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RANDOM SAMPLING

Key Definitions Pertaining to Sampling

 1. Population: the set of  “units” (in survey research, usually individuals or households), N in

number, that are to be studied.  A typical population in political science survey research, such

as the National Election Studies, is the American voting age population (VAP).

 2. Sample: any subset of units, n in number, drawn from the population.  Almost always n is

(much) smaller than N (but, perhaps surprisingly a sample can be larger than the population).

 3. Sampling fraction: the ratio n /N, i.e., the size of the sample in relation to the population.

In most survey research, the sampling fraction is very small. (In national surveys such as

ANES, it is on the order of 1/100,000.)

 4. (Simple) Sampling Frame: a list of every unit in the population.

 5. Random (or Probability) Sample: a sample such that each unit in the population has a calcu-

lable (according to the laws of probability) chance of appearing in it — that is, a sample

selected by a random mechanism (such as a lottery). 

 6. Non-Random Sample: a sample selected in any non-random fashion, so that the probability

that a unit is drawn into the sample cannot be calculated.

 7. Simple Random Sample (SRS): a sample of size n such that every subset of n units has the

same chance of constituting the sample.  This implies that every individual unit has the same

chance of appearing in the sample. 

 8. Systematic Random Sample:  a random sample of size n drawn from a simple sampling

frame, such that each of the first N /n units on the list has the same chance of being selected

and every (N/n)th subsequent unit on the list is also selected. This implies that every unit —

but not every subset of n units — in the population has the same chance of being in the

sample.

 9. Multi-Stage Random Sample:  a sample selected by random mechanisms in several stages,

most likely because it is impossible or impractical to acquire a list of all units in the

population (i.e., because no simple sampling frame is available).

10. (Population) Parameter:  a characteristic of the population, e.g., the percent of the popu-

lation that approves of the way that the President is handling his job, or the average house-

hold income in the population.  For a given population at a given time, the value of a

parameter is fixed but is typically unknown (which is why we may be interested in survey

sampling).

11. (Sample) Statistic:  a characteristic of a sample, e.g., the percent of a sample that approves

of the way that the President is handling his job, or the average household income in the

sample.  A sample statistic is typically used to estimate the comparable population parameter.

The value of a sample statistic is known (for any particular sample) but it is not fixed — it
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varies from sample to sample (even when the samples are all drawn from the same

population with a fixed parameter value). 

(a) Most population parameters and sample statistics we consider are percentages, e.g.,

the percent of the population or sample who approve of the way the President is

doing his job, or the percent of the population or sample who intend to vote Repub-

lican in the upcoming election.

(b) A sample statistic is unbiased if its expected value is equal to the corresponding

population parameter.  This means that as we take repeated samples from the same

population, the average of all the sample statistics “converges” on (comes closer and

closer to) the population parameter.

(c) A sample statistic has more variability the more it varies from sample to sample.

12. (Random) Sampling Error:  the magnitude of the inherent variability of sample statistics

(from sample to sample).  There are various ways of reporting sampling error.   Public

opinion polls and other surveys commonly report their sampling errors in terms of the margin

of error associated with sample statistics.  This measure of sampling error is defined and

discussed below.

Important Points Pertaining to Sampling  (with references to the attached Table of Sampling

Results)

1. Sampling is indispensable for many types of research, in particular public opinion and voting

behavior research, because it is impossible, prohibitively expensive, or self-defeating to study

every unit in the population.

2. Many types of sampling (convenience, self-selected, haphazard, interviewer-selected, quota)

are non-random and give no assurance of producing samples that are representative of the

populations from which they are drawn.  (Indeed, it often is not clear how to define the

population from which such non-random samples are drawn.)

3. Random or probability sampling does provide an expectation of producing a representative

sample, in the sense that random sampling statistics (or adjusted versions thereof) are

unbiased (i.e., on average they equal true population parameters) and they are subject to a

calculable (and controllable, by varying sample size and other factors) degree of sampling

error, reflected in the fact that repeated random samples from the same population produce

varying sample statistics.  (See the enclosed Table of Sampling Results.)

