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RANDOM SAMPLING

Key Definitions Pertaining to Sampling

1.

10.

1.

Population: the set of “units” (in survey research, usually individuals or households), N in
number, that are to be studied. A typical population in political science survey research, such
as the National Election Studies, is the American voting age population (VAP).

Sample: any subset of units, n in number, drawn from the population. Almost always # is
(much) smaller than N (but, perhaps surprisingly a sample can be larger than the population).

Sampling fraction: the ratio n/N, i.e., the size of the sample in relation to the population.
In most survey research, the sampling fraction is very small. (In national surveys such as
ANES, it is on the order of 1/100,000.)

(Simple) Sampling Frame: a list of every unit in the population.

Random (or Probability) Sample: a sample such that each unit in the population has a calcu-
lable (according to the laws of probability) chance of appearing in it — that is, a sample
selected by a random mechanism (such as a lottery).

Non-Random Sample: a sample selected in any non-random fashion, so that the probability
that a unit is drawn into the sample cannot be calculated.

Simple Random Sample (SRS): a sample of size n such that every subset of » units has the
same chance of constituting the sample. This implies that every individual unit has the same
chance of appearing in the sample.

Systematic Random Sample: a random sample of size n drawn from a simple sampling
frame, such that each of the first N/n units on the list has the same chance of being selected
and every (N/n)" subsequent unit on the list is also selected. This implies that every unit —
but not every subset of n units — in the population has the same chance of being in the
sample.

Multi-Stage Random Sample: a sample selected by random mechanisms in several stages,
most likely because it is impossible or impractical to acquire a list of all units in the
population (i.e., because no simple sampling frame is available).

(Population) Parameter: a characteristic of the population, e.g., the percent of the popu-
lation that approves of the way that the President is handling his job, or the average house-
hold income in the population. For a given population at a given time, the value of a
parameter is fixed but is typically unknown (which is why we may be interested in survey
sampling).

(Sample) Statistic: a characteristic of a sample, e.g., the percent of a sample that approves
of the way that the President is handling his job, or the average household income in the
sample. A sample statistic is typically used to estimate the comparable population parameter.
The value of a sample statistic is known (for any particular sample) but it is not fixed — it
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varies from sample to sample (even when the samples are all drawn from the same
population with a fixed parameter value).

(a) Most population parameters and sample statistics we consider are percentages, e.g.,
the percent of the population or sample who approve of the way the President is
doing his job, or the percent of the population or sample who intend to vote Repub-
lican in the upcoming election.

(b) A sample statistic is unbiased if its expected value is equal to the corresponding
population parameter. This means that as we take repeated samples from the same
population, the average of all the sample statistics “converges” on (comes closer and
closer to) the population parameter.

(©) A sample statistic has more variability the more it varies from sample to sample.

(Random) Sampling Error: the magnitude of the inherent variability of sample statistics
(from sample to sample). There are various ways of reporting sampling error. Public
opinion polls and other surveys commonly report their sampling errors in terms of the margin
of error associated with sample statistics. This measure of sampling error is defined and
discussed below.

Important Points Pertaining to Sampling (with references to the attached Table of Sampling
Results)

1.

Sampling is indispensable for many types of research, in particular public opinion and voting
behavior research, because it is impossible, prohibitively expensive, or self-defeating to study
every unit in the population.

Many types of sampling (convenience, self-selected, haphazard, interviewer-selected, quota)
are non-random and give no assurance of producing samples that are representative of the
populations from which they are drawn. (Indeed, it often is not clear how to define the
population from which such non-random samples are drawn.)

Random or probability sampling does provide an expectation of producing a representative
sample, in the sense that random sampling statistics (or adjusted versions thereof) are
unbiased (i.e., on average they equal true population parameters) and they are subject to a
calculable (and controllable, by varying sample size and other factors) degree of sampling
error, reflected in the fact that repeated random samples from the same population produce
varying sample statistics. (See the enclosed Table of Sampling Results.)

