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Abstract

The yolk is the set of points bounded by the smallest circle that intersects every median line

in a two-dimensional spatial voting game.  While the character of such  voting games clearly depends

critically on the location and size of the yolk, until recently it has been difficult make useful

generalizations about these matters.  Tovey has shown that, if voter ideal points are randomly drawn

from a “centered” continuous distribution, the expected yolk radius decreases as the number of voters

increases, approaching zero as the number of voters increases without limit.  This result leaves open

two questions: (1) the rate at which the yolk shrinks as the number of voters increases, and (2) the

impact on the size and location of the yolk of the distinctive “non-random” clustering of ideal points 

typically seen in empirical data.  Using CyberSenate spatial voting software, we can provide  answers

to these questions.



ON THE SIZE AND LOCATION OF THE YOLK IN SPATIAL VOTING GAMES:  

RESULTS USING CYBERSENATE SOFTWARE

In spatial voting games, the yolk is the smallest ball that intersects every median hyperplane. 

It has been clear on theoretical grounds that important characteristics of such games depend critically

on the location and, especially, the size of the yolk, but until recently it has been difficult make useful

generalizations about these matters.  Most discussions of the yolk have been based on hand-

constructed illustrative voting games with a small number (typically three or five) of voters, in which 

the yolk is typically large relative to the distribution of voters. In contrast, this paper uses

CyberSenate, a computer program developed by one of us, to examine the location and size of the

yolk in larger scale voting games with varying characteristics.1

Given the capabilities of the CyberSenate tool, we restrict our attention to two-dimensional

spatial voting games — the lowest dimensionality in which yolk size is problematic.  However,

considerable empirical research indicates that two dimensions are often substantially sufficient to

represent such choice situations as legislator preferences in parliamentary context (e.g., Poole and

Rosenthal, 1997; Poole, 2005), or voter preferences over competing candidates or parties (e.g.,

Budge et al., eds, 1987; Schofield, 1995; Schofield et al., 1997; Lijphart, 1998). 

 

1. The Yolk and Its Signifiance

We focus here on two-dimensional spatial voting games with an odd number n of voters

having Euclidean preferences over points in the space — that is, each voter i has an ideal point xi in

the space, prefers any point closer to xi  to one more distant from it, and is indifferent between points

equidistant from xi.  This implies that voter i’s indifference curve through any point x, denoted Ii (x),

is the circle centered on xi that passes through x.  The set of points Pi (x) that i prefers to x is the set

of points bounded by Ii (x).

If some majority of voters prefers x to y, we say “x beats y.” The win set W(x) of point x is

the set of all points in X that beat x.  The set of points that a particular majority of voters prefers to

x is the intersection of all sets Pi (x) such that i belongs to that majority.  W(x) is the union of such

majority preference sets across all possible majorities.  In a spatial context with n odd, x beats almost

all points not in W(x).2 

Any line L through the space partitions the set of voter ideal points into three subsets: those

that lie on one side of L, those that on the other side of L, and those that lie on L itself.  A median

line M partitions the ideal points in a special way — namely, so that no more than half of the ideal

points lie on either side of M.  If n is odd,  every median line passes through at least one — and

typically only one —  ideal point, so fewer than half of the ideal points lie on either side of M.  A

limiting median line passes through (at least) two ideal points.  Typically limiting median lines pass

through a given ideal point in pairs, with non-limiting median sandwiched them.

1   CyberSenate was developed by Joseph Godfrey of the WinSet Group, LLC  [http://www.winset. com/

pages/ 5/index.htm]. 

2
    Even with n odd, some majority preference ties exist but, in order to simplify exposition, we overlook

technical issues pertaining to points that lie on the boundaries of sets. 
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If point x lies off some median line M, x is beaten its projection on M.  It follows that a point

x is unbeaten only if it lies on every median line, which is possible if and only if all median lines

intersect at the single point x.  This in turn can hold only in the presence of a sufficient (and unlikely)

degree of “Plott symmetry” in the configuration of ideal points (Plott, 1967; Enelow and Hinich,

1983). 

McKelvey (1986, drawing on Ferejohn, McKelvey, and Packel, 1984) introduced the concept

of the yolk.   In a two-dimensional spatial voting game, the yolk is the set of points bounded by the

smallest circle that intersects every median line.   The location of the yolk is given by its center c and

its size of the yolk by its radius r.  The yolk circle is inscribed within the yolk triangle formed by three

median lines to which the circle is tangent.3    

The yolk is a distinctively important characteristic of spatial voting games, for a number of

reasons.

1. The center c of the yolk indicates the generalized center of the configuration of ideal points

in the sense the median.  The importance of this generalized median point is in turn suggested

by the role of Black’s (1948, 1958) Median Voter Theorem in one-dimensional spatial voting

games.