4. More formally, most sample statistics are (approximately) normally distributed (we will

introduce this concept formally in a few weeks) with an average value equal to the corres-

ponding population parameter and a variability (sampling error) that (i) is mainly a function

of sample size n (as well as variability within the population sampled) and (ii) can be cal-

culated on the basis of the laws of probability.
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The magnitude of sampling error can be expressed as the standard deviation (another con-

cept we will introduce soon) or the average absolute deviation of sample statistics.   (See the

enclosed Table of Sampling Results.)  More commonly, however, sampling error is

expressed in terms of a margin of error of ± X %.  The margin of error ± X % gives the

magnitude of the 95% confidence interval for the sample statistic, which can be interpreted

in the following way.

Suppose the Gallup Poll takes a random sample of n respondents and reports that the Presi-

dent’s current approval rating is 62% and that this sample statistic has a margin of error of

± 3 %.  Here is what this means: if (hypothetically) Gallup were to take a great many random

samples of the same size n from the same population (e.g., the American VAP on a given

day), the different samples would give varying statistics (approval ratings), but 95% of these

samples would give approval ratings within 3 percentage points of the true population para-

meter, i.e., the Presidential approval rating we would get if we took a complete and wholly

successfully census to get the opinion of every member of the American VAP.  Put more

practically (given that Gallup takes just one sample), we can be 95% confident that the actual

sample statistic of 62% lies within 3 percentage points of the true parameter; i.e., we can be

95% confident that the President's “true” approval rating lies within the range of 59%

(62%!3%) to 65% (62% + 3%). 

5. Considering the example above, you may well ask: how can the Gallup people say that its

poll has a margin of error of ± 3% when they actually took just one poll, not the repeated

polls hypothetically referred to above?  The answer is that, given random samples, such

margins of error can be calculated mathematically, using the laws of probability (in the same

way one can calculate the probability of being dealt a particular hand in a card game or of

getting particular outcomes in other games of chance).  (See the attached page on Theoretical

Probabilities of Different Sample Statistics.)  This is the sense in which the margin of error

of random samples is calculable, but that of a non-random sample is not.  

6. Such mathematical analysis shows that random sampling error is (as you would expect)

inversely (or negatively) related to the size of the sample — that is, smaller samples have

larger sampling error, while larger samples have smaller error.  However, this is not a linear

relationship, e.g., doubling sample size does not cut sampling error in half.  Rather sampling

error is inversely related to the square root of sample size.  Thus, if a given random sample

has a margin of error of ± 6%, we can reduce this margin of error by increasing the sample

size, but it will take a sample four times as large to cut the error in half (to ± 3%).  In general,

if Sample 1 and Sample 2 have sizes n1 and n2 respectively, and sampling errors e1 and e2

respectively, we have this relationship (the inverse square root law):

e2                o n1

(1) S))))Q    =    S)))))Q

e1               o n2

Actually, for simple random samples and sample statistics that are percentages (e.g., percent

approving of the way the President is doing his job), the following is approximately true: 
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(2) margin of error (95 % confidence interval)  .  100% .

      % n

See the entries in first column of Table 3.4 on p. 72 of Weisberg et al.  (If parameters,

statistics, and errors are given as decimal fractions, rather than percentages, this formula

becomes: margin of error = 1 /%n.)  Actual national surveys use random — but not simple

random — samples, and their margins of error are slightly larger; see the remaining columns

in Table 3.4.  

Note.  The values given in Table 3.4 on p. 72 of Weisberg et al. (and given by the approxi-

mate formula noted above) are the maximum sampling errors associated non-extreme

parameter values.  If the population parameter is fairly extreme, e.g., less than 10% or more

than 90% (so that the population is quite homogeneous with respect to the variable of

interest), sampling error actually somewhat less than that given in Table 3.4 or by the

approximate formula.  At the limit, if the population parameter is as extreme as possible, i.e.,

0% or 100% (so that the population is perfectly homogeneous with respect to the variable of

interest), the corresponding sample statistics necessarily have zero sampling error.

7. This inverse square root law has two important implications.

a. Increasing sample size is subject to diminishing marginal returns.  While one can

always reduce sampling error further by increasing sample size, additional increments

in n “purchase” less and less in terms of reducing sampling error.  Quite small

samples may have manageable sampling errors and additional research resources are

usually better invested in reducing other types of (non-sampling) errors (see #11

below).  For some purposes, a sample of about 1000 will achieve all the accuracy

needed (e.g., a margin or error of ± 3-4%).  For many purposes, a sample of about

2000-3000 is sufficient.  

b. Sample statistics for population subgroups have larger margins of error than those

for the whole population.  For example, if a poll estimates the President's popularity

in the public as a whole at 62 % with a margin of error of about ±3%, the same poll

estimates  his popularity among men (or women) only with a margin of error of about

± 4.5 % (the relevant sample size is cut in half, so the margin of error is increased by

a factor of %2 or about 1.5) and the estimate of his popularity among African-

Americans only has a margin of error of about ± 9% (the relevant sample size is cut

to about one-ninth, so the margin of error is increased by a factor of about 3).  If

one’s research focuses importantly on such subgroups, it is desirable to use either (i)

a larger than normal sample size or (ii) a stratified sample (see second to last point

in #10 below).

