
POLI 300 Handout #13 N. R. Miller

CORRELATION AND REGRESSION

Recall that sentence #11 in Problem Set #3A (and #9) was:

“If you want to get ahead, stay in school.”

Underlying this nagging parental advice is the following claimed empirical relationship:

                                                                         +LEVEL OF EDUCATION =============> LEVEL OF SUCCESS IN LIFE

Suppose we measure the independent variable through a survey question asking  respondents
(say a representative sample of the population aged 35-55) to report the number of  years of formal
EDUCATION they completed and also their current INCOME  as an indicator of SUCCESS.  We
then analyze the association between the two interval variables in this reformulated hypothesis. 
                                                                                 +LEVEL OF EDUCATION ================> LEVEL OF INCOME

 (# of years)                                                    ($000 per year)       

We next collect appropriate data in two rather different societies A and B and plot each data
set producing the scattergrams shown in Figures 1A and 1B.   

   Figure 1A       Figure 1B



#13 —  Correlation and Regression page 2

Note that we have drawn the two scattergrams on two worksheets drawn on the same
horizontal and vertical scales. (With respect to Figure 1A, this violates one of the usual guideline
for constructing scattergrams — namely that the scales be chosen that minimize “white space” —
but here we want to facilitate comparison between the two charts.)   Note further that the
scattergrams are similar in that both display clear positive associations between the two variables,
i.e., the plotted points in both show an upward-sloping pattern running from Low – Low to High –
High.  But at the same time there are obvious differences between the two scattergrams (and thus
between societies A and B).

In class, we will discuss the following questions.

(1) In which society, A or B, is the hypothesis most powerfully confirmed?

(2) In which society, A or B, is their a greater incentive for people to stay in school?

(3) Which society, A or B, does the U.S. more closely resemble?

(4) How might we characterize the differences between societies A and B?

We can visually compare and contrast the nature of the associations between the two
variables in the two scattergrams by doing the following.  We draw a number of vertical strips in
each scattergram (in the manner of the SON’S HEIGHT by FATHER’S HEIGHT scattergram
previously discussed).  Recall that, within each vertical strip, we have cases with just about the same
value on the independent (horizontal) variable — in this case, with just about the same level of
EDUCATION.  Within each strip, we can readily estimate by “eyeball methods” the average

magnitude of the dependent (vertical) variable INCOME and, if we put a mark in each strip at the
average level of income, we can connect them into a line of averages that is apparently (close to
being) a straight line.  Now we should also take account of a second characteristic of the points
within each vertical strip — namely, the magnitude of  dispersion around the average.  Thus we can
assess two distinct characteristics of the relationship between EDUCATION and INCOME:  

(i) how much the average level of INCOME changes among people with different levels

of education; and 

(ii) how great a degree of dispersion of INCOME there is among people with the same

level of EDUCATION.  

Having done this, we can pin down two basic differences between the scattergrams for A and B.

In both scattergams, the line of averages is upward-sloping, indicating a clear apparent
positive effect on EDUCATION on INCOME.  But in the scattergram for society A, the upward
slope of the line of averages is fairly shallow.  The line of averages in Figure 1A indicates that
average INCOME increases by only about $1000 for each additional year of EDUCATION.  On the
other hand, in the scattergram for society B, the upward slope of the line of averages is much
steeper.  The graph in Figure 1B indicates that average INCOME increases by about $4000 for each
additional year of EDUCATION.   In this sense, EDUCATION is on average more “rewarding” in
society B than A.
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But there is another difference between the two scattergrams.  In Figure 1A, there is almost
no dispersion within each vertical strip and thus almost no dispersion around the line of averages
as a whole.  In Figure 1B on the other hand, there is a lot of dispersion within each vertical strip and
also thus around the line of averages as a whole.  Put more substantively, in society A additional
years of EDUCATION produce rewards in terms of INCOME that are modest (as seen above), but

the modest rewards are essentially certain; on the other hand, in society B additional years of
EDUCATION produce on average much more substantial rewards in terms of INCOME (as seen
above), but these possibly very large rewards are quite uncertain and are indeed realized only on

average.   (Thus in Figure 1B, but not 1A, we can find lots of pairs of cases such that one case has
much higher EDUCATION but the other case has much higher INCOME.)  This implies that in
society B, while EDUCATION has a big impact on EDUCATION, there are evidently other

