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Abstract

The uncovered set was developed in order o predict outcomes when spatial models result in an empty core. In contrast to
conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives,
Hence, existing definitions of the covering relationship return differing results. We develop 2 definition for a fuzzy covering relation.
Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the
exceptions.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

There. are a number of incongruences between the predictions made by conventional spatial models in political
science and empirical reality. The most well-known incongruence results from pervasive cycling of majority ruleina
space of two or more dimensions. In fact, however, there is littie empirical evidence of cycling in political life [1}. An
approach to resolving the majority cycling problem, that has been long known, but remains largely under-developed,
is the introduction of thick indifference in individual preferences in models [2]. Several studies have found that the
probability of 2 majority rule maximal set increases when actors are indifferent over regions of the policy space [3-5].
Much of this work makes use of the epsilon-core. Until the distance between two alternatives exceeds some arbitrary
distance &, actors are indifferent in a choice between them [6,7]. Actors are essentially indifferent to alternatives within
radius & from one another, in a region defined as the e-core. While this is an interesting approach, its utility is undermined
by the difficulty that conventional mathematical tools encounter when individual preferences are irregularly shaped in
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the policy space, which is highly likely when issue dimensions are non-separable. Thus, empiricai testing of models
of indifference attempting to make use of the s-core concept becomes problematic.

A more promising approach to incorporating indifference in individual preferences in spatial models is offered
by fuzzy set theory and is explicated in [8). The approach not only permits the modeling of a substantial degree of
indifference, it also thickens the line that defines a player’s wincircle. Furthermore, in contrast to the e-core concept, it
models uniform indifference over a fixed and discrete region of the policy space. However, it is shown in {9] that while
the approach to modeling fuzzy individual preferences in [8] significantly enhances the likelihood of a stable maximal
rule outcome, it does not guarantee its existence in all cases. This raises the issue of how to arrive at a prediction set
when spatial models do not result in a maximal set?

One strand of the public choice literature argues that, in the absence of a majority rule maximal set, political actors
should choose an alternative in the uncovered set, the set of alternatives that sophisticated voters would reach by some
amendment agenda [10-12]. The specific alternative chosen depends on the amendment order. This paper develops an
uncovered set induced by players with fuzzy preferences. We follow the lead in [8] and adopt discrete fuzzy numbers
to represent the preferences of political actors. We demonstrate that with one relatively trivial exception, the uncovered
set comprises a subset of the Pareto set (Theorem 4.11).

As shown in [9], the fuzzy approach to modeling individuat preferences in [8] relies on a general theory in which
a region of interest is mapped to a region with a suitable and natural partial ordering. The partial ordering plays a
significant role in the determination of the results. The mapping involved then transfers the results faithfully back to
the original region of interest. The homomorphism permits a straightforward calculation of majority rule maximal sets,
Pareto sets, and the uncovered set, and thereby enhances empirical testing of the models.

We are not the first to offer a fuzzy approach to spatial modeling. As laid out in {13] a great deal of effort has gone nto
considering the challenge. However, the majority of efforts have hithertofore focused on preference relations [14-21]. !
We gratefully acknowledge the contribution that this work has made to our own thinking on the subject. Nonetheless,
we note that data in the social sciences do not easily lend themselves to measuring preference relations. If models are
to be tested, they must take individual preference as their starting point. % We are interested in developing an approach
to spatial modeling that is sensitive to the demands of the NSF-sponsored empirical implications of theoretical models
(EITM) movement [22] that models be testable. This paper is part of a long-term research project to produce such
models. For that reason, our approach is a new one that follows the lead of {23] in modeling fuzzy individual preferences
and builds upon work in [8]. It represents the next step following work in {9], which fully characterizes the conditions
under which the majority rule maximal set is empty.

2. Modeling fuzzy individual preferences

In {87 it is argued that fuzzy set theory permits the modeling of a substantial degree of indifference in political
actors’ preferences over policy options. Each element x in the universe of policy alternatives X over which political
players are making choices are assigned a value on the interval [0,1]. The assigned value indicates the degree to which
a political actor considers the given alternative to be an ideal policy. Formatly, each element x has a degree of set
inclusion, F(x), in the set of ideal preferences that is specified by a function F+ ¥ — 10,1} [24] For o in [0,1], the
sets £ = {x € X1F(x) > o} are referred to as alpha-levels (a-levels).

Individual indifference is captured by the a-level concept. A political player is indifferent between all alternatives at
the same a-level, essentially treating them as equivalents. Alpha-levels may take any value, which permits modelers to
distinguish between actors who are more or Jess discerning in their preferences. The conventional approach locks one
into modeling players who have the capacity to make infinitesimally small distinctions between alternatives. While a
fuzzy approach can accommodate such an assumption by assigning e-levels along the continuum from 0 to 1, individual
preferences over policies are likely to be substantially less discriminating. Following the lead in [14], we model such
coarse-grained distinctions using a finite set of discrete «-levels T = {0, .25, .5,.75, 1}. This Likert-like scale has an
intuitive appeal to it. The set of ideal policy preferences for an actor are assigned an a-level of 1 {full membership
in the set of ideal policies). All remaining policies are scored on the degree to which they come close to being ideal.
Those considered almost ideal are assigned .75 (three-fourths membership in the set of ideal policies), those considered

| preference relations are understoed formally as p @ X2 — [0, 1],
? Individual preferences are understood formally as o * X — {0, 1,
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(.25, 0, .25), (0, .5, .25), (D, .25, .25)

Fig. §. An empty maximal set in a fuzzy spatial model.
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“neither ideal nor not ideal” are scored .50 (one-half membership in the set of ideal policies), those “less ideal than
ideal” are scored .25 (one-quarter membership in the set of ideal policies), and those that are “not ideal” to any degree
0 (no membership in the set of ideal policies).