2. If r = 0, there is sufficient “Plott symmetry” that all median lines intersect in a single point,

which is a “total median” and Condorcet winner.  Otherwise, the magnitude the yolk radius 

r indicates the extent to which the configuration of ideal points departs from one exhibiting

Plott symmetry.

3. More generally, as r increases in magnitude, win sets become more irregular, majority rule

becomes more “chaotic,” and voting outcomes can more readily be manipulated by an agenda

setter.4

4. Every win set W(x) intersects the yolk; if x lies at least 2r from c, c lies in W(x); if x lies at

least 3r from c, W(x) contains the yolk.

5. More generally, any point x lying at distance d from the center of the yolk c beats all points

more than d + 2r from the center of the yolk, and x is beaten by all points closer than d !2r

to the center of the yolk; put otherwise, the boundary of W(x) everywhere falls between two

circles centered on the yolk with radii of d + 2r and d ! 2r respectively (the inner constraint

disappears if d < r and the two circles coincide if r = 0).5 

3   These are typically, but not always, limiting median lines; see Stone and Tovey (1992) and Koehler (1992). 

It should be emphasized that this discussion assumes that n is odd; the definition of a yolk is more complicated if n is

even.

4   For a general discussion, see Feld et al., (1989).

5   Tighter bounds on W(x), especially in the vicinity of x itself, are provided by the outer and inner cardioids

described in Ferejohn et al. (1984), McKelvey (1986), and Miller et. al. (1989).  The eccentricity of this cardioid

likewise depends on the size of the yolk.
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6. In the event of Plott symmetry (and a yolk with zero radius), c is the Condorcet winner and

no majority preference cycles exist anywhere in the space. But McKelvey’s (1976, 1979)

Global Cycling Theorem tells that, in the event Plott symmetry fails in even the slightest

degree, a global cycle engulfs the entire space and, in particular, a path of majority preference

can be constructed between any two points in the space, so that even a point y that lies far

beyond the periphery of the ideal point distribution can, in some finite number of steps,

indirectly beat a point x that is centrally located within the distribution. However, the length

and complexity of the required path from y to x depend on the size of the yolk — the smaller

yolk, the longer and more convoluted the majority preference path must be.

7. A  point x lying at distance d from the center of the yolk c covers all points more than d + 4r

from the center of the yolk and is covered by all points closer than d !4r.6

8. As a corollary, given a status quo x located at distance d from c, an amendment agenda, and

sophisticated voting, an agenda setter can design an agenda that produces an outcome at most

d + 4r from the center of the yolk (Shepsle and Weingast, 1984; Feld et al., 1989).

9. The uncovered set (which may constitute a plausible bound on the likely outcomes of many

types of spatial voting games) lies within a circle centered on c and with a radius of 4r

(McKelvey, 1986).  Feld et al. (1987) trimmed this bound a bit.  Other recent research using

CyberSenate indicates that the uncovered set typically is compactly shaped, approximately

centered on the yolk, and has a “radius” of about 2r to 2.5r (Miller, 2007).

When the concept was first propounded in the early 1980s, there was a widespread intuition

that the yolk would be centrally located and would tend to shrink in size as the number of voters 

increases.  However, it was difficult to confirm these intuitions or even to state them in a theoretically

precise fashion.  Feld et al. (1988) took a few very modest first steps. Koehler (1990) took more

substantial steps in a paper that is discussed below).   Tovey (1990) took a considerably larger step

by showing that, if (and only if) ideal point configurations are random samples drawn from any

“centered” probability distribution7, the expected yolk radius approaches zero as the number of ideal

points increases without limit.  More intuitively, if the underlying distribution has a well-defined

center, finite random samples drawn from it have imperfectly defined centers that become more

perfectly defined as sample size increases.  But Tovey’s theoretical result left two important questions

open.  

The first question concerns the rate at which the yolk shrinks as the number of voters

increases.  For example, does a yolk with n = 101 or n = 435 (to pick two n’s of political relevance

in the U.S.) look more like a yolk in a committee-sized configuration of n = 9 to n = 25 ideal points

6   Point x covers y if x beats y and every point that y beats.

7   A (two-dimensional) probability distribution is centered around a point c if every line through c has half

the probability mass on either side.  Bivariate uniform and normal distributions (both considered in the next section)

are centered, as are nonstandard (e.g., correlated) normal distributions (not considered here).
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or in an electorate-sized configuration of n = 100,000 to n = 100,000,000 ideal points?  

The second question concerns the impact on the location and size of the yolk of various

patterns of “non-random” clustering within configurations of ideal points of varying sizes.  Such

clustering is typically seen in empirical ideal point data — for example, the Congressional ideal point

configurations generated by the NOMINATE procedure of Poole and Rosenthal (1997), several of

which are reproduced in Bianco et al., 2004).

