PROBLEM SET #1

NAME ____________________________ Please put all your answers in this booklet.

The first questions focus on payoff matrices for (one-player) games against nature. Remember the basic set-up.

The player chooses a strategy (the a row in the matrix). Nature chooses a contingency (the column in the matrix). The player has complete information concerning the payoff matrix but must choose his strategy without knowing what contingency nature will choose. The player’s chosen strategy and nature’s chosen contingency define the outcome of the game, i.e., the cell in the matrix at the intersection of the chosen row and column. The numbers in the cells give the payoffs to the player — i.e., they indicate what outcomes are “good” and what are “bad” (and in what degree) for the player. The player aims to get the largest payoff possible. But nature is indifferent over all outcomes and gets no payoff (which is why there is only one number in each cell).

Here is a quick review of decision principles the player might follow (and answer the Yes/No questions):

Maximax principle (“aim for the best”):

(1) find the maximum payoff in each row, and
(2) choose the row with the maximum of the maximums.

Does a player always have a maximax strategy? Yes No
Is it always unique? Yes No

Maximin Principle (“avoid the worst’):

(1) find the minimum payoff in each row (its security level), and then
(2) chose the row with the maximum of the minimums (the highest security level).

Does a player always have a maximin strategy? Yes No
Is it always unique? Yes No

Maximize Average Payoff (“don’t focus on the best outcome or the worst outcome but on the average outcome”):

(1) add up all the payoffs in the row,
(2) divide by the number of contingencies, and
(3) choose the row with the highest average.

Does a player always have a average payoff maximizing strategy? Yes No
Is it always unique? Yes No
Maximize Expected Payoff (i.e., take account of the differing probabilities of contingencies):

1. determine (or make a subjective estimate of) the probability p_k of each contingency c_k (where $p_k > 0$ and $\sum p = 1$),
2. multiply each payoff by its probability and add these products together to get the expected payoff of each row, and
3. choose the row with the highest expected payoff.

Does a player always have an expected payoff maximizing strategy? Yes No
Is it always unique? Yes No

Note: average and expected payoff are the same in the event each contingency has equal probability.

Dominance (or “Sure Thing”) Principle:

Definition: strategy s_k dominates strategy s_h if

1. s_k gives at least as high payoff as s_h in every contingency and a higher payoff in at least one contingency.

Basic Principle: “Don’t choose a dominated strategy” (or, “Always choose an undominated strategy”).

Does a player always have an undominated strategy? Yes No
Is it always unique? Yes No

Definition: a strategy is dominant if it dominates every other strategy.

Corollary Principle: “Always choose a dominant strategy, if you have one.”

Does a player always have a dominant strategy? Yes No
Is it always unique? Yes No

I. Answer the following questions pertaining to each of the three payoff matrices.

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. If p_1 (i.e., the probability of c_1) is .25 and p_2 is .75, what strategy maximizes the player’s expected payoff?
5. If p_1 is .9 and p_2 is .1, what strategy maximizes the player’s expected payoff?
6. Does the player have a dominated strategy?
7. Does the player have a dominant strategy?

II.

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>s_2</td>
<td>4</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>s_3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. Does the player have a dominated strategy?
5. Does the player have a dominant strategy?

III.

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>s_2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>s_3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. Does the player have a dominated strategy?
5. Does the player have a dominant strategy?

Now “transpose” each matrix, i.e., suppose the player chooses columns and nature chooses rows and answer the same set of questions for each.

Ia.
1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. Is there any probability distribution such that \(c_1 \) has greater expected utility than \(c_2 \)?
5. Does the player have a dominated strategy?
6. Does the player have a dominant strategy?

IIa.
1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. Does the player have a dominated strategy?
5. Does the player have a dominant strategy?

IIIa.
1. What is the player’s maximax strategy?
2. What is the player’s maximin strategy?
3. What strategy maximizes the player’s average payoff?
4. Does the player have a dominated strategy?
5. Does the player have a dominant strategy?
IV. In class, we discussed the following example of a game against nature:

You are following a car into the lower level of the Administration Drive parking structure. The lot is either full or almost full (no empty spaces are in sight.) Your goal is to get a parking space. You must either to follow the car in front of you or go around the other way.

Construct a payoff matrix for this game and explain why you have a dominant strategy.

V. For each 2 × 2 payoff matrix below:

(a) circle each cell that is a Nash Equilibrium

(b) identify what type of game (Matching Pennies, Prisoner’s Dilemma, etc.) each payoff matrix exemplifies. (_Note:_ the numbers in the matrix may be different from those used in class, but the nature of the game is determined by the _relative_, not _absolute_, magnitudes of the payoff.)
(c)

\[
\begin{array}{cc}
2 & 3 \\
1 & 1 \\
1 & 2 \\
\end{array}
\]

(d)

\[
\begin{array}{cc}
2 & 3 \\
-2 & -3 \\
1 & 4 \\
-1 & -4 \\
\end{array}
\]

(e)

\[
\begin{array}{cc}
3 & 2 \\
1 & 2 \\
1 & 4 \\
3 & 0 \\
\end{array}
\]

(f)

\[
\begin{array}{cc}
3 & 4 \\
3 & 1 \\
1 & 2 \\
4 & 2 \\
\end{array}
\]