Since all alternatives at the same a-level are equally preferred to one another, a player is indifferent to all alternatives
at a given a-level. Thus, fuzzy spatial models map individual preferences as bounded regions (defined by each a-level),
within which a political player cannot differentiate among policy positions.

Consider Fig. 1, which maps the preferences of three players N = {A, B, C}ata = 1,.75,.50, and .25 in two-
dimensional space. The inner-most regions represent o = 1. The intersection of the a-levels for the three players
(three-tuples) are noted in parentheses, (A(), B(x), C(x)). If a maximal set exists under majority rule, it falls in one
of the intersections of a majority of players’ a-levels.

Majority rule is the complete binary relation R such that xRy means that the number of voters who prefer x to y is at
least as great as the number who prefer y to x. If xRy and yRx, we say “x ties y.” P is the asymmetric component of R.
That is, xPy implies xRy and ~ yRx and that the number of voters who prefer x to y is greater than the number who
prefer y to x. Formally, we define majority rule as

n
xPy=|{i € NlxPy}ll = 3 (1)

where N is the set of all players.and r is the number of players. If x defeats y under majority rule, then xFy =
lie NlxPiyll>n/2>{je NiyPjx}|, in which case we say “x beats y” under majority rule.

The maximal set is the set of alternatives that are maximal with respect to R or, put otherwise, the set of unbeaten
alternatives. Formally, the maximal set is defined as

M(R, X)={x e XIVy € X, ~ yPx}, )

where X is the set of alternatives. Let N denote the set of players and let n denote the nurhber of players. Let R denote the
set of all binary relations on X that are reflexive and complete. Let R denote the set of all n-tuples p == (Ry, ..., Ra}s
where R; belongsto R, i =1,...,n. Letfbea majority aggregation rule on R”. Following convention, we suppress
the notation f(p) and simply write R. Then P denotes the strict preference relation associated with f(p}.

The maximal set may be empty because majority rule may cycle, e.g., %Py, yPz, and zPx. Given a profile of Buclidean
preferences over a two-dimensional (or space) of alternatives, majority rule cycling is almost always pervasive. If the
number of voters is odd, there is at most one core alternative, but it exists only under conditions of “generalized Plott [25]
symmetry” [26}. If the number of voters is even, at most one core alternative exists and only under similarly stringent
symmetry conditions. 3 In the absence of such symmetry, majority rule cycling encompasses the entire alternative space
[28,29].

There is no majority rule maximal set in the situation defined by the sets of preferences depicted in Fig. 1. The set
of options that are majority preferred (the winset) to each numbered alternative are noted. All alternatives are majority
preferred by at least one other alternative.

The potential for cycling in spatial models of fuzzy preferences leaves open the question of how to predict outcomes
in the absence of a majority rule maximal set. This paper develops an uncovered set as an alternative prediction set
when players’ preferences are fuzzy and no maj ority rule maximal set exists. In what foliows, we demonstrate that with
one exception the uncovered set is a subset of the Pareto set (Theorem 4,11). As it turns out, the exception is trivial,
since it requires that no alternative is majority preferred to any other.

3, A definition of covering

The uncovered set is the set of sophisticated voting outcomes in an amendment agenda. Miller [10] originally
examined the covering relation and the uncovered set in majority preference tournaments (amendment agendas) that
result when an odd number of voters have strong preferences over discrete alternatives. Formally, the uncovered set is

F with just four voters and two dimensions, a unique core alternative always exists. When there are four voters, majority rule is equivalent to three-
quarters majority rule; and Greenberg’s Theorem {27] telis us that an unbeaten alternative always exists when a decision rule is more demanding
than MA{M+1), where M is the dimenstonality of the space.
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defined as
UC{X)={x e X| ~yCxV¥ye X}, 3)

where Cis a covering relation. Miller [ 10,30] assumed that players would exercise strict preference over all alternatives.
He defined the covering relation as

xCy =Wy c W), (4)

where W~ 1(x) is the set of all alternatives to which x is strictly preferred by a majority. W (x) is everything that x
beats, W 1(x) is called the inverse winset of x. Formally, W= (x) = { y € X|x Py}. In other words, x covers y (xCy) if
and only if x is at least as good as y and every point strictly beaten by v is also strictly beaten by x and there exists win
X such that x strictly beats w and y does not strictly beat w.

A number of alternative definitions of the covering relations C have subsequently been proposed. In the conventional
approach to spatial modeling, indifference among an odd number of players is “thin.” That is, a #b = aPb or bPa,
where P denotes the strict preference relation. (In conventional Buclidean spatial models, indifference is limited to the
indifference curves that describe individual preference.) Under conditions of thin indifference, all of the definitions of
the covering relation in the literature are equivalent in a spatial context. However, Penn [31] and Miller [32] have noted
that in any context that allows ties, these equivalences break down.

In the case of spatial models of fuzzy individual preferences, both individual indifference and collective indifference
(tie sets) are “thick”™ a#b = aRb or bRa, where R denotes the weak preference relation. As a consequence, the
equivalence relations among the various proposed definitions of the covering relation do not hold; and the definitions
of the covering relation return differing results {31,33].

