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Abstract. The yolk, the smallest circle which intersects all median lines, has been shown to be an 
important tool in understanding the nature of majority voting in a spatial voting context. The 
center of the yolk is a natural 'center' of the set of voter ideal points. The radius of the yolk can 
be used to provide bounds on the size of the feasible set of outcomes of sophisticated voting under 
standard amendment procedure, and on the limits of agenda manipulation and cycling when vot- 

ing is sincere. We show that under many plausible conditions the yolk can be expected to be small. 
Thus, majority rule processes in spatial voting games will be far better behaved than has com- 

monly been supposed, and the possible outcomes of agenda manipulations will be generally con- 
strained. This result was first conjectured by Tullock (1967). 

1. Introduction 

Recent advances in social choice theory in the spatial context have shown that 
a new geometric construct, the yolk - i.e., the smallest circle (or sphere or 
hypersphere) that intersects all median lines (or hyperplanes) - offers impor- 
tant insights into the nature of majority rule processes when individual prefer- 
ences are Euclidian. The size of the yolk (measured by its radius r) measures 
how close the majority preference structure is to having a majority winner or 
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author, NSF Grant #SES 85-09680 to the third-named author, and NSF Grant #BNS 8011494 to 
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core outcome (McKelvey, 1986). 1 In particular, the size of the uncovered set 
is determined by the size of the yolk. Also, if the center of the yolk is a feasible 
outcome, the set of outcomes given sophisticated voting under amendment 
procedure must be contained within a circle with radius of 4r around the center 
of the yolk. And the outcome of competition between candidates rationally 
seeking electoral victory must be contained in the same circle. (See McKelvey, 
1986; Feld et al., 1987; cf. Miller, 1980; Banks, 1985; Shepsle and Weingast, 
1984.) 2 Other recent important results are (1) that the likely outcomes of most 
reasonable probabilistic choice processes for generating agendas are concen- 
trated within 4r of the center of the yolk (Ferejohn, McKelvey and Packel, 
1984); (2) that no alternative x can lose to any alternative which is more than 
2r further away from the center of the yolk than x is (McKelvey, 1986; cf. Feld, 
Grofman and Miller, 1989 forthcoming); (3) that agendas which generate 
movement toward the center of the yolk are far easier to create than those 
which move away from the yolk (Feld and Grofman, 1987a); and (4) that the 
range of outcomes which can be generated by one-issue-at-a-time decision 
making can be bounded by a simple function expressed in terms of the yolk 
(Feld and Grofman, 1988b forthcoming). 3 Many of these results were first 
conjectured by Tullock (1967) in a much neglected paper. 

Because the size of the yolk is critical to understanding the dynamics of 
majority rule in the spatial context, knowing the conditions under which the 
yolk can be expected to be small (relative to the distribution of Voter ideal 
points) is of great importance. If the yolk is small, then outcomes of most vot- 
ing processes will be confined to a small, centrally located region of the space. 
Thus, the potential domain of agenda manipulation (McKelvey, 1976, 1979; 
Schofield, 1978; cf. Shepsle, 1979; Riker, 1982) will be severly confined. 

In this paper we shall provide theoretical results which provide bounds for 
the yolk; and which indicate that the yolk will typically be quite small relative 
to the distribution of voter ideal points. 

A principal theoretical result is an analogue to the Plott (1967) symmetry 
conditions. We show that when we can pair enough voter ideal points on either 
side of some circle so that the paired points plus the points contained within 
the circle constitute a majority of all voter ideal points, then the radius of the 
circle is an outer bound for the radius of the yolk. It follows that the smallest 
circle containing any minimal winning coalition is an outer bound for the size 
of the yolk. We also show that the yolk is always smaller than such a circle be- 
cause, in w dimensions, the interior of the yolk can contain no more than 
[(w - l)n - (w + 1)] / 2w of the n voter ideal points. Thus, in two dimensions, 
at least 3/4ths of the voter ideal points must lie outside the yolk. 