(independent) variables (such family wealth, ambition, career choice, just plain luck, etc.) that also

have major effects on LEVEL OF INCOME.  In contrast, in society A it appears that LEVEL OF
EDUCATION (almost) wholly determines LEVEL OF INCOME and that essentially nothing else
matters.  (Another difference between the two societies is that, while both societies have similar
distributions of EDUCATION, their INCOME distributions are quite different: A is relatively
egalitarian with respect to INCOME, which ranges only from about $40,000 to about $60,000, while
B is considerably less egalitarian with respect to INCOME, which ranges from under to $10,000 to
at least $100,000 — and possibly much higher.)

In summary, in society A the INCOME rewards of EDUCATION are modest but essentially

certain, while in society B the INCOME rewards of EDUCATION are substantial on average but

quite uncertain.

More generally we see that, given bivariate data for interval variables, the “strength of
association” between them can mean either of two quite different things: (i) the independent variable
has a very reliable or certain association with the dependent variable, as is true for society A but
not B, or (ii)  the independent variable has on average a big impact on the dependent variable, as is
true for society B but not A.  There are two bivariate summary statistics that capture these two
different kinds of strength of association: the first is called the regression coefficient, customarily
designated b, and the second is called the correlation coefficient, customarily designated r.  In
Figures 1A and 1B, A has the greater correlation coefficient and B has the greater regression
coefficient.

Review: The Equation of a Line

Having drawn (by “eyeball methods”) a line of averages in each scattergram, it is convenient
to write an equation for each line.  You should recall from high-school algebra that, given any graph
with a horizontal axis X and a vertical axis Y, any straight line drawn on the graph has an equation
of the form (using the symbols you probably used in highschool)

y  =  m × x  +  b ,

where m is the slope of the line expressed as ) y / ) x (i.e., “change in y” divided by “change in x”
or “rise over run”) and b is the y-intercept (i.e., the value of y when x = 0).  Evidently to further
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torment students, in college statistics the symbol b is used in place of m to represent the slope of the
line and the symbol a is used in place of b to represent the intercept, and the equation for a straight
line is usually written as 

y =  a + b × x .

The equation for the line of averages in Figure 1A appears to be approximately

AVERAGE INCOME  =  $40,000 + $1000 × EDUCATION ,

while the equation for the line of averages in Figure B appears to be approximately

AVERAGE INCOME  =  $10,000 + $4000 × EDUCATION .

Given such an equation (or “formula”), we can take any value for the variable
EDUCATION, plug it into the appropriate formula above, and calculate or “predict” the
corresponding average or “expected” value of INCOME.  In society A, such a prediction is likely
to be highly reliable, because the correlation between the two variables is almost perfect; but in
society B, this prediction will be a lot less reliable, because the correlation between the two variables
is much less than perfect.

In like manner, we can use eyeball methods to draw the line of averages in the SON’S
HEIGHT by FATHER’S HEIGHT scattergram and then write its equation of the form

SON’S HEIGHT = a + b × FATHER’S HEIGHT .

(We will do this as an exercise is class, eyeball estimating the values of b and a.)

The line of averages that we have been discussing is essentially the same as what we will call
in the next section the regression line, and the slope b of the line of averages is essentially the same
as the regression coefficient.

