PROBLEM SET #2 – STRATEGIC CHOICE IN TWO-PLAYER GAMES

1. Answer the following questions pertaining to the two-player *zero-sum* game depicted in the payoff matrix below. *Briefly explain each of your answers*. (The row Player 1 has four strategies; the column Player 2 has three strategies. The number in each cell is the payoff to Player 1; the payoff to Player 2 is the negative of the number — that is, P1 wants to maximize ands P2 wants to minimize, the payoff.)

		Player 2			
		c ₁	c ₂	c ₃	
Player 1	s ₁	4	2	3	
	s ₂	2	1	3	
	s ₃	4	3	3	
	s ₄	3	2	4	

- (1) Does this payoff matrix have a Nash equilibrium?
- (2) Is this zero-sum game *strictly determined*?
- (3) Would either player choose to use a mixed strategy?
- (4) Would the outcome be different if the game were played sequentially, with P1 making the first move?
- (5) Would the outcome be different if the game were played sequentially, with P2 making the first move?

Problem Set #2

- (6) Supposing that the players make their strategic choices *sequentially* with Player 1 moving first, could Player 2 *communicate any pre-play message* to Player 1 that might improve the outcome for Player 2.
- (7) Supposing that the players make their strategic choices *sequentially* with Player 2 moving first, could Player 1 *communicate any pre-play message* to Player 2 that might improve the outcome for Player 1.
- 3. Answer the following questions pertaining to the two-player *zero-sum* game depicted in the payoff matrix below. *Briefly explain each of your answers*. (The row Player 1 has four strategies; the column Player 2 has three strategies. The number in each cell is the payoff to Player 1; the payoff to Player 2 is the negative of the number that is, P1 wants to maximize ands P2 wants to minimize, the payoff.)

		Player 2			
		c ₁	c ₂	c ₃	
Player 1	S ₁	6	3	0	
	s ₂	5	0	2	
	s ₃	3	2	3	
	s ₄	4	4	1	

- (1) Does this payoff matrix have a Nash equilibrium?
- (2) Is this zero-sum game *strictly determined*?
- (3) Would either player choose to use a mixed strategy?

- (4) Would the outcome be different if the game were played sequentially, with P1 making the first move?
- (5) Would the outcome be different if the game were played sequentially, with P2 making the first move?
- (6) Supposing that the players make their strategic choices *sequentially* with Player 1 moving first, could Player 2 *communicate any pre-play message* to Player 1 that might improve the outcome for Player 2.
- (7) Supposing that the players make their strategic choices *sequentially* with Player 2 moving first, could Player 1 *communicate any pre-play message* to Player 2 that might improve the outcome for Player 1.

3. Answer the following questions pertaining to the (variable-sum) game depicted in the payoff matrix. *Then briefly explain each of your answers*. (Each player has just two strategies. The number in lower-left corner of each cell is the payoff to Player 1; the number in the upper-right corner of each cell is the payoff to Player 2. Each player is trying to maximize his payoff.)

	Playe	r 2			
		c ₁		c ₂	
Player 1	s ₁		3		2
		5		2	
	S ₂		4		5
	2	3		3	

- (1) What do you expect the outcome of the game to be if the players must make their strategic choices *simultaneously* (not knowing what choice the other is making)?
- (2) What do you expect the outcome of the game to be if the players make their strategic choices *sequentially*, with *Player 1 moving first* and Player 2 second?
- (3) What do you expect the outcome of the game to be if the players make their strategic choices *sequentially*, with *Player 2 moving first* and Player 1 second?
- (4) Supposing that the players make their strategic choices *sequentially* with Player 1 moving first, could Player 2 *communicate any pre-play message* to Player 1 that might improve the outcome for Player 2.
- (5) Supposing that the players make their strategic choices *sequentially* with Player 2 moving first, could Player 1 *communicate any pre-play message* to Player 2 that might improve the outcome for Player 1.

4. Answer the following questions pertaining to the (variable-sum) game depicted in the payoff matrix. *Then briefly explain each of your answers*. (Each player has just two strategies. The number in lower-left corner of each cell is the payoff to Player 1; the number in the upper-right corner of each cell is the payoff to Player 2. Each player is trying to maximize his payoff.)

	1 mje	1 2			
		с	1	C	\dot{c}_2
Player 1	S ₁		3		2
		5		2	
	s ₂		5		4
		3		3	

Player 2

- (1) What do you expect the outcome of the game to be if the players must make their strategic choices *simultaneously* (not knowing what choice the other is making)?
- (2) What do you expect the outcome of the game to be if the players make their strategic choices *sequentially*, with *Player 1 moving first* and Player 2 second?
- (3) What do you expect the outcome of the game to be if the players make their strategic choices *sequentially*, with *Player 2 moving first* and Player 1 second?
- (4) Supposing that the players make their strategic choices *sequentially* with Player 1 moving first, could Player 2 *communicate any pre-play message* to Player 1 that might improve the outcome for Player 2.
- (5) Supposing that the players make their strategic choices *sequentially* with Player 2 moving first, could Player 1 *communicate any pre-play message* to Player 2 that might improve the outcome for Player 1.