39 

A 

O 

B I c 

Figure 1. The petals of the win-set and half-win set around o, the center of the yolk 

2. Theoretical results in the size of the yolk 

The results we give are based on Euclidean preferences, i.e., voters are as- 

sumed to have a most preferred point in the space and to prefer alternatives 
closer to their ideal point to those further away. This is a common assumption 
which simplifies both exposition and proofs (McKelvey, 1986). 4 We assume 
that the number of  voters, n, is odd. While our results hold for any number 
of  dimensions unless otherwise specified, our illustrations and terminology 

will be two-dimensional. Thus we will refer to circles, lines, etc., rather than 

hyperspheres, hyperplanes, etc. Proofs of  all lemmas and theorems are provid- 
ed in a mathematical Appendix. 

Definition 1: The win set of  any point is the set of  alternatives that are 
preferred to it by a majority of  the voters. 

Definition 2: The half-win set of any point, x, is the set of  points along any 
ray from x one half the distance from x to the boundary of  its win set along 
that ray, i.e., to the median line perpendicular to the ray. 
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We show in Figure 1 the win-set and half-win set of  a point for a simple three 
voter example. 

Definition 3: The yolk is the smallest circle that intersects all median lines. 
It follows that the yolk is the smallest circle surrounding the half-win set of 

any point. This equivalence is established by the fact the limit in each direction 
of  the win-set of a point is just twice the distance to the median line in that 

direction. Consequently, a circle around a point intersects all median lines if 
and only if twice that  circle surrounds the win-set of  the point. 

We begin with some loose bounds on the size of  the yolk, and then proceed 

to establish some narrower constraints. 
Theorem 1: The radius of  the yolk is at most one half of  the radius of  any 

circle which includes all voter ideal points. 
We can proceed to consider limits on the size of  the yolk that follow from 

the concentration of  points. It is easy to see that any majority of  points pro- 

vides an outer bound for the size of the yolk. 
Theorem 2: The radius of  a circle including a majority of  the voter ideal 

points (a minimal winning coalition) provides an outer bound for the radius 
of  the yolk. 

This 'bound'  is almost certainly much greater than the size of  the yolk since 

the next theorem indicates that in two dimensions the yolk can include no 

more than 1 / 4  of  the voter ideal points. 
Theorem 3: In two dimensions, the interior of  the yolk can contain or touch 

no more than ( n - 3 ) / 4  of  the voter ideal points, where n is the number of 
voters. More generally, in a spatial voting game with w dimensions and n voter 

ideal points, the yolk can contain or touch no more than [(w - 1)n - (w + 1)] / 

2w of the ideal points. 
When the approximate location of  the center of  the yolk can be determined, 

this theorem provides bounds for the size of  the yolk; in two dimensions we 
know that the yolk can be no bigger than a circle centered at that location in- 

cluding 1 /4  of  the voter ideal points. 
This theorem implies that, in two dimensions, for n < 7 there are no points 

in the yolk, for n < 10 there is at most one point in the yolk, etc. This suggests 
that circles containing a majority of  voter ideal points are in fact likely to be 
much larger than the yolk. 5 

We now provide theorems that show that certain types of  additions of  voter 
ideal points can only decrease the size of  the yolk, and demonstrate implica- 

tions for bounds on the yolk. 
Theorem 4: If a pair of  voter ideal points is added to a set of  voter ideal 

points such that the line segment connecting the pair passes through the origi- 
nal yolk, the resulting yolk can be no larger than for the original set. 

If the original yolk is large, then it is easy to satisfy the conditions of  The- 
orem 4. Of course as the yolk shrinks, the condition approximates the Plott 
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(1967) condition. Note, too, that even if the distribution of added points is 
very different from that required by the theorem, it is not necessarily true that 
the yolk expands in size. For example, if the added points lie entirely or dis- 
proportionately to one side of the old yolk, the symmetry condition certainly 
will not be met, and the new yolk almost certainly will not be contained in the 
old yolk, as its location will have shifted substantially. But the new yolk may 
still be smaller, in terms of its radius, than the old yolk. 