Correlation and Regression

A weakness of the discussion so far is that it is based entirely on approximations based on
“eyeball methods.”  Understandably statisticians want to have precise formulas based on numerical
data for the regression coefficient b and the correlation coefficient r.  Beyond this, eyeball methods
simply won’t work if we have only a small number of cases and/or the data does not form a nice
pattern in a scattergram.  Consider the scattergram in Figure 2, which displays the bivariate
numerical data for x and y in the Sample Problem presented on p. 9.  (Note that, in this problem, xG
= 4 and yG = 5.)  The “vertical strips” kind of argument simply will not work, because most strips
include no data points and only one strip (for x . 5) includes more than one point).  Using this
simple example, we will now proceed a little more formally.  (The following exercise will be carried
out step by step in class.)  
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Figure 2

Suppose we were to ask what horizontal line (i.e., a line for which the slope b = 0, so its
equation is simply y = a) in Figure 2 would “best fit” (come as close as possible to) the plotted
points.  In order to answer this question, we must have a specific criterion for “best fitting.”  The
one statisticians use is the least squares criterion.  That is, we want to find the horizontal line such
that the squared vertical deviations from the line to each point are (in total or on average) as small

as possible.  Now you should know what line this is — it is the line y =  yG, or in this case y = 5.
(Recall from Handout #6, p. 4, point (e) that “the sum (or mean) of the squared deviations from the

mean, i.e., 3(y! yG )2, is less than the sum of the squared deviations from any other value of the
variable.”)

  Now suppose that we are no longer restricted to horizontal lines but can tip the line up or
down — more particularly, that we can pivot the straight line on the point (xG, yG) = ( 4, 5) until it has
a slope that best fits all the plotted points by the same least squares criterion.  When we have found
that line, we have found the regression line.  A statistical theorem tell us that the regression line goes
through the point (xG, yG) and others give us formulas to calculate the slope and intercept as well as
the correlation coefficient.  (The correlation coefficient r [actually r 2; see below] measures how
much the goodness of fit by the least squares criterion is improved when we allow the line to tip so
that it has a [positive or negative] slope.)

How to Compute and Interpret Correlation and Regression Coefficients

1. For purposes of this discussion, we call the independent variable X and the dependent

variable Y.  (This usage is standard.) 

2. Set up a worksheet like the one on p. 9 of this Handout.

3. Compute the following univariate statistics: the mean of X, the mean of Y, the variance of
X, the variance of Y, the standard deviation of X, and the standard deviation of Y.
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4. As shown in the last column of the worksheet, for each case, multiply its deviation from the
mean with respect to X by its deviation from the mean with respect to Y.  This is called the
crossproduct of the deviations.  Notice that a crossproduct is positive if, in that case, the X
and Y values both deviate in the same direction (i.e., both upwards or both downwards) from
their respective means; and it is negative if, in that case, the X and Y values deviate in oppo-

site directions (i.e., one upwards and one downwards) from their respective means.  In either
event, the [absolute] crossproduct is large if both [absolute] deviations are large and small
if either deviation is small.  Thus:

(a) if there is a positive relationship between the two variables, most crossproducts are
positive and many are large;

(b) if there is a negative relationship between the two variables, most crossproducts are
negative and many are large; and

(c) if the two variables are unrelated, the crossproducts are positive in about half the
cases and negative in about half the cases.

5. Add up the crossproducts over all cases.  The sum (and thus the average) of crossproducts

is positive in the event of (a) above, negative in the event of (b) above, and close to zero in
the event of (c) above.

6. Divide the sum of the crossproducts by the number of cases to get the average (mean) cross-

product.  This average is called the covariance of X and Y, and its formula is the bivariate

parallel to the univariate variance (of X or Y).  Notice that:

(a) if the relationship between X and Y is positive, their covariance is positive (because
most crossproducts are positive);

(b) if the relationship between X and Y is negative, their covariance is negative (because
most crossproducts are negative); and

(c) if there is no relationship  between X and Y , their covariance  is (approximately) zero
(because positive and negative crossproducts [approximately] cancel out).