More formally, most sample statistics are (approximately) normally distributed (we will
introduce this concept formally in a few weeks) with an average value equal to the corres-
ponding population parameter and a variability (sampling error) that (i) is mainly a function
of sample size n (as well as variability within the population sampled) and (ii) can be cal-
culated on the basis of the laws of probability.
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The magnitude of sampling error can be expressed as the standard deviation (another con-
cept we will introduce soon) or the average absolute deviation of sample statistics. (See the
enclosed Table of Sampling Results.) More commonly, however, sampling error is
expressed in terms of a margin of error of £ X %. The margin of error + X % gives the
magnitude of the 95% confidence interval for the sample statistic, which can be interpreted
in the following way.

Suppose the Gallup Poll takes a random sample of n respondents and reports that the Presi-
dent’s current approval rating is 62 % and that this sample statistic has a margin of error of
+3 %. Here is what this means: if (hypothetically) Gallup were to take a great many random
samples of the same size n from the same population (e.g., the American VAP on a given
day), the different samples would give varying statistics (approval ratings), but 95% of these
samples would give approval ratings within 3 percentage points of the true population para-
meter, i.e., the Presidential approval rating we would get if we took a complete and wholly
successfully census to get the opinion of every member of the American VAP. Put more
practically (given that Gallup takes just one sample), we can be 95% confident that the actual
sample statistic of 62% lies within 3 percentage points of the true parameter; i.e., we can be
95% confident that the President's “true” approval rating lies within the range of 59%
(62% - 3%) to 65% (62% + 3%).

5. Considering the example above, you may well ask: how can the Gallup people say that its
poll has a margin of error of +3 % when they actually took just one poll, not the repeated
polls hypothetically referred to above? The answer is that, given random samples, such
margins of error can be calculated mathematically, using the laws of probability (in the same
way one can calculate the probability of being dealt a particular hand in a card game or of
getting particular outcomes in other games of chance). (See the attached page on Theoretical
Probabilities of Different Sample Statistics.) This is the sense in which the margin of error
of random samples is calculable, but that of a non-random sample is not.

6. Such mathematical analysis shows that random sampling error is (as you would expect)
inversely (or negatively) related to the size of the sample — that is, smaller samples have
larger sampling error, while larger samples have smaller error. However, this is not a linear
relationship, e.g., doubling sample size does not cut sampling error in half. Rather sampling
error is inversely related to the square root of sample size. Thus, if a given random sample
has a margin of error of + 6%, we can reduce this margin of error by increasing the sample
size, but it will take a sample four times as large to cut the error in half (to +3%). In general,
if Sample 1 and Sample 2 have sizes n; and n, respectively, and sampling errors e, and e,
respectively, we have this relationship (the inverse square root law):

)] =

Actually, for simple random samples and sample statistics that are percentages (e.g., percent
approving of the way the President is doing his job), the following is approximately true:
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2) margin of error (95 % confidence interval) = 100% .

vn

See the entries in first column of Table 3.4 on p. 72 of Weisberg et al. (If parameters,
statistics, and errors are given as decimal fractions, rather than percentages, this formula
becomes: margin of error = 1/vn.) Actual national surveys use random — but not simple
random — samples, and their margins of error are slightly larger; see the remaining columns
in Table 3.4.

Note. The values given in Table 3.4 on p. 72 of Weisberg et al. (and given by the approxi-
mate formula noted above) are the maximum sampling errors associated non-extreme
parameter values. If the population parameter is fairly extreme, e.g., less than 10% or more
than 90% (so that the population is quite homogeneous with respect to the variable of
interest), sampling error actually somewhat less than that given in Table 3.4 or by the
approximate formula. At the limit, if the population parameter is as extreme as possible, i.e.,
0% or 100% (so that the population is perfectly homogeneous with respect to the variable of
interest), the corresponding sample statistics necessarily have zero sampling error.