Theorem 5: In two dimensions, if the set of voter ideal points can be par- 
titioned such that some of the voter ideal points are in pairs whose line seg- 
ments pass through a circle, and the majority of the rest of the voter ideal points 
are within that circle, then the circle provides a bound for the size of the yolk. 

Theorem 5 follows directly from Theorems 3 and 4. 
Theorem 5 is a potentially important result because it is often easy to find 

a centrally located circle including a dense concentration of voter ideal points 
that meets the condition given in that theorem, e.g., if voter ideal points are 
close to a multivariate normal distribution. 

3. Discussion 

As we have shown, the addition of points with any degree of symmetry around 
a 'central' location tends to reduce the size of the yolk. In general, if there is 
symmetry around a 'center,' there will tend to be a small yolk. In two dimen- 
sions, the bivariate normal distribution is most often used as the model for dis- 
tributions of voter preferences in two dimensions. (See Chamberlin and Co- 
hen, 1978; Merrill, 1984, 1985.) While such a model is only an approximation, 
it is easy to see that if an actual distribution is anything close to that approx- 
imation, the yolk will be small. If there were a perfect bivariate normal 
distribution, there would be a majority rule core, i.e., the radius of the yolk 
would be zero. If deviations from a perfect bivariate normal distribution are 
minimal, the yolk would be small. (Cf. Koehler, 1988; also see discussion of 
Theorem 3 in the Appendix.) 

If the yolk were small enough, with a small finite number of alternatives, 
there would often be a Condorcet winner. Thus, our results help explain why 
previous authors (such as Chamberlin and Cohen, 1978: Table 4) who simu- 
late voting in a spatial context by positing an underlying univariate normal dis- 
tribution in each dimension, find a Condorcet winner from among a small sub- 
set of alternatives 100070 (or nearly 100070) of the time. Although TuUock 
(1967) did not make use of the minimal circle touching all median lines but 
thought, rather, in terms of the minimal region which was at the intersection 
of all median lines, this is effectively the result he posited. 
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Appendix 

Proof of  theoretical results on the size of  the yolk 

Let rp designate the radius of  the smallest circle that includes every voter ideal point. Thus, rp is 
a rough measure of  the size of  the Pareto set. 

Theorem 1. In two dimensions, the radius of  the yolk is at most one half of  the radius of  the 
circle including all voter ideal points, i.e., it must be the case that r -< rp /2 .  

Proof: There always exist three median lines that are tangent to the yolk, forming a triangle with- 
in which the yolk is inscribed (see Figure 2). By definition of  a median line, at least (n + 1) / 2 ideal 
points must lie on or outside each line. Thus at least one ideal point must lie on or outside both 
of  each pair of  median lines, i.e., in each of  the shaded regions (and including the boundaries 
thereof) in Figure 2, since any two majorities must have at least one member in common. Con- 
sequently, the triangle formed by the three median lines is contained in the convex hull of  these 
three points and thus within the convex hull o f  all ideal points, i.e., the Pareto set PO(X), and fi- 
nally within any circle circumscribing PO(X). It is a well-known result in plane geometry that, for 
any triangle, the radius of  the inscribed circle can be no more than one half of  the radius of  the 
circumscribed circle; this maximum occurring when the triangle is equilateral. Q.E.D. 

In proving the theorem, we also proved the weaker result that in two dimensions, the yolk is 
properly contained in the Pareto set. The bound on the size of  the yolk established by Theorem 
1 is a very weak one. In two dimensions, the radius of  the yolk r can equal r p / 2  only if there are 
just three ideal points forming an equilateral triangle, or all ideal points are 'piled on top of  each 
other '  at just three locations (with fewer than half o f  the ideal points at any one location) likewise 
forming an equilateral triangle. The yolk can touch the boundary of the Pareto set only if there 
are just three ideal points, or (as above) all ideal points are located at just three locations, or if 
all ideal points al'e collinear (in which case PO(X) is a line segment and the yolk is a point on the 
line). 