Thus the covariance measures the association between the two variables.  However, it is not
a (fully) valid measure of the association, because the magnitude of the average (positive or
negative) crossproduct reflects not only how closely the two variables are associated but
also on the magnitude of their dispersions (as indicated by their standard deviations or
variances).  Two very closely (and positively) associated variables have a positive but small
covariance if they both have small standard deviations; two not so closely (but still posi-
tively) associated variables have a larger covariance if their standard deviations are
sufficiently larger.

7. The correlation coefficient is a measure of association only, which (like other measures of
association) is standardized so that it always falls in the range from !1 to +1.  This is
accomplished by dividing the covariance by the standard deviations of each variable.  (This
is equivalent to finding the average crossproduct when crossproducts are calculated not in
terms of X-units and Y-units but in terms of standard scores for both X and Y.)
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8. Divide the covariance of X and Y by the standard deviation of X and also by the standard
deviation of Y.  This gives the correlation coefficient r, which measures the degree (or
“completeness”) and direction of association between two interval variables X and Y.

     Cov (X,Y) Correlation coefficient  =  r =
                SD(X) × SD(Y)

If you calculate r to be greater than +1 or less than !1, you have made a mistake.  It is a
good idea first to construct a scattergram of the data on X and Y and then to check whether
your calculated correlation coefficient looks plausible in light of the scattergram.

9. Observe that the correlation coefficient is a ratio of “X-units × Y-units” (i.e., the respective
deviations from the mean) divided by “X-units × Y-units” (i.e., the respective SDs).  This
means that all units of measurement cancel out and the correlation coefficient a pure number

that is not expressed in any units.  For example, suppose the correlation between the height
(measured in inches) and weight (measured in pounds) of students in the class is  r = +.45.
This is not  r = +.45 inches or r = +.45 pounds, or r = +.45 pounds per inch, etc. — it is just
r = +.45.  Moreover, the magnitude of the correlation coefficient is independent of the units

used to measure the two variables.  If we measured students’ heights in feet, meters, etc.
(instead of inches) and/or measured their weights in ounces, kilograms, etc. (instead of
pounds), and then calculated the correlation coefficient based on the new numbers, it would
be just the same as before, i.e., r = +.45.  In addition, if you check the formula above, you
can see that r is unchanged if we interchange X and Y.  Thus, the correlation between two

variables is the same regardless of which variable is considered to be independent and

which dependent.

10. To compute the regression coefficient b, divide the covariance of X and Y by the variance

of the independent variable X. 

     Cov(X,Y) Regression coefficient  =  b  =   _________
                                        Var(X) 

Remember that the regression coefficient answers this question: how much, on average,

does the dependent variable increase when the independent variable increases by one unit.
Thus the magnitude of the regression coefficient clearly depends on which variable is

considered to be independent and which dependent, and it also depends on the units in which

each variable is measured.  Observe that the regression coefficient is a ratio of “X-units ×
Y-units” (i.e., the respective deviations from the mean) divided by “X-units × X-units” (i.e.,
the variance of X).  Thus the regression coefficient is expressed in units of the dependent

variable per unit of the independent variable — that is, it is a rate, something like “miles per
hour” [rate of speed] or “miles per gallon” [level of fuel efficiency], and its numerical value
changes as these units change.  For example, suppose we measure the height in inches and
weight in pounds of all students in the class, suppose we treat height as the independent
variable, and suppose the regression coefficient is b  =  +6.  This means +6 pounds