Collective indifference is not uncominon when individual players possess fuzzy preferences over alternatives, even
when the number of players is odd. Consider the three-player case. The three-tuple representing the alternative Iying at
the intersection of the preferences (a-levels) of three players at (75,.5,.25) is not majority preferred to that at (.5,.75,.25).
Player one prefers the first alternative, and player two prefers the second alternative, but player three is indifferent in a
choice between them.

Collective indifference leaves open the possibility that a given definition of covering will result in an uncovered set
that contains alternatives that are not in the set of sophisticated voting outcomes in an amendment agenda. We need
a definition of covering that identifies an uncovered set containing only such alternatives under conditions of thick
indifference induced by fuzzy individual preferences. This is an important characteristic of the uncovered set, without
which its claim as a solution in the absence of a majority rule maximal set is rendered void. In what follows, we identify
such a definition.

We are puided in our task by Miller [10] and Shepsle and Weingast [11] who formalize a process for determining
the sophisticated outcome in an amendment agenda. Their process focuses on levels in the voting order rather than the
decision nodes in the voting tree representing an amendment agenda. Formally, a voting tree is “an amendment agenda
if there exists an ordering v : {1, ..., 7} -» X such that the majority voting sequence is ({1}, (2), ..., w(r)), where
7(1) is first voted against p(2), the winner against ¥(3), etc.” [34, p. 132}

We demonstrate Shepsle and Weingast's approach as follows. Suppose that we have acycle set: (.25,.25, S)P( 75,0,.25)
P(5,1,00P(25,75,1)P(1,.5,.75)P(.25,.25,.5). Let the agenda order A be

= {(.25,.25, .5), (1, .5, .75), {5, 1,0, (.25, .75, 1), (.75, 0, .25)}.

Any alternative chosen by sophisticated pIayers must be preferred by a majority to the final alternative in the voting
order. Those that fail to do so, cannot be the sophisticated outcome. Furthermore, the sophisticated outcome must be
majority preferred to all alternatives that are majority preferred at any level y of the game. Following the Shepsle and
Weingast procedure, the step-by-step results are

P3) = (75,0, .25)

y(4) = (25,75, 1), (25,751)P(.750,.25)

¥(3) = (.25,.75, 1), (5,.L00P(.25,75,1) but (.75,0,.250P(5,1,0)

y(2) = (25,75, 1), (1.5.75)P(.75,0,.25) but (.25,.75,1)P(1,.5,.75)
y(1) = (.25,.75, 1), (.25,25.5)P(.75,0,.25) but (.25,.75,1)P(.25,.25,.5)
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By reflexivity, the final alternative is at least as good as itself. Hence, in the construction of the backward induction
process that is common to determining the sophisticated winner in a voting game, (75,0,.25) is trivially the winner at
the level y(5). At the next level, (.25,.75,1) is majority preferred to (.75,0,.25). Hence, it is the alternative at level v(4).
While (.5,1,0) defeats (.25,.75,1) at Tevel y(4), it is defeated by (.75,0,.25) at level y(5). Thus, (.25,.75,1) carxies over
as the winner at level a(3). By the same reasoning, (.25,.75,1) carries over as the winner at levels y(2) and y(1). Since
it is the winner at level y(1), it is the sophisticated majority winner.

While this particular voting order appears to suggest that Shepsle and Weingast’s {11] method can be used with fuzzy
preferences, the problem induced by indifference comes into full view if we consider the voting agenda

A = {(.75, 25,0),(25,0,.75),(0, 5, 73), (75,0, .5), (.75, .5, 0)}

The results through the first three levels are:

¥5) = (.75,.5,0)
v(4) = outcome uncertain, (75,.5,0.75,0,.5) .
¥(3) = outcome uncertain, (0,.5,.75,)P(75,0,5) but (0,.5,.75I(.75,.5,0)

In this case, (.75,.5,0) is trivially majority preferved at level y(5), but it is tied (it is indifferent, as noted by 1) with
(.75,0,.5) at level ¥(4). Furthermore, while (0,.5,.75) defeats (.75,0,.5) by a majority, it is indifferent to (.75,.5,0).

We are faced with two issues: (1) how to proceed when an alternative defeats at least one alternative majority preferred
at previous levels but ties all others and (2) how to proceed when ‘an alternative ties all alternatives majority preferred
at previous levels? Issue (1) is the easiest of the two challenges to deal with. An alternative that defeats at least one
alternative more than a successor in the voting order is superior to the successor. Therefore, we should designate it the
winner at the given level. However, in the case of issue (2), since neither alternative is superior in this sense, we are
compelled to accept having to list both at the given level. This forces us 10 compare subsequent predecessors with both
alternatives. The guiding principle is that the sophisticated outcome is one that majority defeats one or more majority
preferred successors and ties all others.

Using this procedure, we get

¥(5) = (.75,.5,0)
y(4) = (75, .5,0)&(.75,0, .5), (.75,.5,00/(.75,0,.5)

y(3) = (0, .5,.75), (0,.5,.75,)P(.75,0,.5) and {0,.5,.750(.75,.5,0)
¥(2) = (0, .5, .75), (.25,0,.75)1(0,.5,.75),(.25,0,.75)1(.75,0,.5), but (.75,.5,0)P(.25,0,.75)
w1} = (0, .5,.75), (.75,,25,0)1(.75,.5,0),(.75,.25,0)I(.?S,O,.S), but (0,.5,.75)P(.75,.25,0)

The alternative represented by the preference three-tuple (0,.5,.75) isthe sophisticated outcome given this amendment
agenda, and it is an element in the uncovered set.

