reflection of A in BC, and 
B' the reflection of B in AC. Then the distance from A to Vq is equal to 
the distance from A' to q, as shown in Figure 6. 

As suggested by Figure 6, it is not difficult to show that all points near 
C which are covered by some point q are also covered by the point q' on 
A'B' nearest q. (Moving q perpendicularly toward A'B' in Figure 5 reduces 
both the distances A'q and B'q, and therefore both radii A Vq and BWq). 
In other words, any point near C which is covered by some point q is 
covered by some point q' on the line A'B' (and within the triangle). 

Now all points q on the line A'B' have the property that (the distances) 
A Vq+BWq=A'B', and it is not difficult to show that a point near C is 
covered if and only if the sum of its distances from A and from B exceeds 
A'B'. It is well-known that the points with distances from A and B 
summing to A'B' form an ellipse with loci A and B and major axis A'B'. 
This justifies the construction in Figure 6. QED 

This situation is somewhat different for some obtuse triangles (see 
Hartley and Kilgour, 1987 for details). 

THEOREM 9. For any triangle, a vertex (and nearby points) is included 
in the uncovered set if and only if  the angle at that vertex is at least ~r/3 
(=60~ 

Proof sketch. 5 Let C be the vertex. Let 0 be the angle made by AC and 
BC. The construction which gave rise to the ellipse shown in Figure 5 is 



144 S C O T T  L. F E L D  E T  A L .  

such that the ellipse which bounds the uncovered set or at vertex C has 
foci at A and B and can be shown to have its major axis of length 2: 

Z = f fAC 2 + BC  2 + 2 A C  x BC  x cos30 

When 0 = r / 3 ,  cos 30= - 1 so that z = B C + B C .  But this implies that 
C is on the bounding ellipse, i.e., it implies that A is uncovered. When 
0 < 7t/3 then the expression for z shows that z < A C + BC, i.e., the ellipse 
falls inside the triangle near C. However, if 0> ~t/3, 30 becomes the 
exterior angle of triangle A ' B ' C ' ,  and the construction fails - points near 
C are covered if and only if they are covered by C (see the proof of 
Theorem 8). QED 

COROLLARY 1 to THEOREM 9. For a triangle, the uncovered set 

includes the entire Pareto set i f  and only i f  the triangle is equilateral. 

Proof.  Left as exercise for reader. 

Fig. 7. 
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Construction of uncovered set of isosceles right triangle. (Shaded points are 
covered). 
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In the equilateral triangle case, the distance from the center of the yolk 
to the most distant points on the edge (the vertices) is simply 2r. Recall 
that is a special case of a result for regular polygons which we gave earlier. 

Figure 7 shows the uncovered set of the isosceles right triangle example 
with vertices (0, 0), (0, 1), and (1, 0). Note that the uncovered set excludes 
points near both A and C, where the angles are ~r/4 (=45~ The ellipse 
with foci A and B has equation 5 ~  + 4y 2 -  4y = 4. The ellipse with foci 
B and C is analogous. One of the present authors conjectured at one time 
that the uncovered set is the set of points not covered by any point in the 
yolk. That conjecture is wrong. It can be shown that, in this example, 
not every covered alternative is covered by a point of the yolk; thus the 
yolk does not "generate" the uncovered set. In particular, the center of 
the yolk does not cover any points of  the Pareto set in this example. 

Figure 8 shows clearly the tendency of the uncovered set to exclude 
those alternatives in the Pareto set which are associated with an extreme 
voter, i.e., a voter with 0 acute. 

B C 

Fig. 8. Construction of the uncovered set in a typical case when two voter ideal points 
are relatively close. (Shaded points are covered). 
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Fig. 9. 
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Construction of a portion of the uncovered set for an obtuse triangle. (Shaded 
points are covered; construction of the other ellipse is similar). 

In Figure 9, the uncovered set for an obtuse triangle is shown. Note 

that the ellipse with foci A and B has major  axis not A'B ' ,  but rather 

A B  + BB';  see Hartley and Kilgour (1987) for the technical details. The 
ellipse with foci B and C is analogous. Note that only those alternatives 

near n are uncovered. 
The uncovered set equals the Pareto set in the case of  an equilateral 

triangle; in the opposite extreme, when the triangle contains an obtuse 

angle nearly 180 ~ only alternatives very close to that vertex are uncover- 
ed. In the limit, as the model becomes one-dimensional, only the median 

voter ideal point is uncovered. 