(dependent variable units) per inch (independent variable units) — that is, if we lined
students up in order from short to tall, we would observe that their weights increase, on
average, by 6 pounds for each additional inch of height.  This also means that students’
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weights would increase, on average, by about 2.7 kilograms (since there are about .45
kilograms to a pound) for each additional inch of height.  So if weight were measured in
kilograms instead of pounds, the regression coefficient would be b  =  +2.7 kilograms per

inch.  Likewise if we measured weight in pounds but height in feet, the regression coefficient
would be about b =  +6 × 12  =  72 pounds per foot.  (As we saw before the correlation
coefficient is unchanged by such changes in units.)  Moreover, if we took weight to be the
independent variable and height the dependent (i.e., if we lined students up in order of their
weights and observed how their heights varied with weight), the regression coefficient would
be telling us how much students’ heights increase, on average, in some unit of height (inch,
meter, etc.) as their weights increase by one unit (pound, kilogram, or whatever), so it would
be yet a different number, e.g., perhaps about b =  +0.1 inches per pound.  (As we also saw
before, the correlation coefficient is unchanged by reversing the independent and dependent
variables.)

11. To specify the regression line of the relationship between independent variable X and
dependent variable Y, we need to know, in addition to the slope of the regression line (i.e.,
the regression coefficient b), how high or low the line with that slope lies in the scattergram.
(We can draw an infinite number of lines that are distinct from the regression line but
parallel to it, i.e., that have the same slope.)  This is specified by the intercept a, i.e., by
specifying where the regression line passes through the vertical axis representing values of
the dependent variable Y when the vertical Y axis intersects the horizontal X axis at the point

x = 0 and y = 0.  This intercept a is equal to the mean of Y minus b times the mean of X.

Intercept (or constant)  =  a  =  yG  ! b × xG    

The value of the intercept answers this (perhaps quite artificial) question: what is the

average (or expected or predicted) value of Y when X is zero.  Using a and b together, we
can answer this question: what is the expected or predicted value of Y when X is any

specified value.  The expected or predicted value í of Y, given that X is some particular
value x, is given by the regression equation (i.e., the equation of the regression line):

 í  =  a + b × x.

12. You will find other formulas for the correlation and regression coefficients in textbooks. (For
a horrendous looking example, see Weisberg et al., near top of p. 305.)  Such formulas are
mathematically equivalent to (i.e., give the same answers as) the formulas given here.
Though formidable looking, such formulas are actually easier to work with if you are
processing many cases or programming a calculator or computer, because they require you
(or the computer) to pass through the data only once.  But the formulas presented here make
more intuitive sense and are easy enough to use in the simple sorts of problems that you will
be presented with in problems sets and tests.

13. Note from the formulas above that the sign (i.e., “+” or “!”) of b and r are both determined
by the sign of cov(X,Y), from which it follows that b and r themselves always have the same
sign (and, if one is zero, the other is also zero).  Notice also that the regression and
correlation coefficients are equal in the event the independent and dependent variables have
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the same dispersion.  For example, in the SON’S HEIGHT by FATHER’S HEIGHT
scattergram, by eyeball methods we can determine the regression coefficient b is somewhere
between about +0.4 and +0.5, e.g., the sons of 6' (72") fathers are on average about 5 to 6
inches taller than the sons of 5' (60") fathers.  It is also apparent, both from common
observation and examination of the scattergram, that the dispersions (SDs) of SON’s
HEIGHT and FATHER’s HEIGHT are just about the same, so we also know that the
correlation coefficient is also somewhere between +0.4 and +0.5.  In general, 

                           SD(Y)  
b  =  r × 

                             SD(X)       

Correlation and Regression Worksheet and Sample Problem

              Raw Data

          (IND)   (DEP)
 Case #      X         Y      (x ! xG)  (y !yG)   (x !xG)2         (y !yG)2      (x !xG)(y !yG)

      1       1         0        !3       !5     9   25   +15
      2       2         2        !2       !3     4     9     +6
      3       4         3          0       !2     0     4       0
      4       5         2        +1       !3     1     9     !3
      5       5         11        +1       +6     1   36     +6
      6       7         12        +3       +7     9   49   +21    __       __        ___      ___  ___                 ___                  ____

Sum         24          30          0          0               24             132   +45

