
POLI 300 Handout #7 N. R. Miller

MEASURES OF DISPERSION (VARIABILITY)

While measures of central tendency indicate what value of a variable is (in one sense or

other, e.g., mode, median, mean), “average” or “central” or “typical” in a set of data, measures of

dispersion (or variability or spread) indicate (in one sense or other) the extent to which the observed

values are “spread out” around that center — how “far apart” observed values typically are from each

other or from some average value (in particular, the mean).  Thus:

(a) if all cases have identical observed values (and thereby also all have the average

value), dispersion is zero; 

(b) if most cases have observed values that are quite “close together” (thereby also quite

“close” to the average value), dispersion is low (but greater than zero);  but

(c) if many cases have observed values that are quite “far apart” from many others (or

from the average value), dispersion is high.  

A measure of dispersion provides a summary statistic that indicates the magnitude of such dispersion

and, like a measure of central tendency, is a univariate statistic.

Because dispersion is concerned with how “close together” or “far apart” observed values

are (i.e., with the magnitude of the intervals between them), it should be apparent that the notion of

dispersion make sense — and measures of dispersion are defined — only for interval (or ratio)

variables.  (There is one exception: a very crude measure of dispersion called the variation ratio,

which is defined for ordinal and even nominal variables.  It will be discussed briefly in the Answers

& Discussion to PS #7.)

There are two principal types of measures of dispersion: range measures and deviation

measures.

Range Measures

 Range measures are based on the distance between (relatively) “extreme” values observed

in the data and are conceptually connected with the median as a measure of central tendency  (See

the data illustrating Percentiles, the Median, and Ranges on the back page of the Handout #6 on

Measures of Central Tendency.) 

The (“total” or “simple”) range is the maximum (highest) value observed in the data (the

value of the case at the 100th percentile) minus the minimum (lowest) value observed in the data (the

value of the case at the 0th percentile) — that is, the “distance” or “interval” between the values of

these two extreme cases.  (Note that this may be less than the range of the possible values of the

variable, since logically possible extreme values may not be observed in actual data; for example,

the variable LEVEL OF TURNOUT has logically possible values ranging from 0% to 100%, but in

U.S. Presidential elections, the range of observed values [as conventionally measured, i.e., as Total

Vote for President divided by Voting Age Population] over the past 60 years or so ranges from a

minimum observed of about 48% (in 1996) to about 64% (in 1960).  The problem with the (total or

simple) range as a measure of dispersion is that it depends on the values of just two cases — cases

that by definition have atypical  (and perhaps extraordinarily atypical) values.  In particular, the range
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makes no distinction between a polarized distribution in which almost all observed values are close

to either the minimum or maximum values and a distribution in which almost all observed values

are bunched together but there are a few extreme outliers.  Also the range is undefined for theoretical

distributions that are “open-ended” (the technical term is asymptotic), like the normal distribution

(that we will take up in the next topic) or the upper end of an income distribution type of curve (see

PS #5C).  Therefore other variants of the range measure that do not reach entirely out to the extremes

of the frequency distribution are often used in place of the total range.

The interdecile range is the value of the case that stands at the 90th percentile of the

distribution minus the value of the case that stands at the 10th percentile —  that is, the “distance”

or “interval” between the values of these two less extreme cases.   In like manner, the interquartile

range is the value of the case that stands at the 75th percentile of the distribution minus the value

of the case that stands at the 25th percentile.  (The first quartile is the median observation among

all cases that lie below the overall median and the third quartile is the median observation among

all cases that lie above the overall median.  In these terms, the interquartile range is third quartile

minus the first quartile.)

We have previously used a range measure in a special context.  The handout on Random

Sampling said the following:

Suppose the Gallup Poll takes a random sample of n respondents and reports that

the President's current approval rating is 62% and that this sample statistic has a margin of

error of ± 3 %.  Here is what this means: if (hypothetically) Gallup were to take a great many

random samples of the same size n from the same population (e.g., the American VAP on

a given day), the different samples would give different statistics (approval ratings), but 95%

of these samples would give approval ratings within 3 percentage points of the true

population parameter.

