
POLI 300 Handouts #10 Fall 2006

ASSOCIATION BETWEEN VARIABLES:  CROSSTABULATIONS 

Suppose we want to do research on the following bivariate hypothesis: the more interested

people are in politics, the more likely they are to vote (sentence #13 in Problem Sets #3A and #9).

In the manner of Handout #9, we can diagram this as follows:

       LEVEL OF POLITICAL INTEREST             +                   WHETHER/NOT VOTED [inds]

  (Low or High)            =========>                 (Yes or No)

The dependent variable is intrinsically dichotomous (two-valued).  Suppose we also use a

very imprecise measure for the independent variable that is also dichotomous (with just “Low” vs.

“High” values.)  Note: recall that, given a dichotomous variable like WHETHER/NOT VOTED with

“yes” and “no” values, the “no” value is conventionally deemed to be “low” and “yes” to be “high,”

which allows us to characterize this hypothesized association as positive.

We design an NES type of survey with n = 1000 respondents and collect data on both

variables.  As a first step we do univariate analysis on each variable — in particular, we construct

these two univariate absolute frequency tables:

LEVEL OF POLITICAL INTEREST       WHETHER/NOT VOTED

Low   500 No   500

High   500 Yes   500

Total 1000 Total 1000

The first and very important point is that these two univariate frequency distributions provide

no evidence whatsoever bearing on the bivariate hypothesis of interest.  It is possible that every

respondent with a “low” value on INTEREST fails to vote and that every respondent with a “high”

value on INTEREST does vote (which would powerfully confirm our hypothesis).  But, as a logical

possibility, the reverse could also be true — that is, it might be that every respondent with a “low”

value on INTEREST does vote and that every respondent with a “high” value on INTEREST fails

to vote (which would totally contradict our hypothesis).  And of course there is a huge range of inter-

mediate possibilities.  

Crosstabulations and Association Between Variables

We can analyze the relationship or association between two discrete variables such as these

by means of a crosstabulation (also called a contingency table) — what might be called a joint (or

bivariate) frequency table as it is in effect two intersecting frequency tables.  Recall that in a regular

(univariate) frequency distribution (Handout #5), the rows of the table correspond to the values of

the variable (usually with an additional row at the bottom that shows totals).  In a crosstabulation,

the rows of the table correspond to the values of one variable that is naturally called the row variable

(again usually with an additional row at the bottom that shows column totals).   But the table is

likewise divided into a number of columns corresponding to the values of the other variable that is

naturally called the column variable (sometimes with one additional column at the right that  shows



#10 — Crosstabulations page 2

 

row totals).  Each (interior) cell of the table is defined by the intersection of a row and column and

corresponds to a particular combination of values, one for each variable.  As with a univariate

frequency table, the most basic piece of information associated with each cell is the corresponding

absolute frequency — that is, the number of cases that have that particular combination of values

on the two variables.

The general template for the crosstabulation between the dichotomous variables  WHETHER

OR NOT VOTED by LEVEL OF INTEREST is shown in Table 1 below.

TABLE 1.  CROSSTABULATION OF WHETHER OR NOT VOTED 

BY LEVEL OF INTEREST 

                            LEVEL OF INTEREST

Low High Row Total

VOTED? No No & Low No & High Total No

Yes Yes & Low Yes & High Total Yes

Col. Total Total Low Total High Grand Total

It is conventional to make the independent variable the column variable and the dependent

variable the row variable, as we have done here.  The darker shaded portions of are not part of the

table itself but simply show the value labels for each variable.  The lighter shaded portions of the

table show the row and column totals, which are simply the univariate frequencies of each variable

taken by itself; they are often called the marginal frequencies, because they appear on the “margins”

(edges) of the table.  The unshaded cells in the interior of the table constitute the 2 × 2 crosstab-

ulation proper.  It is the joint frequency distribution  over the cells in this interior of the table that

tell us whether and how the two variables are related or associated.  We can infer little (in general)

or nothing (in this case, because of its “uniform marginals” — see below) about the interior of the

crosstabulation from its marginal frequencies alone.  All sorts of different patterns are compatible

with these univariate frequencies, as we can see in Tables 1A-1F that follow.