We take up the first question in Section 2.  We take up and the second question with respect

to bimodal clusters in Section 3 and with respect to multi-modal clusters in Section 4.  Some

generalizations and conjectures are presented in the concluding Section 5.

2. Random Ideal Point Configurations8

Some years ago, Koehler and Binder (1990) developed a computer program to compute 

yolks in two dimensions.9  With this tool, Koehler (1990) calculated yolk locations and sizes in ideal

point configurations randomly drawn from an underlying uniform distribution over a 10 × 10 square. 

He drew twenty five configurations for each of n = 25, n = 51, and n = 75, plus one configuration for

every n from 3 through 101.10  This produced two main findings.  First, the average yolk size was

fairly small, relative to that found in small hand-constructed configurations three or five voters. 

Second, within the range of configurations studied, the average yolk radius clearly declined as n

increased.   Mean yolk radii were 0.66 for n = 25, 0.52 for n = 50, and 0.44 for n = 75.  Thus the

mean yolk radius for n = 75 was about 66% (and the mean yolk area is about 45%) of that for n =

25. 

Subsequently, Hug (1999) used Koehler’s program to extend his estimates to larger-scale

ideal point configurations.  Hug drew samples of five configurations for each of a variety of n’s

ranging up n = 1001 plus a single configuration of n = 2001.  For the twenty configurations with n

= 701 through 1001, the mean radius was about 0.175, or about 26.5% (and the mean yolk area

about 7%) of that for n = 25. (The one yolk with n = 2001 had a radius of about 0.10.)

More recently, Bräuninger (2007, Figure 5) used his own computer program to randomly

select 4000 voter configurations from an underlying uniform distribution over a 10 × 10 square, for

odd n’s running from 3 to 101 and calculate the yolk radius for each configuration and the mean

radius for each n.    

CyberSenate can generate configurations of ideal points drawn randomly from either bivariate

8    Some of the results in this section were previewed in Miller (2007). 

9   This program was an ancient ancestor of CyberSenate. 

10   As the title of his paper indicates, Koehler also analyzed even-sized committees.  With n even, distinct

“inner” and “outer” yolks appear.  We do not take up the n-even case here.
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uniform or bivariate normal distribution, compute and display all limiting median lines and the yolk,

display the yolk, and compute c and r (see Figure 1 for an example of bivariate normal configuration

with n = 51).11  Using CyberSenate, we have computed yolk sizes for 670 ideal point configurations,

half drawn from each type of distribution, with various n’s (all odd) ranging from 3 to 2001.12   

The results for the 335 configurations drawn from a uniform distribution over a 10 × 10

square are displayed in Figure 2, which plots each individual configuration and shows the mean yolk

radius for each n. It is evident (and unsurprising) that yolk sizes are quite stable from sample to

sample in large configurations but highly variable in small configurations.13  Nevertheless, it is clear

that, once a low threshold of about n = 7 is crossed, the expected yolk radius shrinks as the number

of voters increases and, given configurations of several hundred voters, the expected yolk radius is

about one quarter (and yolk area about 6%) of that for configurations with n = 3 to 15. 

Figure 2 combines data from Koehler, Hug (for n >101 only), Bräuninger, and Figure 1 into

a single chart.  Koehler’s data for all n from 3 to 101 is shown individually.  Otherwise only the mean

for a given n is shown (with simple interpolation between data points).  Figure 4 combines the

Lowess curves for the same data.    It is evident that there is good agreement among all results from

n = 15 upwards. 

  Configurations with ideal points uniformly distributed over a square look very artificial, while

configurations drawn from a bivariate normal distribution (like that in Figure 1) appear considerably

more natural.  Figure 3 displays CyberSenate results for the 228 configurations (such as that shown

in Figure 1) drawn from a bivariate normal distribution centered on (50,50) with a standard deviation

of 15 each in dimension. 

3. Ideal Point Configurations with Two Clusters

11   CyberSenate also identifies  “Tovey anomalies” (when the smallest circle intersecting every limiting

median does not intersect some non-limiting median line) and adjusts yolks radii accordingly.  Causal impressions

based on extensive CyberSenate usage suggest that such anomalies occur more frequently than  Koehler (1992)

anticipated but also that (with n odd) the required adjustments in the yolk are small.  See footnote 3 and McKelvey and

Tovey (2005).

12     More samples were drawn for smaller configurations than for larger ones, both because computations

take much more time for the large ones (hours for n = 2001) and also because there is much more variability in yolk

sizes in the small configurations.  ***As might be expected, for a given n, expected yolk size is a somewhat smaller

when ideal points are drawn from a normal distribution rather than a uniform distribution with the same standard

deviation.

13   SD vs. variation ratio.
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4. Ideal Point Configurations with More Than two Clusters
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