V. THE BANKS SET 

DEFINITION 13 (Banks, 1985). A Banks trajectory is a maximal chain, 
i.e., an ordered set of  alternatives, al,  a2, a3 . . . . .  an, such that each 
alternative is majority preferred to all previous alternatives in the set, and 
such that there is no alternative outside the set that is majority preferred 
to every alternative in the set. 
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DEFINITION 14 (Banks, 1985). A Banks point is the last alternative in 
some Banks trajectory, i.e., a Banks point is the maximal element of a 
maximal chain, an. 

DEFINITION 15 (Banks, 1985). The Banks set is the set of all Banks 
points. 6 

It has been shown that various agenda process, including the sophisticated 
outcomes of decisions under standard amendment procedure (Banks, 
1985; Miller et aL, 1985), inevitably end up in the Banks set. Furthermore, 
it is easily shown that the Banks set is a subset of the uncovered set 
(Shepsle and Weingast, 1984; Banks, 1985). In finite cases, it has been 
shown that the Banks set can be often a proper subset of the uncovered 
set, 7 but there are no previous results on the relative sizes of the Banks 
set and the uncovered set in the spatial context. 

Before we proceed to show the new result that, for the three voter case 
in the spatial context, the Banks set and the uncovered set are identical, 
some elaboration on the definition of the Banks set in the spatial context 
is useful. In particular, we shall distinguish between continuous and 
discontinuous Banks trajectories. 

DEFINITION 16. In the spatial context, a continuous Banks trajectory 
is one in which the elements of the trajectory form a continuous path in 
the space (i.e., one never needs to lift pencil from paper in tracing the 
path). 

DEFINITION 17. In the spatial context, a discontinubusBanks trajecto- 
ry is one in which the elements of the trajectory do not form a continuous 
path in the space. 8 

We show in Figure 10 a three voter example based on a simulation of a 
finite grid of discontinuous Banks trajectories, using the right triangle 
with vertices (0, 10), (10, 0) and (0, 0). A is the first point in the trajecto- 
ry. Points labeled 1 are in the inverse win-set of A. B is the second point 
in the trajectory. Points labeled 2 are those in the inverse win-set of B, 
which have not previously been excluded because they are also in the 
win-set of A etc. Because these are Banks trajectories, each point in the 
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1111 
11111 
111111 
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11111133333333211111111111 

Fig. 10. A Noncontinuous Banks Trajectory beginning outside the Pareto Set for a three 
voter majority rule game. (Voter ideal points are shown shaded). 

sequence . . .  CBA is majority preferred to all subsequent points in the 
sequence. In this example the trajectory has seven elements, ending at G. 
Note that the regions which are simultaneously excluded as new points 
are added to the trajectory may be widely separated. 

THEOREM 10. For the three voter case in the spatial context, the Banks 
set and the uncovered set are identical, provided that discontinuous Banks 
trajectories are allowed. 

Proof sketch. Since the Banks set is a (not necessarily proper) subset 
of  the uncovered set, all that must be shown is that any point in the 
uncovered set is the maximum element of a Banks trajectory. 

Pick any point x in the Pareto set. Draw the win-set of x which, in 
general, will have three petals. (See e.g. Figure 4). Choose the widest 
petal. In Figure 4, this is oU. Let R and S be the points of intersection 
of  this widest petal with the corresponding side of  the triangle (extended, 
if necessary). Begin with the paths Rx and Sx, along the boundaries of 
the petal. Displace each path outward infinitesimally, holding the 
endpoint at x fixed, resulting in R'x and S'x, as shown in Figure 11. 

The required trajectory alternates points from R'x with points from S'x 
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Fig. 11. Construct ion to define a Banks Trajectory with x as its maximal  demen t  for x 
in the uncovered set. 

as it steadily moves toward x, the top element. It can be shown that there 
are points (located in the petal xU) which beat x and every point of R'x  

and every point of S'x if and only if x is covered. If follows that, if x is 
uncovered, this zigzag path is a Banks trajectory with x as its maximal 
element. Hence, for any element in the uncovered set we can find a 
discontinuous chain of which it will be the maximal element, i.e., every 
uncovered point is also a Banks point. QED 

Since we know how to specify the location of the uncovered set in the 
three voter case, we now know the exact location of the Banks set for the 
three voter case. We conjecture that, in the spatial context, the Banks set 
and the uncovered set will always be identical, but we have not yet been 
able to prove this result. 