Thus, if our data is the list of sample statistics produced by the (hypothetical) “great many”

random samples, the margin or error specifies the range between the value of the sample statistic that

stands at the 97.5th percentile minus the sample statistic that stands at the 2.5th percentile (so that

95% of the sample statistics lie within the range).  Specifically  (and letting P be the value of the

population parameter) this range is (P + 3%) !(P ! 3%) =  6%, i.e., twice the margin error.   

Deviation Measures

Deviation measures are based on average deviations from some average value.  (Recall the

discussion of Deviations from the Average in Handout #6 on Measures of Central Tendency.)  Since

we are dealing with interval variables, we can calculate means, and deviation measures are typically

based on the mean deviation from the mean value.  Thus the usual deviation measures are concept-

ually connected with the mean as a measure of central tendency. 

Suppose we have a variable X and a set of cases numbered 1,2, . . . , n.  Let the observed

value of the variable in each case be designated x1, x2, etc.  Thus:

             x1 + x2 +...+ xn          3 x
mean of X   =   xG  =     ____________   =   ___  .

                      n                      n
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The deviation from the mean for a representative case i is (xi ! xG ).  If almost all of these

deviations are small (if almost all cases are close to the mean value), dispersion is small; but if many

of these deviations are large (if many cases are much above or below the mean), dispersion is large.

This suggests we could construct a measure D of dispersion that would simply be the average (mean)

of all the deviations:

(x1 ! xG ) + (x2 ! xG ) + ... + (xn ! xG )       3 (xi ! xG ) 
D  = ___________________________  =  ________  .

   n                               n

But this will not work, because some of the deviation are positive and others are negative

and, as we saw earlier (Handout #6, point (d) under Deviations from the Average), these positive and

negative deviations necessarily “balance out” and add up to zero, i.e., for any distribution of

observed values  3(xi ! xG )  =  0.

A practical way around this problem is simply to ignore the fact that some deviations are

negative while others are positive by averaging the absolute values of the deviations (in effect, by

ignoring the negative sign before each negative deviation):

    3 *xi ! xG* 
MD   =     ________  .

                                    n

This measure (called the mean deviation) tells us the average (mean) amount that the values

for all cases deviate (regardless of whether they are higher or lower) from the average (mean) value.

Indeed, this is an intuitive, understandable, and perfectly reasonable measure of dispersion, and it

is occasionally used in research.

However, statisticians are mathematicians,  and they dislike this measure because the formula

is mathematically messy by virtue of being “non-algebraic” (in that it ignores negative signs).

Therefore statisticians, and most researchers, use another slightly different deviation measure of

dispersion that is “algebraic,” and that makes use of the fact that the square of any (positive or

negative) number (i.e., the number multiplied by itself) other than zero is itself always positive.  This

formula is based on finding the average of the squared deviations; since these are all non-negative,

they do not “balance out.”  This measure of dispersion is called the variance of the variable.

             3 (xi ! xG )2 
   Variance of X  =  Var(X)  =  s 2   =   _________  .

                                                         n     

That is, the variance is the average squared deviation from the mean.  Remember from

Handout #6 (point (e) under Deviations from the Average) that the average squared deviation from

the mean value of X is smaller than the average squared deviation from any other value of X.  The

variance is the usual measure of dispersion in statistical theory, but it has a drawback when

researchers want to describe the dispersion in data in a practical way.  Whatever units the original

data (and its average values and its mean dispersion) are expressed in, the variance is expressed in

the square of those units, and thus it doesn't make much intuitive or practical sense.  This can be

remedied by finding the (positive) square root of the variance (which takes us back to the original

units).  This measure of dispersion is called standard deviation of the variable:
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                                                                                                  __________

                         /  3 (xi ! xG )2 
Standard Deviation of X  =  SD(X)  =  s  =     /  _________ .