Low High Total

No ??? ??? 500

Yes ??? ??? 500

Total 500 500 1000

Table 1A.   a = ?

Low High Total

No 500 0 500

Yes 0 500 500

Total 500 500 1000

Table 1B.   a = +1
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Low High Total

No 350 150 500

Yes 150 350 500

Total 500 500 1000

Table 1C   a .+.5

Low High Total

No 150 350 500

Yes 350 150 500

Total 500 500 1000

Table 1E.   a . !.5

Low High Total

No 250 250 500

Yes 250 250 500

Total 500 500 1000

Table 1D  a = 0  

Low High Total

No 0 500 500

Yes 500 0 500

Total 500 500 1000

Table 1F.   a = !1

Table 1A shows the generic table.  The cell entries are unspecified and can be filled in any

way that is consistent with the marginal frequencies.  Table 1B displays a perfect positive association

between the two variables so, for any measure of association a, we have a = +1.  Table 1C displays

a weak positive association between the two variables so a equals something like +0.5 — in any

case, some positive value intermediate between 0 and +1.  Table 1D displays the absence of any

association between the two variables, so a = 0. Table 1E displays a weak negative association

between the two variables, so a . !0.5.  Table 1F displays a perfect negative association between

the two variables, so we have a =  !1. 

If the natural ordering of the values of a variable runs from Low to High, the entirely standard

(and sensible) convention is that Low to High on the column variables runs from left to right; the less

standard (and less sensible) convention is that Low to High on the row variable runs from top to

bottom (so the Low-Low “origin” of the table is its “northwest corner”). More generally, if a

crosstabulation pertains to variables with matching values, the convention is that these values are

listed in a common ascending or descending order from left to right for the column variable and from

top to bottom for the row variable.  Given this convention, a positive association between the two

variables means that the joint frequencies are concentrated (highly if the positive association strong,

less so is the positive association is weaker) in the cells along the so-called main diagonal of the

table running from the “northwest” corner (No & Low in Table 1) to the “southeast” corner (Yes &

High in Table 1), as is illustrated in panels 1A and 1B.  A negative association between the two

variables means the joint frequencies are concentrated in the cells along the off- diagonal of the table

running from the “southwest” corner (No & High in Table 1) to the “northeast” corner (Yes & Low

in Table 1), as is illustrated in panels 1E and 1F.  If there is little or no association between the

variables, the joint frequencies will be more or less uniformly dispersed among all cells in the table,

as is illustrated by panel 1C.  

Table 1 provides the simplest possible example of a crosstabution, in a number of respects.
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First, it is a  2×2 table with just two rows and two columns, because both variables are dichotomous.

Many tables have more than two rows and/or columns, because they crosstabulate variables with

more than two possible values. Second, Table 1 is square, with the same number of rows and

columns, but tables may have an unequal number of rows and columns (in which case the “dia-

gonals” are a bit less clearly defined). Third, Table 1 has uniform marginal frequencies, i.e., the same

number of cases (500) in each row and in each column.  Obviously real data is messier than this.

Constructing Crosstabulations

We now consider how actually to construct a crosstabulation from raw data, continuing to

focus on the same hypothesis that relates political interest and the likelihood of voting.  The Student

Survey includes somewhat relevant data, namely responses to a question (V9 on a recent survey) that

asks students about their level of interest in the upcoming (or most recent) Presidential election and

another (V7 on a recent survey) asking whether or not they voted in the most recent Presidential

election.  One potential problem is that a lot of data on the latter question may be missing, because

quite a few students were not eligible to vote at the time.  But our immediate purpose is simply to

demonstrate how to  construct a crosstabulation from scratch, so we proceed with these two variables