The procedure that we followed when determining the sophisticated outcomes under thick indifference meets two
criteria. First, for an alternative x to be a sophisticated outcome at any level v, it must be at least as good as all
previous sophisticated outcomes. Second, for an alternative X to eliminate a previous sophisticated outcome Y, then
Wiy oW L(x). These criteria are captured in the following defigition of the covering relation:

xCy & xRy&W () c Wi, (5

In other words, x is at least tied with y, x beats everything that y beats, and x beats something (perhaps y itself) that y
£ails to beat. Bordes [35] labels the uncovered set that results from this definition the FD set. It differs from any of the
three definitions considered by Penn [31], all of which imply that x is strictly preferred to y, xPy. Henceforth, we use
this definition of covering and call it C. ,

In what follows, we give formal consideration to €. Our major theorem, Theorem 4.11, demonstrates that with

one trivial exception, any element in UC(X) is in the Pareto set. Formaily, the Pareto set is defined as in [34, p. 7}.
Y € R

PSN(P) = {x € X[Vy#x, P(y, x; DB = P(x, y; Py}, ®

where P(x, y;p) = {i € N|xP;y}.
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4. The uncovered set

Let N denote the set of players and X denote the set of alternatives. We assume that X is a subset of a universe U of
interest, where {/ is arbitrary through Proposition 4.7. Let R denote the set of all binary relations on X that are reflexive
and complete. Let R" = {pip =(R1, ..., Ry), Ri ¢ R,i =1, ..., n}, where IN} = n.Let < be any partial orderon U/.
Vx,y e I/, x = yiff x<y and x#y. Suppose that < satisfies the following properties:

(1) Vx,y e U, x<yimplies Vi € N, yR;x;

2y Vx,y,ze U, ¥i e N, x=<y and x R;z implies yR;z;

(3 Vx,y,z€ U,¥i e N, x<y and x P;z implies yP;z;

(4) Vx,y € U, x < y implies 3i € N such that yP;x;

5yVx,y,ze U, Vi € N, x<yand zR;y implies zR;x;

(6} Vx, y € U, x and y incomparable under < implies 3 € N such that xP;y implies 3/ € N such that y P ;x.

Definition 4.1, Define {) : P(U) — P(U)by¥S e P(U), (S) ={x ¢ Ulds & §, x<s5}.

Proposition 4.2, Let {}: P(U) — P(U) be defined as above. Then_the following conditions hold:

LYSe PLUN,SC(S); . :

2.¥81, 82 € P(UY, §; € 8 implies (Sl) C (S9);

3.¥8 € PU), (S) = {{S));

4.¥S € PU), (S} = U,es (s

5.¥8 € P(UN,Vx,ye X, x e (SU{y}) and x ¢ (S} implies x € {{y]}-

Proof. (1)1ets € §. Then s<s and so s € {§}. Thus § C (§).

(2)Let x € (S;). Then there exisis 5§ € §) such that x<s5. Since s € 5, x € (%),

(3) By (1), {8) € {({8}). Let x € {{5)). Then there exists y € () such that x<y. There exists s € S such that y<s.
Since < is transitive, x<s. Thus x € {5}. Hence {{S)} C {S}.

() Foralls € S, ({s}) S (S} by (2). Thus | J,.5{{s}) € (5).Let x € (S). Then there exists s € S such that x<s.
Thus x € {{s}) and so x € (J,.g{{s)). Hence (8} € [ J,.glsh-

{5) Suppose x € {S U {y}) and x ¢ (5). Then there does not exist 5 ¢ S such that x<s. Hence x:<y. Thus
xe{{y) O

Definition 4.3. Let 7 € R". Define the binary relation R on X by Vx,y € X,{x,y) € R if and only if [{i €
NixRiyll =z n/2. Define P C X x XbyVx,y € X, (x,y) € Pifandonlyif (x,y) € Rand (y,x) ¢ R. Let
R(x,y;py=1{i € N|xR;y}and P(x,y; p) = {i € NixPiy}.

Definition 4.3 gives the relationship between § and R in-what follows.
Definition 4.4. Let Mz = {x € X|B3y € X, x < y}.
Proposition 4.5. Let 7 € R" and let R be defined as in Definition 4.3. Then Mp = P Sy (D).

Proof, Suppose x € Mg. Let y € X. Suppose 3 € N such that yP;x. Now there does not exist y € X such that
x < y. Thus Vy € X, either y<x or x and y are not comparable. Since yP;x, y<x is impossible else xR;y ¥i ¢ N
by (1). Hence x and y are incomparable under <. Thus 3j € N such that xP;y by (6). Hence x € P§ N(_) Thus
Mp S PSn{(p).
Suppose x € PSy(p). Suppose there exists y € X such that x < y. Then 3 € N such that y P;x by (4). Since
x € PSyn(p), thereexists j € N such thatx P;y. Thus x < y is impossible. Hence x € M. Therefore PSy(p) © Mg.
O
Corollary 4.6. Letx ¢ X.

(1) Suppose ¥y € X, x<y impliesx = y. Thenx € PSn(p).
(2) If x ¢ PSy(D), then there exists y € PSy{(P) such that x < y.
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Proof. (1) Clearly x € Mg, but Mg = PSn(P).