                                                                       r          n     

In order to interpret a standard deviation, or to make a plausible estimate of the SD of some

data, it is useful to think of the mean deviation because (i) it is easier to estimate the magnitude of

the mean deviation and (ii) the standard deviation has approximately the same numerical magnitude

as the mean deviation.  More precisely, given any distribution of data, the standard deviation is never

less than the mean deviation; it is equal to the mean deviation if the data is distributed in a

maximally “polarized” fashion; otherwise the SD is somewhat larger — typically about 20-50%

larger.

Sample Estimates of Population Dispersion

Random sample statistics that are percentages or averages provide unbiased estimates of the

corresponding population parameters.  However, sample statistics that are dispersion measures

provide estimates of population dispersion that are biased (at least slightly) downward.  This is most

obvious in the case of the range; it should be evident that a sample range is almost always smaller,

and can never be larger, than the corresponding population range.  The sample standard deviation

(or variance) is also biased slightly downward .  (While the SD of a particular sample can be larger

than the population SD, sample SDs are on average slightly smaller than the corresponding popula-

tion SDs).  However, the sample SD can be adjusted to provide an unbiased estimate of the

population SD; this adjustment consists of dividing the sum of the squared deviations by n !1, rather

than by n.  (Clearly this adjustment makes no practical difference unless the sample is quite small.

Notice that if you apply the SD formula in the event that you have just a single observation in your

sample, i.e., n = 1, it must give SD = 0 regardless of what the observed value is.  More intuitively,

you can get no sense of how much dispersion there is in a population with respect to some variable

until you observe at least two cases and can see how “far apart” they are.)  This is why you will often

see the formula for the variance and SD with an n !1 divisor (and scientific calculators often build

in this formula).  However, for POLI 300 problem sets and tests, you should use the formula given

in the previous section of this handout.

Dispersion in Ratio Variables  

Given a ratio variable (e.g. income), the interesting “dispersion question” may pertain not to

the interval between two observed values or between an observed value and the mean value but to

the ratio between the two values.  (For example,  one household “poverty level” is defined as one

half the median household income, and households with more than twice the median income are

sometimes characterized as “well off.”  The average compensation of CEOs today is about 250 times

that of the average worker, whereas 50 years it was only about 40 times that of the average worker.)

The degree of dispersion in ratio variables can naturally be referred to as the degree inequality.  One

ratio measure of dispersion/inequality is the coefficient of variation, which is simply the standard

deviation divided by the mean.  Another is the Gini Index of Inequality, which is based on a

comparison between the actual cumulative distribution when cases are ranked ordered from lowest
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to highest value (e.g., from poorest to richest) and the cumulative distribution that would exist if all

cases had the same value.

How to Compute a Standard Deviation                                                                                           
                                                                                                  __________

                         /  3 (xi ! xG )2 
The formula for the standard deviation is:    SD(X)  =  s  =    /   _________ .

                                                                       r         n     

Here is how to use the formula.

1. Set up a worksheet like the one shown below. 

2. In the first column, list the values of the variable X for each of the n cases.  (This is the raw

data.)

3.  Find the mean value of the variable in the data, by adding up the values in each case and

dividing by the number of cases.

4. In the second column, subtract the mean from each value to get, for each case, the deviation

from the mean.  Some deviations are positive, others negative, and (apart from rounding

error) they must add up to zero; add them up as an arithmetic check.

5. In the third column, square each deviation from the mean, i.e., multiply the deviation by

itself.  Since the product of two negative numbers is positive, every squared deviation is non-

negative, i.e., either positive or (in the event a case has a value that coincides with the mean

value).

6. Add up the squared deviations over all cases.

7. Divide the sum of the squared deviations by the number of cases; this gives the average

squared deviation from the mean, commonly called the variance.

8. The standard deviation is the (positive) square root of the variance.  (The square root of x

is that number which when multiplied by itself gives x.)
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