7. This inverse square root law has two important implications.

a. Increasing sample size is subject to diminishing marginal returns. While one can
always reduce sampling error further by increasing sample size, additional increments
in n “purchase” less and less in terms of reducing sampling error. Quite small
samples may have manageable sampling errors and additional research resources are
usually better invested in reducing other types of (non-sampling) errors (see #11
below). For some purposes, a sample of about 1000 will achieve all the accuracy
needed (e.g., a margin or error of +3-4%). For many purposes, a sample of about
2000-3000 is sufficient.

b. Sample statistics for population subgroups have larger margins of error than those
for the whole population. For example, if a poll estimates the President's popularity
in the public as a whole at 62 % with a margin of error of about +3 %, the same poll
estimates his popularity among men (or women) only with a margin of error of about
+ 4.5 % (the relevant sample size is cut in half, so the margin of error is increased by
a factor of V2 or about 1.5) and the estimate of his popularity among African-
Americans only has a margin of error of about +£9 % (the relevant sample size is cut
to about one-ninth, so the margin of error is increased by a factor of about 3). If
one’s research focuses importantly on such subgroups, it is desirable to use either (i)
a larger than normal sample size or (ii) a stratified sample (see second to last point
in #10 below).

8. There is a important a counterintuitive implication of this discussion, from the approximate
formula (2) above, and from Table 3.4 in the Weisberg book. Notice that none of these
makes any reference to the population size N (or to the sampling fraction n/N ), as opposed
to sample size n. This is because — for the most part — sampling error depends on absolute
sample size (as well as variability within the population sampled), and not on sample size
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relative to population size (i.e., the sampling fraction). This statement is precisely true if
samples are drawn with replacement, i.e., if it is theoretically possible for a given unit in the
population to be drawn into the same sample two or more times. Otherwise, i.e., if samples
are drawn without replacement [which is the more common practice], the statement is true
for all practical purposes, unless the sampling fraction is quite large, e.g., something
like1/100 or larger. In survey research, of course, the sampling fraction is typically much
smaller than this (for the NES, on the order of 1/100,000). Finally, if in fact we do draw a
sample without replacement and with a high sampling fraction (e.g., 1/10), the only
“problem” is that sampling error will be less than formula (2) and Table 3.4 indicate. (Of
course, if the sampling fraction is 1 [i.e., » = N] and the sample is drawn without
replacement, sampling error is zero (we have taken census of the population). On the other
hand, note that, if we sample with replacement, sample size can increase without limit and,
in particular, can exceed population size.)

An important implication of this fact is that, if a given margin of error is desired, a local
survey requires essentially the same sample size as a national survey with the same margin
or error. Thus, in so far as (interviewing, etc.) costs are proportionate to sample size, good
local surveys cost almost as much as national ones.

A random sample may be selected by drawing cases from the sampling frame (list of units
in the population) by some random or chance mechanism. Usually a list of random numbers
is used. (See the attached Excerpt from a Table of Random Numbers.) However, you can
go the the POLI 300 web page and can click on the link to Research Randomizer or to
Statistical Applets and sele@imple Random Sample . (The latter is recommended and
described more fully in Problem Set #2.)

Because simple sampling frames (lists) do not exist for most large populations of individuals
(particularly including the American VAP), simple random sampling often cannot be imple-
mented. (A national SRS would also entail enormous personal interviewing costs, because
the selected respondents would be scattered among thousands of locations.) Multi-stage (and
consequently clustered and often stratified as well) samples are used instead.

Suppose we want to study the attitudes of the population of American college students, by
interviewing a representative sample of 2000 students. No simple sampling frame exists, i.e.,
there is no list of all 12,000,000 or so American college students. However, there are (pretty
good) lists of all of the several thousand American colleges and universities, and these lists
also show the (approximate) number of students enrolled in each. Using this list we can
select a random sample of (say, 100) colleges and universities, where each institution has a
probability of being drawn into this first-stage sample that is proportional to its enrollment.
Then we would contact the Registrar's Office at each of the 100 selected institutions to get
a list of the students enrolled in that school, and we would then use each list as a sampling
frame to select a small simple random sample of 20 students from each of the 100 institu-
tions. (It might turn out that some of the enrollment figures used to determine the probability
of selecting institutions in the first stage of sampling are wrong. In this case, individual
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respondents might be weighted in the final sample to compensate for this error.) The final
result is a multi-stage (in this case, a two-stage) random sample of 2000 American college
students. The sample is also clustered in that the 2000 student respondents are clustered on
just 100 campuses, rather than spread out over almost 2000 different campuses (as would be
true if we had a SRS of 2000 students). Clustering has the advantage of greatly reducing
personal interviewing costs. Statistics from such a clustered multi-stage sample are un-
biased, though they have somewhat greater sampling error than those from a simple random
sample of the same size, which can be compensated for by increasing sample size somewhat.
(Note that we could have selected a simple random sample of colleges, 1.e., by not weighting
probabilities of selection by enrollments, and then used the same sampling fraction at each
selected college. This would also produce an unbiased two-stage random sample; however,
its sampling error would be considerably greater than that resulting from the procedure
recommended above.)