(2) Since x ¢ PSn(p), x ¢ M g. Thus there exists y € X such that x < y. Let y be the largest such element. Then
yeMg=PSy@). O

Proposition 4.7. (X} = {PSn(EY.

Proof. Clearly, PSy(@) & X. Thus (PSy(P) & {X). Letx € X. Ifx ¢ (PSn(P)), then x ¢ PSn(p) and so by (2)
of Corollary 4.6, there exists y € PSy(p)such thatx < y. Thus x € {yhy € (PSn(p)). Hence X < (PSy(p)) and
so (X) G (PSy(@). U

In the remainder of the paper, we assume X =(X)g T", where T = {0, .25, .5, 75, 1}. Let Jup2 = {(av, ey} €
The; e (0,1}, i=1,....m, [{ila; = O} = n/2and3j € N such that aj = 1}.Letf,-“ = (a1, ... , ) € T" be such
thata; = landa; = Ofor j = i,...,n; j#i. In the remainder of the paper, we assume {1ili=1,...,n1 &€ X. This
must be the situation in our application. Hence, Ju2 N U#0. In the following result we use the notation {[]] to denote
the greatest integer function.

Proposition 4.8. Letx,y € X. If xCy, then either x = y ory € {Jus2)

Proof. Suppose x<y. Then clearly #w e X such that xPw and not yPw, a contradiction since xCy. Thus either
x > y or x and y are not comparable with respect to <. Suppose X and y are not comparable with respect 10 <,
where x = {x;, ..., xn) and y = (¥, . vn) Then 3i,j € N such that x; > v and x; < Yj. Since xCy, xRy.
Thus not yPx. Hence strictly fewer than [{n/2]] + 1 of the y; are strictly greater than the corresponding x;. There is
no loss in generality in assuming y1 = X1, .-y Jr < xp and Yr41 > Xralo-oor Yn > Xns where n — r < [{n/21} + L,
Suppose y; = - = Y-l = Ofors > 1.(Thecases = 1 saysno y; = 0)Weshows—12 n/2. Assumes—1 < n/2.
Thenn —s +1 > n/f2. Lettbesuch thatr —t —s+1+n—r= [ir/2]] + 1. Now let y;, ...+ ¥h_, be such that
Yo > Vo= 0,0, Yrop > Yy 2 0. Let

ret—541 , -t
! .
2= (X1y ovn s gk Ygo onrven e Yyt Kppag oo XrXrats ey Xp)

Now n —t — § + 1 = [{n/2]} + 1. Thus

[[%ﬂ -1 if n is even,

S N1 I

Since y, < y5 < X5, .--s Vi < Yr—t = Xret and X = (X),ze€ X.Nowr+s—1 is the number of components x; is
strictly greater than the corresponding components of z. Thus pot xPz. However, r —t —5+ 14n—r=[n/2]]+1
(see above) is the number of components of y that are strictly greater than the corresponding components of z. Thus
yPz, contradicting the hypothesis that xCy. Thus s — 1 2 # /2. Hence y € {Jyp2). U

Proposition 4.9. Letx,y € X. Ifx > y, then either (3w € X such that xPw and not yPw) or x € {Ju 12
Proof. Suppose x and y differ in [{n/2]]+ 1 or more components, where [{]] denotes the greatest integer function. Then
let w = y. Suppose x and y differ in fewer than [[n/2]] + 1 components. There is no loss in generality in assuming that

x = (x1, ..., xp)and y = (1, oy Yu)y WhEe X1 = Y1, o K = YroXrtl 2 Vraly oeer Xn > Yp.andn — 1 < {in/2]).
Thus '

sn—|[2 U%ﬂ if n is even,
rzn=[[5]] o1 o
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Suppose x & {Jpy2). Then fewer thann/2of the x; = O, say xy = - » = X5 = 0, where s < n/2. Thuss < r. Letrbe
such thatt — s +n —r = [[n/2]1] + 1. Let :

-5 r—t n—-r
w "'—“"(.Xi, von g Xy Wiy cons Wy Yebds ceoy Yro¥rads -u.,Vn):

where x;41 > Wea1 = O, % > W 2 0. Since x;p1 > Wyal, ---0 Xr > Wy and x; > ¥i,.... %y = ¥pand
X = (X), w € X. Now t — 5 + n — r of the components of x are strictly greater than the corresponding components
of w. Thus xPw. Now ¢ — s components of y are greater than the corresponding components of wand ¢ -5 < {[n /211
Hence not yPw. [

Corollary 4.10. Letx,y € X.If x > y, then either xCy or x € {Jus2).
Proof. The proof follows from condition (3), Definition 4.3, and Proposition 4.9. U
Theorem 4.11. Let x € X. Suppose x is C-uncovered. Then either x € PSy() orx € (Jup2).