Let rmi n designate the radius of  the smallest circle that includes some set of (n + 1) /2  voter 
ideal points, i.e., a minimum winning coalition under simple majority rule. Then we have the fol- 
lowing. 

Theorem 2. The radius of  the yolk is no greater than the radius of  the smallest circle that in- 
cludes the ideal points of  some minimal winning coalition, i.e., it must always be the case that r 

--< rmi n. 
Proof: This is immediate because no median line can fail to intersect any circle including the 

ideal points of  any (minimal) winning coalition, for otherwise at least (n + 1) / 2 ideal points would 
lie to one side of  the line. Thus the yolk is some other smaller (and intersecting) circle. Q.E.D. 

Theorem 3. In two dimensions no more than ( n -  3 ) / 4  of  the voter ideal points can lie in the 

interior of  the yolk. 
In words, fewer than one quarter of  the voter ideal points can lie in the interior of  the yolk. 
Proof'. There are at least three median lines tangent to the yolk. These three lines partition the 

space into seven regions, and thus also the set o f ideal points into seven subsets, as shown in Figure 3. 
Because some ideal points lie on the lines, we must define the partition carefully. For present 

purposes, it is convenient to define the sets A, C, and E as including the lines that form their 
boundaries, the set G as excluding the lines that form its boundaries, and thus the sets B, D, and 
F as including their boundaries with G but excluding their other boundaries. Let the number of  
voter ideal points in each region be given by the corresponding lower case letter. Thus: 

n = a + b + c + d + e + f + g .  (1) 

Since each line is a median line, each can have at most (n - 1) /2  ideal points on either side of  it. 
Thus each has at least (n+ 1) /2  ideal point on and to one side of it. Thus: 
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Figure 2. Median triangle bounding the yolk 
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Figure 3. Construction used to prove Theorem 3 
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a + b q- c _> ( n + l ) / 2 ;  

c + d + e > ( n + 1 ) / 2 ;  

e + f + a _> ( n + l ) / 2 .  

Simplifying, adding the three inequalities, and substituting in (1) above, we get: 

4a + 2b + 4c + 2d + 4e + 2 f - 3  >_ 3n = 3a + 3b + 3c + 3d + 3e + 3f + 3g 

and 

g_< [a + c + e - 3 - ( b  + d + f ) ] / 3 .  (2) 

Clearly g takes on its m a x i m u m  value when (b + d + f) = 0. Thus:  

gmax -< [(a + c + e ) /3]  - 1. 

But also: 

gmax = n -  (a + c + e) 

so 

n - ( a  + c + e)_< [(a + c + 0 / 3 1 -  1 

and 

(3n + 3 ) / 4 _ <  a + c + e. 

Thus:  

gmax = n - (a + c + e) -< n - (3n + 3 ) / 4  = ( n - 3 ) / 4 .  

Since the interior of  the yolk is included in G, the theorem is proved. Q.E.D.  

Notice that this is an  upper bound  for the interior of  the whole triangle G, so the interim of  the 

yolk may  contain even fewer points.  

Theorem 3 implies that,  in two dimensions,  there must  be at least seven voter ideal points before 

any can lie within the yolk. 

Theorem 3 suggests quite powerfully that  the yolk is small relative to the dispersion of  ideal 

points  when the ideal points are large in number  and  ' reasonably '  distributed. 

First, we have seen that  the yolk is more  or less centrally located. Second, if the ideal points are 

even very roughly normally distributed, they will tend to concentrate in the vicinity of  the center 
of  the distribution. Thus ,  even if the yolk were to include nearly one quarter of  the ideal points, 
it would most  likely probably be small, relative to the Pareto set. 