The Banks set has another important property. For a two dimensional 
issue space, the Banks set specified the domain within which the outcomes 
of the manipulation of committee jurisdictional assignments must be 
confined. To prove this, we state a useful theorem about the Schatt- 
schneider set and then show that the two-dimensional Schattschneider 
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set, which we have shown to be a subset of  the uncovered set, is also a 
subset of  the Banks set. 

THEOREM 11. In some multidimensional issue space, i f  committee 
jurisdictions are what Krehbiel (1984) refers to as a simple institutional 
arrangement, i.e., are one-to-one match-ups between orthogonal issue 
dimensions and committee jurisdictions, then the locus o f  possible 
outcomes o f  the open agenda process with a germaneness rule (under 
either sincere or sophisticated voting) is given by the Schattschneider set 
(see Figure 1 above). 

Proof. See Grofman and Feld (1986). 

In other words, if committee jurisdictions (i.e., a set of  orthogonal axes) 

are subject to maxfipulation, then the Schattschneider set specifies the 
domain within which the outcomes of  any such manipulations must be 

found. 

T HEOR EM 12. The Schattschneider set is a subset o f  the Banks set. 
Proof  sketch. The Sehattschneider set consists of  median points on 

median lines. For any such line we can construct a Banks trajectory on 
the line which has the median voter projection as its maximal element. 

To do so, all we need do is move nearer and nearer the median voter 

projection, in a zigzag trajectory from one side of  the median to the other. 

Futhermore,  there is no point of  the line which can defeat all points on 
the line. If  there were, that point would be majority winner, but if it were 
a majority winner it would necessarily be the median point on all median 
lines. Thus every Schattschneider point is a maximal element of  a maximal 

chain and thus it is also a Banks point. QED 

The converse of  Theorem 12 is not true. There are many Banks points 
which are not also Schattschneider points. 

VI. CONCLUSIONS 

We have specified new and tighter general bounds on the uncovered set 
in the spatial context, and in particular, we have shown how to find the 
exact boundaries of  the uncovered set in the three voter ease. In general, 



T H E  U N C O V E R E D  SET IN S P A T I A L  V O T I N G  G A M E S  151 

we have shown that the uncovered set is small relative to the Pareto set 
when the yolk is small. This is important because it is known (Cox, 1985; 
Feld et al., 1985) that the yolk tends to be small if there is a degree of 
bilateral symmetry in the array of voter ideal points. However, we have 
also shown that the uncovered set can be the entire Pareto set in certain 
extreme cases. Thus, it is necessary to analyze the particular situation to 
determine whether one can be sure that voting outcomes can be expected 
to be confined to a small portion of the feasible set. Further research 
needs to be done, however, to precisely locate the uncovered set in specific 
cases with more than three voters, although we have provided an exact 
result for the case of regular polygons. 

We believe that subsets of the uncovered set like the Schattschneider 
set and the Banks set will arise from specific institutional features of 
group decision processes, and that further work must be done to identify 
other such subsets and the institutional arrangements which give rise to 
them. Nonetheless, by providing new results on the uncovered set in the 
spatial context, this paper contributes to the continuing study of the 
institutional and contextual features of majority rule which bring order 
and stability into collective decision making. It is largely these "fine- 
grained" features of the structure of majority preference in the spatial 
context that make politics as we know it possible and prevent a disinte- 
gration of majority rule processes into indeterminacy and instability 
(Riker, 1982). 
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NOTES 

i If there are more than two dimensions, we would, of course, need to replace circle with 
sphere, line with hyperplane, etc., in the definitions and results given below. Also, results 
for the Schattschneider set do not straightforwardly generalize. In particular, in the 
n-dimensional case, the Schattschneider set need not be in the uncovered set, although in 
the 2-dimensional case, it must be. (See Grofman and Feld, 1986). 
z Let q be outside the win-set of the win-set of r. Clearly, r beats q. If there were an s that 
q beats and that r does not beat, then q beats s and s beats r, so that q would be in the 
win-set of s, which would be in the win-set of r, which contradicts our assumption that q 
is outside the win-set of the win-set of r. Thus, any point which is not in the win-set of some 
point in the win-set of r is covered by r. 
3 A direct implication of Theorem 6 is that the minimum win-set of a point, x, outside of 
the yolk, is contained within the minimura win-set of a point y that is further from the center 
of the yolk in the same direction; and the maximum win-set of a point x is contained within 
the maximum win-set of a point y that is further from the center of the yolk in the same 
direction as x. In other words, for points outside the yolk, as we move further off in a given 
direction, the set of points that must be beaten and the set of points that may he beaten 
both shrink in size. These results do not hold true inside the yolk. Although a point 0.4r 
from the center of the yolk covers all points directly opposite it on the other side of the 
yolk at a distance 3.7r or more from the center of the yolk, points within the yolk and less 
than 0.4r from the center may not cover all of these same points. 
4 The basic idea of the proof was independently arrived at by two different subsets of the 
present authors. A complete version of the proof is found in Hartley and Kilgour (1987). 