Proof. Suppose x ¢ PSy(p)and x & {Jns2). Since x ¢ PSn(P), there exists y € X with y > x by (2) of Corollary
4.6. By the previous corollary, either yCxory € {Jp2). Bu, since x ¢ {Jus2) and y > x, theny & {Jus2). On the other
hand, yCx contradicts that x is C-uncovered. [

In other words, all elements in the uncovered set are either in the Pareto set o they are in a special set of alternatives,
(Jus2}. Atfirstblush, the latter possibility appears (o put a severe constraint on the ability of the definition of the covering
relationship developed in this paper to result in a reasonably constructed uncovered set. Closer scrutiny, reveals the
exception to be relatively trivial. Jpy2 comprises all those alternatives that less than half of the players consider to be
perfectly in the set of ideal points (¢ = 1) and all remaining players consider entirely not in the set of ideal points
(e = 0). {Jus2) is the set of all alternatives that descend directly from those in Jy /2. By definition, none of the alternatives
in either Jy /2 or {Jpp2) can defeat any alternative by majority vote. Hence, they cannot cover any other alternative.
Therefore, if X & {Jn/2), then every element of X is C-uncovered. Moreover, if there is even one alternative for which
a majority of players express the slightest degree of preference (that is, a majority prefer the alternative at o > 0),
then every alternative in (J,,2) is covered by that alternative and by definition cannot be in the uncovered set. While
the alternative may tie elements in {Ju/2), it can defeat ail alternatives lying in the region outside of the support for
all players’ preferences (that is, all players’ preferences for these alternatives are « = 0). Hence, it covers elements in
{Jns2). Thus, elements in (J, ) are uncovered if and only if {J,/2) are the only elements in X, That is, no alternatives
are supported by a majority at any o-level.

The following corollary summarizes the previous remarks.

Corollary 4.12. If x is C-uncovered and x € {Ju 1), then every element of X is uncovered.

5. The implication of missing n-tuples

We start with an exampie showing how n-tuples may be missing. Let Ry denote the set of nonnegative real numbers
and Rﬁ_ = Ry x Ry. Let n = 3 in this section, and let the players’ preferences be denoted by A, Band C.Let
x € Rﬁ_. Suppose x € ArnBnétandx ¢ A7 N B N & for v = rs’ = s5,t' = 1, where one of the
inequalities is strict. Let f* : Ri — T3 be defined by f*(x) = (r,s,8). Let X = f *({Ri_). Suppose for example,
ASABBAE = 3250 BB Then (.25,.25,0) ¢ F*(RY). Thatis, (:25,.25,0) is missing. In this case, X C (X).
Incidentally, f£* is an example of the homomorphism referred to in [9].

We return to the representation of the preferences of three players in Fig. 1 at the beginning of this paper. The
maximal set is empty. There are six alternatives in the Pareto set:

PSN(R) = {(1,0,0),(0,1,0),(0,0,1),(5,.250), (.23, 0,.5),(0,.5, 25)}.
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The first three alternatives are elements of (Ju/2) and are not strictly preferred to any other alternatives, Given the
results of this paper, the remaining three alternatives comprise the unique uncovered set:

UC(X) = {(.5, 25,0),(.25,0, .5, (0, .5, 25)}.

The model predicts that strategic playess in an agenda amendment will pick one of these three alternatives.

Our covering relation C produces an uncovered set U C(X), which with the exception of the trivial case of {(Jusz), 18
contained within the Pareto set, P Sy (R). This is a very good result. However, it rests on the assumption that {P Sy (F))
denotes the set of alternatives. In other words, there is an alternative for every possible n-tuple of preferences descending
from the Pareto set. As it turns out, I/ C(X) can result in a non-Pareto efficient outcome when imnediate predecessors
of elements of the Pareto set P Sy (P) are noi contained in X, the set of alternatives, 2 situation we label “vulnerability
to holes”. This is analogous to the uncovered set under strict preference, which contrary to Miller’s conjecture [7] can
result in non-Pareto efficient outcomes [8]. We give consideration to this possibility before concluding.

Definition 5.1. Letx, y € X. Suppose xCy. Let W,y = {w € X|x Pw and not y Pw, y#w#0, 0, O}, Then (x, y) is
said to be vulnerable to holes if not xCy in X \ Wy 5.

Proposition 5.2. Let x, y € X. Suppose xCy. Then x ¢ (J, 2}
lsroof. Suppose x € (Jus2}. Then there does not exist w € X such that xPw. Hence not xC.y. 0
Proposition 5.3, Let x, y € X. Suppose xCy. Then (x,y) is vulnerable to holes if and only if y & (Ju 2} and not xPy.

Proof. Suppose (x, y) is vulnerable to holes, Suppose y € (Juy2). Then xCy in X\ Wy,y since (0, 0,0) ¢ W, y and not
yP(0,0,0) and xP(0,0,0), where the latter condition holds since x ¢ {Jj2) by the previous proposition. This is contrary
to the assumption that (x, y) is vulnerable to holes. Hence y ¢ (Jn/2). It is not the case that xPy else xPy in X\ Wy,
since y ¢ Wy y and not yPy, ie, yisawin the definition of C.

Conversely, suppose ¥ & {J/2) and not xPy. Suppose xCy in X\ Wy y. Then there exists w € X\ Wy y such that xPw
and not yPw. Hence either w = (0,0, orw = y. Suppose w = (0, 0, 0). Since not yPw, y € {Jus2), a contradiction.
Suppose w = y. Then 1Py, a contradiction. Hence not xCyin X\W,y. O

Theorem 5.4. Let x,y € X. Suppose xCy. Suppose also that (x,¥) is vulnerable to holes. Then Yw € Wy y, the
following conditions hold:

(1) If xfw, then there exists a permutation © of {1,2,3} such that xe(1y = Ya(t) > Wa(ly Wa(2) > Xa(2) = Yr(2): and
Xn(3) > Wa(3) Z Yn(3)-

() If x > w, then (a) there exists a permutation n of {1,2,3} such that xp(1y == Ya() > Wa(D)Fa(2) = In(@) = Wa(2),
and Xz3) > Ya3) = Was) o (b) there exists a component of w strictly greater than the corresponding component
of y and there exists permutation 7 of {1,2,3} such that Xppy = Ya() > Wa().Xa(2) = Ya(2) = Wa2), and
Xa(3) > Wa(3) > Yu(p), Conversely, if w € X and satisfies either (1) or (2), then w &€ Wy y.