But much  more  potent is the  following consideration. If the ideal points  are distributed even 
very roughly normally,  nothing approaching one quarter of  them could be within the yolk, for es- 

tablishing the m a x i m u m  given in Theorem 3 requires that  the ideal points be distributed very oddly 

indeed. All ideal points not  in G mus t  be clustered in A, C, and E, with none at all in B, D, and 

E. To get a substantial  number  o f  ideal points within the yolk, there must  be substantially more 
points in A L I  C U E than in B I_1 D U F. (See Expression (2)). Yet G is centrally located in the 
distribution of  ideal points, and each of  the other regions is essentially a pie-slice-shaped wedge 
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radiating outward from this generalized median. While the six wedges certainly need not be the 
same size, as indicated by the magnitude of  the angle between their boundaries, it may be readily 

checked that A U C U E and B U D U E are essentially the same size, in that the sum of  the 
angles is the same, i.e., 180 °, for both triples. We might reasonably expect, therefore, rather than 
b + d + f = 0 and a + c + e = n - g (as we assumed in determining gmax), that much more 
typically a + c + e ~ b + d + f. Actually, this general expectation must be refined a bit. Given 
that g must be non-negative, it follows from expression (2) above that b + d + f cannot exceed 

a + c + e and, in fact, the latter sum must exceed the former by at least three. (This asymmetry 
results from the fact that the two triples of  regions are not formed by any three lines coming 
together in the vicinity of  the center of  the distribution but specifically by three median lines.) But 
the expectation holds that typically a + c + d would exceed b + d + f by not many more than 
three points, which implies that typically no more than a few ideal points would be within the yolk. 
Moreover, as the number of  ideal points increases, and if their diversity increases also (i.e., in the 

absence of any peculiar clustering of  ideal points), we should expect a + c + d and b + d + f 
to become relatively more equal, and thus relatively fewer points to lie within the yolk. And, if, 

as the number of  ideal points increases, the proportion lying within the yolk decreases while their 
overall dispersion remains about the same, it must be that the yolk is shrinking in size relative to 
the (more or less constant) dispersion of  ideal points. This two-dimensional result can be gener- 
alized quite straightforwardly. 

Theorem 3 '. In a spatial voting game with w dimensions and n voter ideal points, the interior 
of  the yolk can contain no more than 

( w -  1)n - (2+ 1) 

2w 

of  the ideal points. 
In two dimensions, there are (at least) three lines tangent to the yolk and forming what we may 

call a median triangle (with three sides and three vertices). (See Figure 2.) In three dimensions, 
there are (at least) four median planes tangent to the yolk and forming a median tetrahedron (with 

four faces and four vertices). In w dimensions, there are (at least) w + 1 median hyperplanes (each 
w -  1 dimensional) tangent to the yolk and forming a median 'hyper-hedron'  (with w +  1 'faces' 
and w + 1 vertices). 

Let fi be the number of ideal points on or beyond each face i (cf. b, d, and f in Theorem 3 
above), vj the number of  ideal points beyond each vertex j (cf. a, c, e in Theorem 3 above), and 
c the number of  ideal points inside the 'hyper-hedron. '  Thus: 

n = ~f + Ev + c (1) 

Then, for each median hyperplane, we have the inequality: 

fi + ~;vi -> ( n + l ) / 2  

where the summation is over all w vertices that lie in the median hyperplane that defines fi- 
Simplifying, adding up the w + 1 inequalities, and substituting in (1), we get: 

2£f + 2wr.v - ( w + l )  = (w+ 1)ISf + ( w + l ) Z v  + ( w + l ) c  

and 

c < ( w - 1 ) ( I 2 v - X ; f ) / ( w + l ) -  1 (2) 
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Clearly c takes on its maximum value Cma x when ~f = 0. Thus: 

Cma x --< (W-- l)]~V/(W+ 1) -- 1. 

But also 

Cma x = n - ~v 

so 

n - Ev _< ( w -  1 )Ev / (w+ 1) - 1 

and 

(w+ 1)(n+ 1) /2w < Ev. 

Thus 

Cma x = n - Ev < [ (w-1 )n  - (w+ 1)]/2w. 

Since the interior of the yolk lies within the median 'hyper-hedron, '  the theorem is proved. 