For more than three voters, it is possible to create situations that are arbitrarily close to 
the three voter situation by putting the voter ideal points in three groupings arranged in 
a pattern close to that of an equilateral triangle. In that case, the uncovered set would be 
essentially be the entire Pareto set. 
5 The basic idea of this proof was independently arrived at by two different subsets of the 
present authors. An alternative derivation of the proof is found in Hartley and Kilgour 
(1987). 
6 Banks (1985) does not call the set whose properties he was the first to identify the Banks 
set. Following Miller et al. (1985) we give it that label, which seems to us the most 
appropriate. 

In particular, when there are fewer than 7 alternatives, the Banks set and the uncovered 
set must be identical. However, for a larger number of alternatives, the Banks set can he 
much smaller than the uncovered set. (Miller et al., 1985). 
s It is not obvious that continuous and discontinuous Banks trajectories will have the same 
sets of maximal elements. Moreover, the maxima of some continuous Banks trajectories 
may not even be Banks points, since the top of a continuous trajectory may be a local but 
not a global maximum. Nonetheless, continuous trajectories are of importance because they 
can be thought of as the limiting outcomes of "incremental" decision making - a sequence 
of tiny adjustments to the status quo. 



THE UNCOVERED SET IN SPATIAL VOTING GAMES 153 

REFERENCES 

Banks, Jeffrey S. 'Sophisticated Voting Outcomes and Agenda Control', Social Choice and 
Welfare (1985). 

Cox, Gary W. 'The Uncovered Set and the Core', Unpublished manuscript (1985). 
Davis, Otto, Morris H. DeGroot, and Melvin Hinich. 'Social Preference Orderings and 

Majority Rule', Econometrica, Vol. 40 (January 1972), 147-157. 
Denzau, Arthur T. and Robert J. Mackay. 'Gatekceping and Monopoly Power of Com- 

mittees: An Analysis of Sincere and Sophisticated Behavior', American Journal of 
Political Science, Vol. 27 (November 1983), 740-76. 

Farquarson, Robin. Theory of  Voting. New Haven, Conn: Yale Univ. Press, 1970. 
Feld, Scott L. and Bernard Grofman. 'Necessary and Sufficient Conditions for Majority 

Winner in n-Dimensional Spatial Voting Games: An Intuitive Approach', Unpublished 
manuscript, 1985. 

Feld, Scott L., Bernard Grofman, and Nicholas Miller. 'Cycles Lengths and Other Features 
of Majority Preference in the Spatial Context', Paper presented at the Weingart Confer- 
ence on "Models of Voting". California Institute of Technology, March 22-23, 1985 
(revised version January, 1986). 

Ferejohn, John, Morris Fiorina, and Edward W. Packel. 'Nonequih'brium Solutions for 
Legislative Systems', Behavioral Science, Vol. 25 (March 1980), 140-148. 

Ferejohn, John A., Richard D. McKelvey and Edward Packel. 'Limiting Distributions for 
Continuous State Markov Models', Social Choice and Welfare, Vol. 1 (1984), 45-67. 

Grofman, Bernard and Scott L. Feld. 'A Neo-Schattschneiderian Model of Agenda Manipu- 
lation via Committee Jurisdictional Assignments', Unpublished manuscript, 1986. 

Grofman, Bernard, Guillermo Owen, Nicholas Noviello and Amihai Glazer. 'Copeland 
Winner and Stability in Majority Rule Spatial Games', American Political Science Review 
(forthcoming). 

Hartley, Richard and Marc Kilgour. 'The Geometry of the Uncovered Set in the Three-voter 
Spatial Model', Mathematical Social Sciences, Vol. 14, No. 2 (1987). 