Proof. Let w € W, . Then x#w since xPw. Since y ¢ {Jus2) by Proposition 5.2, x > ¥ by Proposition 4.8. Since
xRy and not xPy by Proposition 5.2, two of the components of x equal the two corresponding components of y and the
remaining components of x is greater than the corresponding component of y.

(1) Suppose x 3 w. Since xPw, two of the components of x are strictly greater than the corresponding components
of w and the remaining components of w is strictly greater than the corresponding component of x. For simpli-
city and without loss of generality, we can write either (i) x; = y1 > w1, X2 = Y2 > W2 and w3 > x3 > y3 Of
(i) x1 = y1 > wy, wy > X2 = y2, and x3 > y3, X3 > ws. However (i) does not hold else yPw. Suppose (ii) holds. If
y3 > w3, then yPw, a contradiction. Thus w3 > y3. Hence (1) holds.

(2) Suppose x > w. Then as in the previous paragraph, we can write without loss of generality, x; = yy > wy, x7 =
y2 > w9, x3 > y3, and either (i) y3 = w3 or (ii) ws > y3. Suppose (i) holds. Then x; = y1 > w) and since not yPw,
Xz = y; = wp and x3 > y3 = w3. In this case, (2) holds. Suppose (if) holds. Then x; = y1 > w1, X2 = y2 = W2, and
X3 > w3 > y3 since xPw and not yPw. In this case, (2) holds.
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{0.25, 0.75, 0)

(0.5, 0, 0.25) *

e,

(0.5, 0,0.5)

(0, 0.25, 0.75) (0, 0.25, 0.5)

(0, 0.5, 0.75)(9’ 05, 0.5)

Fig. 2. Player A with congruent preferences at ¢« = .25 and .5.

For the converse, the only possible way w == (0, 0, 0) is if (2a) holds, but then y & {Jus2), a contradiction. Clearly
w#y. It is easily verified that xPw and not yPw. (]

Both xyw and x > w can only occur when the borders of the a-levels of one or more of the players are congruent
at important segments of the policy space. In such cases, the a-levels encompass the same region for a player over at
least part of the policy space. This situation is illustrated in Fig. 2. The borders of the a-levels at .25 and .5 for player
A are partially congruent.

Fig. 2 depicts holes where x y*w for some w € Wy.y. Letx == (.5,.75,0) andlet y = (.25, .75, 0). Then (25,0, .5) €
Wy y.and (.5,.75, 0)#(.25, 0, .5). However, (.25,0,.5) is not in X, and x does not cover y.

Fig. 2 also illustrates holes where x > w for some w € W,y Letx = (.5, 75,0y and let y = (.25, .75, 0). Then
(25, 5,00 € Wy y,and (5,.75,0) > {25, .5, 0. However, (.25,.5,0) is not in X, and x does not cover y.

We have demonstrated both phenomena using a three-player game. While the simplicity of the three-player game
commends it for depicting these situations, it also greatly overstates the likelihood of the occurrence of either. The
probability of the occurrence of either xyw or x > w dramatically decreases as the number of players increases. With
T3, a three player game has 125 possible alternatives, a four player game has 625 alternatives, and a five player game
has 3125 alternatives. With a high enough N, thousands of alternatives with the right preferences descending from the
Pareto set would need to be missing. Thus, in contrast to the uncovered set under strict preference, our uncovered set
under fuzzy individual preferences is far less likely to include non-Pareto efficient outcomes. Given that such outcomes
are highly unlikely to be chosen by a decisive coalition, this is a good result.
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6. Conclusions

Existing definitions of the covering relation return different uncovered sets under thick indifference. Fuzzy prefer-
ences are thick. Thus, we developed an appropriate definition of the covering relation for fuzzy preferences. Furthermore,
we demonsirated that in the absence of a maximal set, the resulting uncovered set is likely to be contained in the Pareto
set. The major exceptions are either unlikely or confined to those elements that are not strictly preferred by majority
rule to at least one other alternative. Thus, the uncovered set under fuzzy individual preferences commends itself.

Acknowiedgements

This article is a revised version of a paper presented at the 2009 annual conference of the Public Choice Society.
We thank the anonymous reviewers and editorial staff of Fuzzy Sefs and Systems for their invaluable assistance in
improving this manuscript. We owe a special debt of gratitude to Lotfi Zadeh, George Klir, and Paul Wang for their
encouragement and support of the fuzzy spatial modeling project, of which the research reported in this article is a
part, We also wish to express our appreciation to Jay Verkuilen and Joseph Godfrey for their substantive comments
on previous versions of this manuscript, Anne Bautch for the many hours she spent designing and solving amendment
agendas, and Adam Karnik for helping us to work through the effect of indifference on covering relations. Finally,
we gratefully acknowledge the funding provided by an Academic Affairs Research Initiative Grant, the Center for
Mathematics of Uncertainty, and the College of Arts and Sciences at Creighton University.