We might also stratify the sample by selecting separate samples of appropriate size (totaling
2000) from (for example) (a) community colleges, (b) four-year colleges, and (c) universities,
and/or from different regions of the country, etc. Such stratification, where feasible, reduces
sampling error compared with non-stratified samples of the same size. Stratification is
especially useful if we want systematically to compare two subgroups of unequal size (e.g.,
whites and blacks, partisans and independents). In this event, it is desirable to stratify by
subgroups and draw samples of (approximately) equal size for each subgroup (so that the
sampling fraction is inversely related to group size), with the result that statistics for each
subgroup are subject to (approximately) the same margin of error.

See Weisberg et al., pp. 49-61, for a more detailed discussion of sampling methods used to
conduct such large-scale national surveys of the VAP as the ANES. (In contrast, the British
Election Studies use the national list of enrolled voters as a simple sampling frame for a one-
stage non-clustered national sample stratified by region (Scotland, Wales, etc.).)

Survey research is subject to many types of error in addition to sampling error.

Such non-sampling errors include most importantly errors resulting from a low response (or
completion) rate. Not every person drawn into the sample by random chance can be success-
fully interviewed. Some people in the drawn sample may never be located, may never be at
home, or may simply refuse to submit to the interview. A low completion rate reduces the
size of the completed sample, and thus increases sampling error. Much more importantly,
non-respondents, in considerable measure, are self-selected or otherwise not randomly
selected out of the drawn sample. Thus the completed sample is not a random sample of the
drawn sample nor a fully random sample of the population as a whole, and its sample statis-
tics may be biased in more or less unknown ways.

Other non-sampling errors include:

a. non-coverage error (the sampling frame may not cover exactly the population of
interest);
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b. measurement errors due to unambiguous, unclear, or otherwise poorly framed
questions or poorly designed questionnaires, inappropriate interviewing circum-
stances, interviewer mistakes, etc.; and

C. data entry, coding, tabulation, or other data processing errors.

Note that all these are indeed non-sampling errors — data based on a complete census of the
population would be subject to the same errors, which therefore cannot be blamed on the
sampling process. Once sample size reaches a reasonable size (which may depend on the
type of research being done), extra resources are better devoted to increasing the response
rate and reducing other kinds of non-sampling errors than to further increasing sample size.

Using SPSS to Draw Random Samples from the SETUPS Data with a Known Population
Parameter

Note. 1have not updated this exercise using SETUPS 1972-2004 data.

The SETUPS 1972-2000 data pools together samples from each of the eight National
Election Studies in the period covered. Each NES study has a sample size of approximately n =
2000. Pooled together, there are 16,438 respondents in the entire study. Let us consider this set of
units people to constitute a population with N = 16,438 (a population size comparable to the VAP
of asmall city). The SPSS (Statistical Package for the Social Sciences) computer program (to which
you have been introduced) has a procedure that allows the researcher to draw simple random samples
of any size from the entire data set available for analysis. (See the end of Section VII of the SPSS
handout.)