8. There is a important a counterintuitive implication of this discussion, from the approximate

formula (2) above, and from Table 3.4 in the Weisberg book.  Notice that none of these

makes any reference to the population size N (or to the sampling fraction n/N ), as opposed

to sample size n.  This is because — for the most part — sampling error depends on absolute

sample size (as well as variability within the population sampled), and not on sample size
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relative to population size (i.e., the sampling fraction).  This statement is precisely true if

samples are drawn with replacement, i.e., if it is theoretically possible for a given unit in the

population to be drawn into the same sample two or more times.  Otherwise, i.e., if samples

are drawn without replacement [which is the more common practice], the statement is true

for all practical purposes, unless the sampling fraction is quite large, e.g., something

like1/100 or larger.  In survey research, of course, the sampling fraction is typically much

smaller than this (for the NES, on the order of 1/100,000).  Finally, if in fact we do draw a

sample without replacement and with a high sampling fraction (e.g., 1/10), the only

“problem” is that sampling error will be less than formula (2) and Table 3.4 indicate.  (Of

course, if the sampling fraction is 1 [i.e., n = N] and the sample is drawn without

replacement, sampling error is zero (we have taken census of the population).  On the other

hand, note that, if we sample with replacement, sample size can  increase without limit and,

in particular, can exceed population size.)

An important implication of this fact is that, if a given margin of error is desired, a local

survey requires essentially the same sample size as a national survey with the same margin

or error.  Thus, in so far as (interviewing, etc.) costs are proportionate to sample size, good

local surveys cost almost as much as national ones.

 9. A random sample may be selected by drawing cases from the sampling frame (list of units

in the population) by some random or chance mechanism.  Usually a list of random numbers

is used.  (See the attached Excerpt from a Table of Random Numbers.)  However, you can

go the the POLI 300 web page and can click on the link to Research Randomizer or to

Statistical Applets and select Simple Random Sample .  (The latter is recommended and

described more fully in Problem Set #2.)

10. Because simple sampling frames (lists) do not exist for most large populations of individuals

(particularly including the American VAP), simple random sampling often cannot be imple-

mented.  (A national SRS would also entail enormous personal interviewing costs, because

the selected respondents would be scattered among thousands of locations.)  Multi-stage (and

consequently clustered and often stratified as well) samples are used instead. 

Suppose we want to study the attitudes of the population of American college students, by

interviewing a representative sample of 2000 students.  No simple sampling frame exists, i.e.,

there is no list of all 12,000,000 or so American college students.  However, there are (pretty

good) lists of all of the several thousand American colleges and universities, and these lists

also  show the (approximate) number of students enrolled in each.  Using this list we can

select a random sample of (say, 100) colleges and universities, where each institution has a

probability of being drawn into this first-stage sample that is proportional to its enrollment.

Then we would contact the Registrar's Office at each of the 100 selected institutions to get

a list of the students enrolled in that school, and we would then use each list as a sampling

frame to select a small simple random sample of 20 students from each of the 100 institu-

tions.  (It might turn out that some of the enrollment figures used to determine the probability

of selecting institutions in the first stage of sampling are wrong.  In this case, individual
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respondents might be weighted in the final sample to compensate for this error.)  The final

result is a multi-stage (in this case, a two-stage) random sample of 2000 American college

students.  The sample is also clustered in that the 2000 student respondents are clustered on

just 100 campuses, rather than spread out over almost 2000 different campuses (as would be

true if we had a SRS of 2000 students).  Clustering has the advantage of greatly reducing

personal interviewing costs.  Statistics from such a clustered multi-stage sample are un-

biased, though they have somewhat greater sampling error than those from a simple random

sample of the same size, which can be compensated for by increasing sample size somewhat.