References

[1] G. Tultock, Why sc much stability?, Public Choice 37 (1981) 189-202.
[2] 1. Sloss, Stable outcomes in majority rule voting games, Pubiic Choice 15 (1973) 19-48.
[3] C.A, Tovey, The instability of instability, NPSOR-91-15, Naval Postgraduate School, Monterey, CA, 1991,
[4] W.V. Gehrlein, F. Valognes, Condorcet efficiency: a preference for indifference, Social Choice and Welfare 18 (2001) 193-2035.
[5] L. Ehlers, S. Barberd, Free triples, large indifference classes and the majority rule, Cahiers de recherche 2007-02, Universite de Montreal,
Departement de sciences economiques, 2007, available: (htip:/ideas.repec.org/p/mtl/montde/2007-02.him}.
61 D.H. Koehler, Convergence and restricted preference maximizing under simple majority rule: results from a computer simulation of committee
choice in two-dimensional space, American Politicat Science Review 95 (2001) 155-167.
171 T. Briuninger, Stability in spatial voting games with restricted preference maximizing, Journal of Theoreticak Politics 19 (2007) 173191,
[8] T.D. Clark, 1M, Larson, L.N. Mordesos, J.D. Potter, MLJ. Wierman, Applying Fuzzy Mathematics to Formal Models in Comparative Politics,
Springer-Verlag, Berlin, 2008,
[8] J.N. Mordeson, T.D. Clark, The existence of a majority rule maximal set in arbitrary n-dimensional spatial models, New Mathematics and
Nagtural Computation 6 (2010) 261-274.
£10] N.R. Miller, A new solution for tournaments and majority voting: further graph-theoretical approaches to the theory of voting, American Journal
Politicat Science 24 (1980) 68-96.
[11] K.A. Shepsle, B.R. Weingast, Uncovered sets and sophisticated voting outcomes with implications for agenda institutions, American Journai
Political Science 28 (1984) 49-74.
[12] R.D. McKelvey, Covering, dominance, and institution-free properties of social choice, American Journal Political Science 30 (1986) 283-315.
[13] H. Nurmi, J. Kacprzyk, Fuzzy sets in political science: an overview, New Mathematics and Natural Computation 3 (2007) 281-299.
[14] . Blin, Fuzzy relation in group decision theory, Journal of Cybernetics 4 (1974) 17-22,
- [15] J.C. Bezdek, B. Spiliman, R. Spillman, A fuzzy relation space for group decision theory, Fuzzy Sets and Systems 1 (1978) 255-268.
[16] 1.C. Bezdek, B. Spiliman, R. Spillman, Fuzzy relation spaces for group decision theory: an application, Fuzzy Sets and Systems 2 (1979} 5-14.
{17} S.A. Orlovsky, Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems § (1978) 155167,
{18} H. Nurmi, Approaches to collective decision making with fuzzy preference relations, Fuzzy Sets and Systems 6 (1981) 249-259.
{197 J. Kacprzyk, M. Fedrizzi, H, Nurmi, Group decision making and consensus under fuzzy preferences and fuzzy majority, Fuzzy Sets and Systems
49 (1592) 21-31.
[20] J. Kacprzyk, M. Fedrizzi, A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences, Buropean Journal of Operational Research
34 (1988) 316-325.
{21] H. Nurmi, J. Kacprzyk, On fuzzy towrnaments and their solution concepts in group decision making, Buropean Journal of Operational Research
511991y 223-232,
£22] C. Achen, J. Aldrich, J. Alt, H. Brady, 1. Freeman, W. Keech, R.D. McKelvey, R. Morton, C. Simon, H.P. Young, D. Zinnes, The Empirical
fmplications of Theoretical Models (EFTM) Workshop Report. Political Science Program, Directorate For Social, Behavioral and Economic
Sciences, National Science Foundation, 2002, Available: {www.nsf.gov/sbefses/polisci/reports/pdffeitmreport.pdf}.
[23] H. Murmi, A fuzzy solution to a majority voting game, Fuzzy Sets and Systems 5 (1980) 187-198.
[24] E.A, Zadeh, Fuzzy sets, Information Control 8 (1965) 338-353,
[25] C.R. Flott, A notion of equilibrium and its possibility under majority rule, American Economic Review 57 (1967) 787-806.
[26] E.M. Enelow, M.J. Hinich, On Plott’s pairwise symmetry condition for majority rule equilibrivm, Public Choice 40 (1983) 317-32L.



JI.N. Mordeson et al. / Fuzzy Sets and Systems 168 {2011) 89101 104

[27] 1. Greenberg, Consistent majority rules over compact sets of alternatives, Econometrica 47 {1979) 627-636.

{281 R.D. McKelvey, Intransitivities in multidimensional voting models and some implications for agenda control, Journat of Economic Theory 12
(1976) 472482,

{291 R.D. McKelvey, General conditions for global intransitivities in formal voting models, Econometrica 47 (1979) 1085-1112,

£30] N.R. Miller, in search of the uncovered set, Political Analysis 15 (2007) 21-43.

[31] E.M. Penn, Alternate definitions of the uncovered set and their implications, Social Choice and Welfare 27 (2006) 83-87.

(32} N.R, Milier, Alternative definitions of the covering relation: an extended tour, unpublished manuscript.

[33] G.A. Bordes, M. LeBreton, M, Salles, Gillies and Miller"s subrelations of a relation over an inftnite set of aiternatives: general results and
applications to voting games, Mathernatics Operations Research 17 (1992) 509-518.

[347 D. Austen-Smith, 1.8, Banks, Positive Political Theory II: Strategy and Structure, University of Michigan Press, 2005,

[35] G.A. Bordes, On the possibility of reasonable consistent majoritarian choice: some positive results, Journat of Economic Theory 31 (1983) 122
«132.