First, let us use SPSS to calculate the value of a particular population parameter — say, the
percent of respondents in the population who give the “approve” answer to the question “Do you
approve or disapprove of the way the President is handling his job?” as a percent of the number of
people who answered the question. This is variable V29 (PRESIDENTIAL JOB APPROVAL) in
the SETUPS Codebook. We determine the population parameter by calculating the following, on
the basis of all 16,438 responses:

parameter = number of respondents coded “1” x 100% = 58.5%
number coded “1”+ number coded “2”

(This excludes 2385 cases coded “9” as “missing data.”)

Normally, of course, we don't know the value of a population parameter, which is precisely
why we resort to survey research using sampling. In this exercise, however, we do know the value
of the parameter, and we sample anyway, so that we can actually check how accurate the sampling
is.

I took 20 samples of size n = 15, 20 samples of size n = 150, and 20 samples of size n =
1500. (Itook “samples of samples,” if you will.) By the inverse square law, sampling error should
be greatest in the smallest samples and smallest in the largest samples. According to the
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approximate formula (2) given in #6 above, the margin of error in samples of size n = 1500 is about
+2.6%. (The Table 3.4 in Weisberg et al. says the same.) This sample size and corresponding
margin of error are typical of much survey research. Likewise, the margin of error in samples of size
n =150 is about +8.2%. (The Weisberg table gives an interpolated value of about +9%.) This
sample size is typical of a number of subgroups in a VAP sample of about 1500, e.g., African-
Americans, Hispanics, non-Christians, (pure) Independents, etc., each of which constitutes about
10% of the total population. The margin of error in samples of size n = 15 is about £25.8 %. Such
samples are extremely small and their statistics obviously have very high margins of error, and few
social scientists would venture to make inferences from them.

The resulting sample statistics are shown in the Table of Sampling Results at the end of this
handout. The table shows at total 60 sample statistics arranged in three columns, 20 for n = 15, 20
for n = 150, and 20 for n = 1500. Each of the 60 samples was independently selected, so the order
in which they are listed (and numbered) is arbitrary and there is no connection between (for example)
the 10th sample of size 15 and the 10th sample of size 150 (or 1500). The column to the right of
each sample statistic shows the amount by which the sample statistic deviates (differs) from the true
population parameter of 58.5%; the deviation is positive if the statistic is greater than the parameter
and negative if the statistic is smaller than the parameter.

These data clearly illustrate the two theoretical points about random sampling set out above
— namely that (i) such sample statistics are unbiased but also that (ii) they are subject to sampling
error that is inversely related to the square root of sample size.

With respect to the first point, we see from the data that, regardless of sample size, the
sample statistics are just about right on average (60.2%, 57.0%, 58.5%); equivalently the deviations
add up to just about zero. This reflects the fact that the sample statistics (regardless of sample size)
are unbiased. Had we taken a larger (than 20) “sample of samples” of each size, average
performance of the sample statistics (especially those from the smallest samples) would be even
better. On the other hand, the fact the 20 statistics from the largest samples appear to be exactly right
on average is a merely coincidence (and in any event is an illusion resulting from rounding to the
nearest one tenth of a percent).

At the same time, we also see that (almost) every individual sample statistic deviates at least
a bit from the true population parameter (and even the ones that appear to be right on the mark of
58.5% are really off a bit — the discrepancy doesn’t show up because of rounding), about half being
too low (negative deviations) and half too high (positive deviations), reflecting the fact that sample
statistics are subject to sampling error. Moreover, it can be seen that this sampling error is inversely
related to sample size and very closely follows the inverse square root law. The sample sizes are
in aratio of 1 to 10 to 100, so by the inverse square root law the associated sampling errors should
be in a ratio of 10 to V10 to 1. The ratios of either the mean absolute (i.e., ignoring “+” and “-”
signs) deviations or the standard deviations associated with each sample size closely duplicate these

ratios.