Average    4 [= xG]  5 [= yG]     4 [=Var(X)]   22 [=Var(Y)]     +7.5 [= Cov(X,Y)]

SQRT(Average)          2 [=SD(X)]  %22 . 4.7 [= SD(Y)]

     Cov(X,Y)            +7.5 Correlation coefficient  =  r  =   __________    =  _____  =  +0.7995
               SD(X)SD(Y)         2%22

   Cov(X,Y)      +7.5 Regression coefficient  =  b  =   _______  = ____  =  +1.875
                                    Var(X)            4

Intercept (constant)  =   a   =   yG ! b × xG   =   5 ! (1.875) × 4 =  !2.5

Regression equation:  y  = a + b × x  =  !2.5 +  (1.875) x, 

   so for example if x = 3.5, the expected/predicted value of y is: 

y  =  !2.5 + (1.875) × 3.5  =  4.0625
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The Coefficient of Determination r2

For various reasons, the squared correlation coefficient r ² is often reported in bivariate
analysis.  To compute r², just multiply the correlation coefficient by itself.  This results in a number
that (i) always lies between 0 and 1 (i.e., is never negative and so does not indicate the direction of
association), and (ii) is closer to 0 than r is for all intermediate values of r — for example,  (± 0.45)²
=  + 0.2025.  

There are three reasons for reporting  r², sometimes called the coefficient of determination.
First, a scattergram with r . +0.5 does not appear to be “halfway between” a scattergram with r .
+1 and one with r = 0 — it looks closer to the one with zero association.  The scattergram that looks
“halfway in between” perfect and zero association has a correlation of about r . +0.7 (and r 2 .0.5).

Second, r 2 has a specific interpretation that r itself lacks.  Refer again to Figure 2.  Recall
that the line y =  yG  = 5 is the horizontal line that best fits the plotted points by the least squares
criterion — that is, the average squared deviation from this line is less than the average squared
deviation from any other horizontal line.  Remember also that the quantity “average squared
deviation from the line y =  yG ” has a special and familiar name — it is the variance of the dependent
variable Y (the square root of which is the SD of Y.)  

When we tip the line, we can almost always improve the fit at least a bit a bit.  The
regression line is the tipped line with the best fit according to the least squares criterion.  As we saw
the regression line in Figure 2 is the line with the equation í  =  !2.5 +  (1.875) × x.  But even this
line fits the points far from perfectly.  For each plotted point, there is some vertical distance (positive
if the point lies above the line, negative if it lies below) between the regression line and the point,
which is called the residual for that case.  These residuals are the errors in prediction that are “left
over” after we use the regression line to predict the value of the dependent variable in each case.

The ratio of the average squared residuals divided by the variance of Y can be characterized
as the proportion of the variance in Y that is not “predicted” or “explained” by the regression
equation that has X as the independent variable.  Therefore 1 minus this ratio can be characterized
as the proportion of the variance in Y that is “predicted” or “explained by” the regression equation.,
and it turns out that the latter proportion is exactly r 2.

In the example presented above and in Figure 2, the average of the squared residuals is
approximately 8, so we can explain approximately 1 ! (8/22) = 0.64 of the variance of Y by the
regression equation, and r 2 = (+0.7995)2 =  0.64.  

Finally, serious regression analysis is almost always multiple (multivariate) regression,
where the effects of multiple independent (and/or “control”) variables on a single dependent variable
are analyzed.  In this case, we want some summary measure of the overall extent to which the set
of all independent variables explains variation in the dependent variable, regardless of whether
individual independent variables have positive or negative effects (i.e., regardless of whether
bivariate correlations are positive or negative).  The coefficient of determination r 2 provides this
measure.
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Look at the Scattergram Underlying a Correlation Coefficient

It always a good idea to look at the scattergram of bivariate data — not just at the correlation
(or regression) coefficient.

Correlation Reflects Linear Association Only.