(Note that we could have selected a simple random sample of colleges, i.e., by not weighting

probabilities of selection by enrollments, and then used the same sampling fraction at each

selected college.  This would also produce an unbiased two-stage random sample; however,

its sampling error would be considerably greater than that resulting from the procedure

recommended above.)

We might also stratify the sample by selecting separate samples of appropriate size (totaling

2000) from (for example) (a) community colleges, (b) four-year colleges, and (c) universities,

and/or from different regions of the country, etc.  Such stratification, where feasible, reduces

sampling error compared with non-stratified samples of the same size.  Stratification is

especially useful if we want systematically to compare two subgroups of unequal size (e.g.,

whites and blacks, partisans and independents).  In this event, it is desirable to stratify by

subgroups and draw samples of (approximately) equal size for each subgroup (so that the

sampling fraction is inversely related to group size), with the result that statistics for each

subgroup are subject to (approximately) the same margin of error.

See Weisberg et al., pp. 49-61, for a more detailed discussion of sampling methods used to

conduct such large-scale national surveys of the VAP as the ANES.  (In contrast, the British

Election Studies use the national list of enrolled voters as a simple sampling frame for a one-

stage non-clustered national sample stratified by region (Scotland, Wales, etc.).)

11. Survey research is subject to many types of error in addition to sampling error.

Such non-sampling errors include most importantly errors resulting from a low response (or

completion) rate.  Not every person drawn into the sample by random chance can be success-

fully interviewed.  Some people in the drawn sample may never be located, may never be at

home, or may simply refuse to submit to the interview.  A low completion rate reduces the

size of the completed sample, and thus increases sampling error.  Much more importantly,

non-respondents, in considerable measure, are self-selected or otherwise not randomly

selected out of the drawn sample.  Thus the completed sample is not a random sample of the

drawn sample nor a fully random sample of the population as a whole, and its sample statis-

tics may be biased in more or less unknown ways.

Other non-sampling errors include:

a. non-coverage error (the sampling frame may not cover exactly the population of

interest);
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b. measurement errors due to unambiguous, unclear, or otherwise poorly framed

questions or poorly designed questionnaires, inappropriate interviewing circum-

stances, interviewer mistakes, etc.; and

c. data entry, coding, tabulation, or other data processing errors.

Note that all these are indeed non-sampling errors — data based on a complete census of the

population would be subject to the same errors, which therefore cannot be blamed on the

sampling process.  Once sample size reaches a reasonable size (which may depend on the

type of research being done), extra resources are better devoted to increasing the response

rate and reducing other kinds of non-sampling errors than to further increasing sample size.

Using SPSS to Draw Random Samples from the SETUPS Data with a Known Population

Parameter

Note.  I have not updated this exercise using SETUPS 1972-2004 data.

The SETUPS 1972-2000 data pools together samples from each of the eight National

Election Studies in the period covered.  Each NES study has a sample size of approximately n .

2000.  Pooled together, there are 16,438 respondents in the entire study.  Let us consider this set of

units people to constitute a population with N = 16,438 (a population size comparable to the VAP

of a small city).  The SPSS (Statistical Package for the Social Sciences) computer program (to which

you have been introduced) has a procedure that allows the researcher to draw simple random samples

of any size from the entire data set available for analysis.  (See the end of Section VII of the SPSS

handout.)

First, let us use SPSS to calculate the value of a particular population parameter — say, the

percent of respondents in the population who give the “approve” answer to the question “Do you

approve or disapprove of the way the President is handling his job?” as a percent of the number of

people who answered the question.  This is variable V29 (PRESIDENTIAL JOB APPROVAL) in

the SETUPS Codebook.  We determine the population parameter by calculating the following, on

the basis of all 16,438 responses:

  parameter  =     number of respondents coded “1”       × 100%   =   58.5%

    number coded “1”+ number coded “2”                                     .

(This excludes 2385 cases coded “9” as “missing data.”)

Normally, of course, we don't know the value of a population parameter, which is precisely

why we resort to survey research using sampling.  In this exercise, however, we do know the value

of the parameter, and we sample anyway, so that we can actually check how accurate the sampling

is.