The probability calculations described above tell us that, among the largest samples (n =
1500), the margin of error is about £2.6%. Remember that this means we expect that on average
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about 19 sample statistics out of the 20 (95 %) will fall within +2.6% of the population parameter,
i.e., within the interval 58.5% + 2.6% (or 55.9-61.1%). In fact, all our sample statistics fall within
this interval, though one (#1) falls close to the upper bound of the interval. Likewise, the
calculations lead us to expect that, among the medium-sized samples (n = 150), the margin of error
is about +8.2 %. That is, we expect that about 19 sample statistics out of the 20 will fall within
+ 8.2% of the population parameter, i.e., within the interval 56.3% + 8.2% (or 50.3—66.7%). In fact,
all but three sample statistics (#9, #13, #16) fall within this interval. Finally, the calculations lead
us to expect that, among the smallest samples (n = 15), the margin of error is about +25.8%. That
is, we expect that about 19 sample statistics out of the 20 will fall within +25.8% of the population
parameter, i.e., within the interval 56.3% =+ 25.8% (or 32.7-84.3%). In fact, all but one sample
statistic (#5) fall within this interval. All together, we expect 95% of the 60 sample statistics (all but
three) to fall within their respective margins of error. In fact, all but four statistics do so.

This sampling data is also presented in graphical form below. Each sample statistic is plotted
as a little box (®) on the horizontal line corresponding to its sample size. (The boxes merge into
each other where sample statistics are almost equal.) The true population parameter is shown by the
vertical line at 58.5 on the horizontal axis. It is immediately evident that the boxes on the top (n =
1500) line are closely concentrated around the population parameter. The boxes along the middle
(n=150) line are considerably more spread out and those on the bottom (n = 15) line are still more
spread out. However, on each line, the boxes on either side of population parameter approximately
balance out.
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TABLE OF SAMPLING RESULTS
Population parameter = 58.5% (V29 Presidential Approval)

Table shows samples statistics for 20 samples of each size

Sample #|[ n=15 (Dev.) [ n=150 | (Dev.) [n=1500| (Dev.)

1 563 | 22 | 610 | +25 | 609 | +24

2 581 | -04 || 619 | +34 | 573 | -12

3 618 | +33 || 612 | +27 | 590 | 405

4 614 | +29 | 633 | +48 | 575 | -10

5 902 | 4317 | 599 | +14 | 587 | 402

6 398 | -187 | 603 | +18 | 605 | +20

7 602 | +17 || 585 0.0 501 | +0.6

8 641 | 456 || 542 | -43 | 575 | -10

9 560 | -25 || 494 | -91 | 599 | +1.4

10 765 | +180 | 601 | +16 | 588 | +03

1 402 | -183 | 615 | 430 || 582 | -03

12 578 | -07 | s34 | -51 | s88 | +03

13 762 | +177 | 479 | -106 | 582 | -03

14 508 | +13 | 582 | -03 | 575 | -10
15 614 | +29 | 605 | +20 | 585 0.0

16 565 | -20 | 496 | -89 | 580 | -05

17 682 | 497 | 530 | -55 | 587 | 402

18 555 | -30 || s08 | -77 | s66 | -19

19 584 | -01 | 563 | 22 | 570 | -15

20 457 | -128 | 588 | 403 | 595 | +1.0
Mean | 602 | +17 | 570 | -15 || 585 0.0
Alf.‘;;‘:“ 7.8 7.8 3.9 3.9 0.9 0.9
Standard) 5 | ;5 4.8 438 1.1 1.1

Dev.




THEORETICAL PROBABILITIES OF DIFFERENT SAMPLE STATISTICS

Consider the following population: a deck of cards with N =52. In this case, of
course, we know all the characteristics (parameters) of this population (e.g., the
percent of cards in the deck that are red, clubs, aces, etc.) we can consider what we
expect will happen if we take repeated random samples (with replacement) of size n =
2 out of this population.

Example #1. Let the population parameter of interest be the percent of cards in the
deck that are red. Suppose we try to estimate the value of this parameter using the
corresponding sample statistic, i.e., the percent of cards in the sample that are
red. While we know that the sample statistic will vary from sample to sample, we can
calculate how likely we are to get any specific sample statistic using the laws of
probability .

On any draw (following replacement on the second and any subsequent draws), the
probability of getting a red card is .5 (since half the cards in the population are red) and
the probability of getting a non-red (black) card is also .5 .