Suppose that you calculate a correlation coeffi-
cient and find that r . 0 (so b . 0 also).  You
should not jump to the conclusion that there is no
association of any kind between the variables.
The zero coefficient tells you that there is no
linear (straight-line) association between the
variables, but there may be a very clear
curvilinear (curved-line) association between
them.  See the adjacent scattergram.

A Univariate Outlier May Create a Correlation.

Suppose that you calculate a correlation
coefficient and find that r . +0.9.  You should
not jump to the conclusion that there is a strong
and reliable association between the variables.
See the adjacent scattergram, in which one uni-
variate outlier  produces the high correlation by
itself.  You should at least double check your
data  for this case.  Perhaps you inadvertently
shifted the decimal point one place to the right
when you typed its x and y values into the SPSS
data editor (or whatever), so both are ten times
bigger than they should be — and also about ten
times larger than the values for all other case.
Correct this mistake (or delete the outlier) and r
goes to zero.

A Bivariate Outlier May Greatly Attenuate a

Correlation.  First note that in the adjacent
scattergram, the outlier is not an outlier in this
univariate sense; its value on each variable
separately is unexceptional. What is exceptional
is the combination of values on the two variables
that it exhibits, i.e., it is a bivariate outlier.)  Of
course, clerical errors (or deviant cases) can
attenuate as well as enhance apparent correlation.
In the adjacent scattergram, a single bivariate
outlier reduces what is otherwise an almost
perfect association between the variables to a
more modest level.

You can use the Correlation/Regression “Statistical Applet”on the course website to create
a scattergram and then to add or delete points by simple pointing and clicking and can then observe



#13 —  Correlation and Regression page 12

the effect on the regression least-squares line and the correlation coefficient.  (The applet was used
to create the charts on the previous page.)

Applied Regression (and Correlation) Analysis

Regression (especially multiple regression) analysis is now very commonly used in quanti-
tative political science research.  But perhaps its application is most intuitive in practical situations
in which researchers literally want to make predictions about future cases based on analysis of past
cases.  Here are two examples.

Predicting College GPAs. A college Admissions Office has recorded the combined SAT
scores of all of its incoming students over a number of years.  It has also recorded the first-year
college GPAs  of the same students.  The Admissions Office can therefore calculate the regression
coefficient b, the intercept a, and the correlation coefficient r for the data they have collected in the
past.  It can then use the regression equation

PREDICTED COLLEGE GPA =  a  +  b × SAT SCORE 

to predict the potential college GPAs of the next crop of applicants on the basis of their SAT scores
(and use these predictions in making their admissions decisions).  Even better, it can collect and
record more extensive data and use a multiple regression equation that use more than one
independent variable (e.g., separates Verbal and Mathematical parts of the SAT, uses highschool
GPAs, AP tests passed, etc.) such as:

         PREDICTED GPA =  a + b1 × SATV + b2× SATM +  b3 × HSGPA + b4 × # AP + . . .

The college admissions problem illustrates another statistical phenomenon to be aware of.
Suppose the scattergram in Figure 3 is representative of the general association between SAT scores
(horizontal variable) and college GPAs (vertical variable) in the population of all college applicants
admitted by any college.  It shows that, in general, SATs predict college GPAs quite well with r
.+.8.  (In the real world the correlation is not nearly so strong.)  Suppose that a highly selective
college accepts only applicants with SAT scores above the cutoff point shown in Figure 4.  Note that
the correlation between SATs and GPAs within this select population is zero.  Given Figure 4, critics
might say that the college should not rely on SAT score for making admissions decisions because,
among those it does admit, there is no correlation between SATs and GPAs.  However, this zero
correlation is a simple consequence of the college’s selective admissions.  More generally, if we
select cases that have a limited range of values the independent variable, correlation with the
dependent variable will be greatly attenuated and may even disappear.