I took 20 samples of size n = 15, 20 samples of size n = 150, and 20 samples of size n =

1500.  (I took “samples of samples,” if you will.)  By the inverse square law, sampling error should

be greatest in the smallest samples and smallest in the largest samples.  According to the
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approximate formula (2) given in #6 above, the margin of error in samples of size n = 1500 is about

± 2.6%.  (The Table 3.4 in Weisberg et al. says the same.)  This sample size and corresponding

margin of error are typical of much survey research.  Likewise, the margin of error in samples of size

n = 150 is about ± 8.2%.  (The Weisberg table gives an interpolated value of about ± 9%.)  This

sample size is typical of a number of subgroups in a VAP sample of about 1500, e.g., African-

Americans, Hispanics, non-Christians, (pure) Independents, etc., each of which constitutes about

10% of the total population.  The margin of error in samples of size n = 15 is about ± 25.8%.  Such

samples are extremely small and their statistics obviously have very high margins of error, and few

social scientists would venture to make inferences from them.

The resulting sample statistics are shown in the Table of Sampling Results at the end of this

handout. The table shows at total 60 sample statistics arranged in three columns, 20 for n = 15, 20

for n = 150, and 20 for n = 1500.  Each of the 60 samples was independently selected, so the order

in which they are listed (and numbered) is arbitrary and there is no connection between (for example)

the 10th sample of size 15 and the 10th sample of size 150 (or 1500).  The column to the right of

each sample statistic shows the amount by which the sample statistic deviates (differs) from the true

population parameter of 58.5%; the deviation is positive if the statistic is greater than the parameter

and negative if the statistic is smaller than the parameter. 

These data clearly illustrate the two theoretical points about random sampling set out above

— namely that (i) such sample statistics are unbiased but also that (ii) they are subject to sampling

error that is inversely related to the square root of sample size.

With respect to the first point, we see from the data that, regardless of sample size, the

sample statistics are just about right on average (60.2%, 57.0%, 58.5%); equivalently the deviations

add up to just about zero.  This reflects the fact that the sample statistics (regardless of sample size)

are unbiased.  Had we taken a larger (than 20) “sample of samples” of each size, average

performance of the sample statistics (especially those from the smallest samples) would be even

better.  On the other hand, the fact the 20 statistics from the largest samples appear to be exactly right

on average is a merely coincidence (and in any event is an illusion resulting from rounding to the

nearest one tenth of a percent).

At the same time, we also see that (almost) every individual sample statistic deviates at least

a bit from the true population parameter (and even the ones that appear to be right on the mark of

58.5% are really off a bit — the discrepancy doesn’t show up because of  rounding), about half being

too low (negative deviations) and half too high (positive deviations), reflecting the fact that sample

statistics are subject to sampling error.  Moreover, it can be seen that this sampling error is inversely

related to sample size and very closely follows the inverse square root law.  The sample sizes are

in a ratio of 1 to 10 to 100, so by the inverse square root law the associated sampling errors should

be in a ratio of 10 to %10 to 1.  The ratios of either the mean absolute (i.e., ignoring “+” and “!”

signs) deviations or the standard deviations associated with each sample size closely duplicate these

ratios.  

The probability calculations described above tell us that, among the largest samples (n =

1500), the margin of error is about ± 2.6%.  Remember that this means we expect that on average
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about 19 sample statistics out of the 20 (95 %) will fall within ± 2.6% of the population parameter,

i.e., within the interval 58.5% ± 2.6% (or 55.9–61.1%).  In fact, all our sample statistics fall within

this interval, though one (#1) falls close to the upper bound of the interval.  Likewise, the

calculations lead us to expect that, among the medium-sized samples (n = 150), the margin of error

is about ± 8.2 %.  That is, we expect that about 19 sample statistics out of the 20 will fall within

± 8.2% of the population parameter, i.e., within the interval 56.3% ± 8.2% (or 50.3–66.7%).  In fact,

all but three sample statistics (#9, #13, #16) fall within this interval.  Finally, the calculations lead

us to expect that, among the smallest samples (n = 15), the margin of error is about ± 25.8%.  That

is, we expect that about 19 sample statistics out of the 20 will fall within ± 25.8% of the population

parameter, i.e., within the interval 56.3% ± 25.8% (or 32.7–84.3%).  In fact, all but one sample

statistic (#5) fall within this interval.  All together, we expect 95% of the 60 sample statistics (all but

three) to fall within their respective margins of error.  In fact, all but four statistics do so.