If  n is large, the maximum proportion of ideal points that may lie within the median 'hyper- 

hedron' is essentially ( w -  1)/2w. Thus, the maximum proportion increases with the dimension- 

ality of the space and approaches a limit of 50%. For example: 

w proportion 

2 1 / 4  = 25% 

3 2 / 6  = 33.3% 

4 3 / 8  = 37.5% 

5 4 / 1 0  = 40% 

6 5 /12  = 41.7% 

limit 50% 

We now present a further theorem which implies that, under plausible conditions, the yolk shrinks 

in size as the number of voter ideal points increases. 

Theorem 4. Given any set of n voter ideal points with a given yolk of radius r, if two voter ideal 

points are added such that the line between them intersects this yolk, the new yolk for the n + 2 

ideal points is no larger than the yolk. 

Proof: Let r be the radius of yolk for the original n ideal points and let Xn+ l and Xn+ 2 be the 

two additional ideal points. See Figure 4. Suppose that the line through xn+ 1 and Xn+ 2 passes 

through the old yolk, as shown in Figure 4. 
If  n is odd, there is exactly one median line passing through the space at a given angle (relative 

to some coordinate system). We consider any median line M for the distribution of n ideal points 

and consider whether it is still a median line in the distribution of n + 2 points and, if not, where 

the median line M' parallel to the old M lies in the new distribution. 

There are two possibilities: (1) M intersects the line passing through Xn+ 1 and Xn+ 2 between 

Xn+ l and xn+ 2, or (2) it does not. If  (1), one point has been added on either side of M and M re- 

mains a median line in the new distribution. If  (2), two points have been added on the same side 

of M and most likely M is no longer a median line (though it might be if, fortuitously, two or more 

ideal points lie on M and fewer than (n - 1) / 2 ideal points previously lay on the side of M to which 

Sn+ l and Xn+ 2 were added). To find the new median line M'  parallel to M, we shift M toward 
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Figure 4. Construct ion used in proof  of  Theorem 4 

Xn+ 1 and Xn+ 2 until we hit the first ideal point. Thus  the furthest  we could shift M would be until 

we hit the closer of  Xn+ l and Xn+ 2 (e.g., Xn+ 1 in Figure 3). Since M intersects the old yolk and the 

line through x n +1 and Xn+ 2 intersects the old yolk, M '  mus t  intersect the old yolk. 

This a rgument  can be repeated for every median line for the distribution o f  n ideal points. Thus  

every median line for the distribution of  n + 2 ideal points passes through the old yolk and the new 

yolk is contained in the old yolk. Since some of  the median lines have shifted, the containment  

may  be strict, so that r '  < r (in which case probably c '  ~ c where c is the center of  the old yolk 
and c '  is the center of  the new yolk), but in any event r '  -< r, where r '  and c '  are the radius and 
center of  the new yolk. Q.E.D.  

Note that  this theorem reflects a type o f  generalization of  the well-known Plott (1967) symmetry 

conditions. 

Theorem 5: In two dimensions,  if the set of  voter ideal points can be partit ioned such that some 
of  the voter ideal points are in m pairs whose line segments pass through a circle, and the majori ty 
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of the rest of the voter ideal points are within that circle, then the circle provides a bound for the 
size of the yolk. 

Proof: This result follows directly from Theorems 3 and 4. Start with the points that are not 
paired; a circle surrounding a majority of those points is an outer bound for the yolk of those 
points. All the other points can be paired, two at a time, so that the connecting lines pass through 
that circle. But the yolk of the combined set is no larger than the original yolk. Q.E.D. 

Notes 

1. The yolk will be of radius zero if and only if there is a majority winner. 
2. This bound has been strengthened to 3.7r by Feld et al. (1987). 
3. The same is true for the outcomes of possible committee jurisdictional assignments with a set 

of single issue-dimension committees operating under a germaneness rule (see also Krehbiel, 
1984). 

4. However, there is a straightforward way to extend all the results to deal with the more general 
case of convex preferences (see Cox, 1987; Feld and Grofman, 1987a). 

5. For example, as w increases, the number of points that can be found interior to the yolk in- 
creases from 25% (for two dimensions) to 50% (in the limit). See Theorem 3' in Appendix (cf. 
Schofield, Grofman and Feld, 1988). 
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