1% draw 2" draw Probability Sample Statistic  Probability
R R b5 x.5=.25 100% .25
R B b5 x.5=.25 } o
B R 5% 5= .25 S0% 0
B B bS5 x.5=.25 0% .25

Example #2. Let the population parameter of interest be the percent of cards in
the deck that are diamonds.

On any draw (following replacement on the second or subsequent draws), the
probability of getting a diamonds card is .25 (since a quarter of the cards in the
population are diamonds) and the probability of getting a non-diamond (hearts, clubs, or
spades) card is .75 .

15! draw 2" draw Probability Sample Statistic ~ Probability
O O .25 x .25 =.0625 100% .0625
<> O .25 X .75 = .1875 } 500/0 .3750
0 O .75 x .25 = .1875
0 0 .75 x .75 = .5625 0% .5625

Note that sampling with replacement greatly simplifies these calculations. If we
sampled without replacement, given that (for example) we get a red card on the first
draw, the probability of getting red card on the second draw is not .5 but 25/51 = .49
and the probability of getting black card on the second draw is not .5 but 26/51 = .51 .
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251 B9429 26726 15563 94972 78739 04419 60523
252 43427 25412 25587 21276 44426 - 17369 29010
253 58575 81958 51846 02676 67781 95137 88430
254 61888 71246 24246 23487 78639 92006 63846
255 73891 47025 40937 71907 26827 98865 38882
256 40938 73894 40854 15997 55293 05033 31736
257 98053 43567 17292 86908 71364 06089 92394
258 59774 29138 46993 39836 99596 59050 25419
259 097635 07548 63043. 59782 81449 13652 94420
260 38991 64502 24770 29209 82909 66610 84418
261 25622 27100 56128. 62145 82388 45197 97609
262 31864 74120 66231 82306 91784 33177 17681
263 B1171- 75639 60863 49562 28845 81581 10249
264 69874 52803 28544 51569 56090 44558 42095
265 27848 51107 05761 02159 53911 01952 59273
266 69407 69736 75375 31488 67528 84234 76462
267 29418 03091 06364 13151 40663 43633 87954
268 38222 31231 - 79415 44558 62490 26936 49682
269 94720 83796 93251 03568 62484 29140 14152
270 45275 16852 02284 41361 73733 61486 33189
271 97260 09552 82626 42915 45847 - 87401 13339
272 01990 65259 60@84 TB175 43825 45211 86287
273 24633 42314 81192 50253 67516 59076 92006
274 98071 52677 74920 74461 52266 26967 68284
275 34101 79442 28403 48541 13010 16596 72001
276 77186 93967 25910 66403 73837 73445 B86663
277 23114 05481 42335 -51396 60823 22680 50459
278 59988 49944 41038 99977 16348 41119 51548
279 11852 42254 82304 05588 75165 20179 94198
280 59992 87922 56299 01700 07003 97507 69260
281 42116 86593 22828 41422 18176 03250 06079
282 39663 61401 21471 42702 70588 53144 27087
283 53542 72009 96296 68908 58657 87117 21483
284 25996 76108 98476 36397 89457 19577 65877
285 91106 26450 14451 50328 29084 32332 08635
286 37133 88924 27845 13024 90687 23726 11212
287 13982 25736 10087 16762 02564 27250 79316
288 26663 36187 01688 - 25005 46677 75851 73938
289 62572 08275 . 16313 24936 81680 53829 40412
290 |. 65925 95455 08383 24643 72962 08172 37824
291 | 97978 74676 08942 48919 51592 71196 48534
292 01914 42524 67820 47985 91773 10383 89514
293 68565 44811 39238 70394 78555 33539 56310
294 54370 31672 03893 32423 54092 69375 63308
295 79954 89601 23881 46951 69084 33477 87968
296 55479 01059 44229 356975 06785 - 80930 26443
297 - 38114 70330 42157 86699 46212 74692 92603
298 29766 83452 66202 02488 72704 97821 70614
299 31771 70640 34779 41831 33456 53194 19602
300 77528 87188 83577 99067 83835 48662 31503