This sampling data is also presented in graphical form below.  Each sample statistic is plotted

as a little box (#) on the horizontal line corresponding to its sample size.  (The boxes merge into

each other where sample statistics are almost equal.)  The true population parameter is shown by the

vertical line at 58.5 on the horizontal axis.  It is immediately evident that the boxes on the top (n =

1500) line are closely concentrated around the population parameter.  The boxes along the middle

(n = 150) line are considerably more spread out and those on the bottom (n = 15) line are still more

spread out.  However, on each line, the boxes on either side of population parameter approximately

balance out.



TABLE OF SAMPLING RESULTS

Population parameter =  58.5% (V29 Presidential Approval) 

Table shows samples statistics for 20 samples of each size

Sample # n = 15  (Dev.)  n = 150  (Dev.)  n = 1500 (Dev.)

 1  56.3  !2.2  61.0  +2.5  60.9  +2.4

 2  58.1  !0.4  61.9  +3.4  57.3  !1.2

 3  61.8  +3.3  61.2  +2.7  59.0  +0.5

 4  61.4  +2.9  63.3  +4.8  57.5  !1.0

 5  90.2  +31.7  59.9  +1.4  58.7  +0.2

 6  39.8  !18.7  60.3  +1.8  60.5  +2.0

 7  60.2  +1.7  58.5  0.0  59.1  +0.6

 8  64.1  +5.6  54.2  !4.3  57.5  !1.0

 9  56.0  !2.5  49.4  !9.1  59.9  +1.4

 10  76.5  +18.0  60.1  +1.6  58.8  +0.3

 11  40.2  !18.3  61.5  +3.0  58.2  !0.3

 12  57.8  !0.7  53.4  !5.1  58.8  +0.3

 13  76.2  +17.7  47.9  !10.6  58.2  !0.3

 14  59.8  +1.3  58.2  !0.3  57.5  !1.0

 15  61.4  +2.9  60.5  +2.0  58.5  0.0

 16  56.5  !2.0  49.6  !8.9  58.0  !0.5

 17  68.2  +9.7  53.0  !5.5  58.7  +0.2

 18  55.5  !3.0  50.8  !7.7  56.6  !1.9

 19  58.4  !0.1  56.3  !2.2  57.0  !1.5

 20  45.7  !12.8  58.8  +0.3  59.5  +1.0

Mean 60.2 +1.7 57.0 !1.5 58.5 0.0

Mean

Ab.Dev.
7.8 7.8 3.9 3.9 0.9 0.9

Standard

Dev.
11.7 11.7 4.8 4.8 1.1 1.1



THEORETICAL PROBABILITIES OF DIFFERENT SAMPLE STATISTICS

Consider the following population: a deck of cards with N = 52.   In this case, of
course, we know all the characteristics (parameters) of this population (e.g., the
percent of cards in the deck that are red, clubs, aces, etc.) we can consider what we
expect will happen if we take repeated random samples (with replacement) of size n =
2 out of this population.

Example #1.  Let the population parameter of interest be the percent of cards in the
deck that are red.  Suppose we try to estimate the value of this parameter using the
corresponding sample statistic, i.e.,  the percent of cards in the sample that are
red.  While we know that the sample statistic will vary from sample to sample, we can
calculate how likely we are to get any specific sample statistic using the laws of
probability .

On any draw (following replacement on the second and any subsequent draws), the
probability of getting a red card is .5 (since half the cards in the population are red) and
the probability of getting a non-red (black) card is also .5 .

    1st draw     2nd draw             Probability             Sample Statistic     Probability

R R .5 × .5 = .25 100%      .25
R B .5 × .5 = .25

    50%      .50
B R .5 × .5 = .25    A
B B .5 × .5 = .25     0%      .25

Example #2.   Let the population parameter of interest be the percent of cards in
the deck that are diamonds.
 
On any draw (following replacement on the second or subsequent draws), the
probability of getting a diamonds card is .25 (since a quarter of the cards in the
population are diamonds) and the probability of getting a non-diamond (hearts, clubs, or
spades) card is .75 .

    1st draw     2nd draw                 Probability Sample Statistic Probability

���� ���� .25 × .25 = .0625 100%    .0625

���� 0 .25 × .75 = .1875
  50%    .3750

0 ���� .75 × .25 = .1875 A
0 0 .75 × .75 = .5625     0%    .5625

Note that sampling with replacement greatly simplifies these calculations. If we
sampled without replacement, given that (for example) we get a red card on the first
draw, the probability of getting red card on the second draw is not .5 but 25/51 . .49
and the probability of getting black card on the second draw is not .5 but 26/51 . .51 . 