Krehbiel, Keith. 'Obstruction, Germaneness and Representativeness in Legislatures', Social 
Science Working Paper 510, California Institute of Technology (January 1984), 1-37. 

McKelvey, Richard D. 'Intransitivities in Multidimensional Voting Models and Some 
Implications for Agenda Control', Journal of  Economic Theory, Vol. 12 (1976), 
472-482. 

McKelvey, Richard D. 'General Conditions for Global Intransitivities in Formal Voting 
Models', Econometrica, Vol. 47 (1979), 1085-1111. 

McKelvey, Richard D. 'Covering Dominance and Institution Free Properties of Social 
Choice', California Institute of Technology Social Science Working Paper No. 494, 
September 1983. 

McKelvey, Richard D. and Richard G. Niemi. 'A Multistage Game Representation of 
Sophisticated Voting for Binary Procedures', Journal of  Economic Theory, Vol. 18 
(1978), 1-22. 

Miller, Nicholas R. 'Graph-Theoretical Approaches to the Theory of Voting', American 
Journal of  Political Science, Vol. 21 (November 1977). 

Miller, Nicholas R. 'A New 'Solution Set' for Tournaments and Majority Voting', Ameri- 
can Journal of Political Science, Vol. 24 (1980), 68-96. 

Miller, Nicholas R. 'The Covering Relation in Tournaments: Two Corrections', American 
Journal of  Political Science, Vol. 27 (1983), 382-385. 



154 SCOTT L. FELD ET AL. 

Miller, Nicholas, Bernard Grofman and Scott Feld. 'Cycle Avoiding Trajectories and the 
Uncovered Set', Paper presented at the Weingart Conference on Models of Voting, 
California Institute of Technology, March 22-23, 1985 (revised version, August 1986). 

Moulin, Herv6. 'Choosing from a Tournament', Unpublished manuscript, 1984. 
Packel, Edward W. 'A Stochastic Solution Concept for n-Person Games', Mathematics of 

Operations Research, Vol. 6, No. 3 (August 1981), 349-362. 
Plott, Charles R. 'A Notion of Equilibrium and Its Possibility under Majority Rule', 

American Economics Review, Vol. 57 (1967), 787-806. 
Riker, William. Liberalism against Populism: A Confrontation Between the Theory of 

Democracy and the Theory of Social Choice, San Francisco: W. H. Freeman, 1982. 
Schofield, Norman. 'Instability of Simple Dynamic Games', Review of Economic Studies, 

Vol. 45 (1978), 575-594. 
Shepsle, Kenneth A. 'The Role of Institutional Structure in the Creation of Policy Equilib- 

rium', in Douglas W. Rae and Theodore J. Rismeir (eds.), Public Policy and Public 
Choice, Vol. VI. Beverly Hills: Sage, 1979, 96-111. 

Shepsle, Kenneth A. and Barry R. Weingast, 'Uncovered Sets and Sophisticated Voting 
Outcomes with Implications for Agenda Institutions', American Journal of Political 
Science, Vol. 28, (February 1984), 49-74. 

Wuffle, A., Scott Feld, Guillermo Owen and Bernard Grofman. 'Finagle's Law and the 
FinaglePoint: A New Solution Concept for Two-Candidate Competition in Spatial 
Voting Games Without a Core', American Journal of Political Science (forthcoming). 

Feld, Scott L. 
Department of  Sociology, 
State University of  New York at Stony Brook, 
Stony Brook, New York 11794, 
U.S.A. 

Grofman, Bernard 
School of  Social Sciences, 
University of  California, Irvine, 
Irvine, CA 92717, 
U.S.A. 

Hartley, Richard 
General Electric Corporate Research and Development, 
Building K W  Room (7512, 
Schenectady, N Y  12301, 
U.S.A. 



THE UNCOVERED SET IN SPATIAL VOTINGGAMES 155 

Kilgour, Marc 
Department o f  Mathematics, 
Wilfrid Laurier University, 
Waterloo, Ontario, 
Canada N2L 3C5. 

Miller, Nicholas 
Department of  Political Science, 
University of  Maryland at Baltimore City, 
5401 Wilkins Avenue, 
Catonsville, MD 21228, 
U.S.A. 

Noviello, Nicholas 
School of  Social Sciences, 
University of  California, Irvine, 
Irvine, CA 92717, 
U.S.A. 