Figure 3

                     Figure 4
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Predicting Presidential Elections Months in Advance.  A number of political scientists have
devised predictive models that you will likely hear a good deal about during the next Presidential
election year. Much like the hypothetical college Admissions Office, these political scientists have
assembled data concerning the past 15 or so Presidential elections — in particular, the percent of
the popular vote won by  the candidate of the incumbent party (that controlled the White House
going into the election), which is the dependent variable of interest, and also data on a number of
independent variables whose values become available well in advance of the election.  The latter
include in particular one or more indicators of the state of the economy (growth rate, unemployment
rate, etc.) usually as of the end of the second quarter (June 30) of the election year and some poll
measure of the incumbent President’s  approval rating as of about June 30.  Using this data, they
calculate the coefficients for the regression equation.  Come June 30 of the next election year, they
plug in the values of their independent variables and calculate (and announce to the public months
prior to the election) the predicted value of the dependent variable, i.e., the percent of the popular
vote that they expect will be won in the upcoming election by the candidate of the incumbent party.
Such predictive models on average predict the ultimate election outcome much more accurately than
pre-elections polls conducted at the same time — that is, they capture information about voting
intentions in the aggregate that even the many people who actually form the voting intentions and
cast votes don’t know at the time.

Recall that you constructed scattergrams along these lines in PS #11, Questions 1nd 3.
Incidentally, in 2000 virtually all such models in 2000 predicted that Gore would win the election,
which — though you may have forgotten — he did (since the model predicts popular, not electoral,
votes).  However, the predictive models did fail in that almost all predicted that Gore would win
comfortably (by 5-10 percentage points, not by a mere half a percentage point).    In 2004, almost
all predictive models predicted that Bush would win, in most cases by a larger margin than he
actually won by.     

    

Empirical Appendix on INCOME by EDUCATION  

In the first section of this handout, we focused on two scattergrams, for two different
hypothetical data sets (and two hypothetical societies A and B), showing different patterns of
association between EDUCATION (measured in terms of years of formal education) and INCOME
(as an indicator of SUCCESS and measured in terms of annual income in dollars).  In society A,
INCOME is almost wholly determined by EDUCATION (r . +1) but, at the same time
EDUCATION does not have a big impact on INCOME (b . $1000 per year of education).  In
society B, EDUCATION has a much bigger impact on INCOME (b . $4000 per year of education),
but many other factors appear to influence INCOME as well (r . +0.5).  Here is a crosstabulation
of INCOME and EDUCATION based on the data for the SETUPS based on the 2004 ANES.  (The
variables correspond to VG62 and V65 in your SETUPS Codebook, except that INCOME is
recorded in class intervals of actual dollar income, rather than percentile groups.) 
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V65D DOLLAR INCOME (2004) * V62 EDUCATION Crosstabulation (2004)

V65D INCOME

                                  V62 EDUCATION

Totalnot a HS grad HS grad only some college college grad  

Less than
$15,000

38.9% 12.8% 9.8% 4.3% 13.7%

$15,000 to
$25,000

21.6% 15.5% 10.1% 3.3% 11.5%

$25,000 to
$35,000

13.2% 12.8% 10.1% 3.9% 9.6%

$35,000 to
$50,000

12.0% 16.6% 17.5% 11.8% 14.7%

$50,000 to
$80,000

9.0% 27.0% 24.5% 26.9% 23.4%

$80,000 to
$120,000

2.4% 9.1% 20.6% 24.9% 15.7%

More than
$120,000

3.0% 6.1% 7.3% 24.9% 11.4%

Total 100.0% 100.0% 100.0% 100.0% 100.0%

What features of  this table indicates that the correlation between INCOME and EDUCA-
TION, though positive and substantial, is clearly much less than +1?

Based on this crosstabulation, how might we produce a (rough) estimate of the actual
regression coefficient, i.e., how might we determine how much, on average, income increases

for each additional year of education? 