First we need to set up a crosstabulation template or worksheet for this pair of variables, as

is shown below.  We create a row for each value of the row variable and a column for each value of

the column variable.  We also need a row and column for potential missing data, and we should add

another row and column for the marginal frequencies, which can be entered in advance if we know

both univariate frequencies already (as in the previous hypothetical example).  We should always

be careful to label the variables and their values, and it is helpful to the reader to give the name a

name in this manner: DEPENDENT VARIABLE By INDEPENDENT VARIABLE. Thus our

worksheet looks like this (ignore the cell entries for the moment):

TABLE 2A: WHETHER OR NOT VOTED BY LEVEL OF INTEREST

              LEVEL OF INTEREST (V9)

VOTED?   (V7) Not much

  1

Somewhat

 2

Very Much

 3

NA

  9

Row Total

No, not eligible           1 #16 #22 5

Yes                   2 #2  #3  #6 #1 #4 #5 #7 #8 33

No (though eligible)   3 #4 3

DK         4 #25 1

NA                       9 #15 1

Column Total 3 13 27 0 43
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The next step is to process the raw Student Survey data [from an earlier semester], not on a

univariate basis for V9 and V7 separately, but on a bivariate basis for V9 and V7 jointly.  To do this

we look at the V9 and V7 columns simultaneously and, for each case, note its combination of coded

values for V6 and V9 respectively.  Looking at the first eight cases, the data from an earlier semester

was as follows:

     Case ID           V6       V9

1 3 2

2 2 2

3 2 2

4 1 3

5 3 2

6 2 2

7 3 2

8 3 2

We put a tally mark (or better — and for the same reasons identified in Handout #5 for univariate

frequency distributions — put the case ID #) in the appropriate cell of the table.  (The first eight

cases have been so tallied in Table 2A above, plus a few other cases exhibiting different

combinations of values.)  Once we have processed all the cases, we convert the tally marks or count

of ID#s into absolute frequencies.  This produces the following crosstabulation:

TABLE 2B:WHETHER OR NOT VOTED BY LEVEL OF INTEREST

              LEVEL OF INTEREST (V9)

VOTED?   (V10) Not much

  1

Somewhat

 2

Very Much

 3

NA

  9

Row Total

No, not eligible           1 0 3 2 0 5

Yes                   2 1 9 23 0 33

No (though eligible)   3 2 1 0 0 3

DK         4 0 0 1 0 1

NA                       9 0 0 1 0 1

Column Total 3 13 27 0 43

Next we should remove the missing data row and column, since data that is missing on one

or other or both variables can tell us nothing about the association between them.  The same applies

to the “effectively missing data” that appears in rows 1 and 4.  (Respondents in these rows answered
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Question 9 but they gave answers that do not bear on the hypothesis of interest, i.e., they either didn’t

remember whether they voted [row 4] or were not eligible to vote [row 1], regardless of their level

of interest.)  Next we interchange the “Yes” and “No” rows  to match the format of Table 1.  Finally,

let’s recode LEVEL OF INTEREST to make it dichotomous (in the manner of Table 1) by

combining columns 1 and 2 into a single “Low” value and labeling column 3 “High.”  The result of

these adjustments is that we have a version of Table 2 that is set up in the manner of Table 1.

(However, the marginals are far from uniform.)  Note that we have removed the value codes and the

non-descriptive variable names (i.e., V9 and V7) and have deleted irrelevant rows and columns, so

the format is identical to that of Table 1.

TABLE 2C.  WHETHER OR NOT VOTED BY LEVEL OF INTEREST

LEVEL OF INTEREST

VOTED? Low High Total

No 3 0 3

Yes 10 23 33

Total 13 23 36

a .+0.15
Source: POLI 300 Student Survey, Fall 2006

I used SPSS to compute a number of measures of association, such as are discussed in

Weisberg, Chapter 12.  Most of them have positive but very weak values.  In general, the actual

association between the variables in the Student Survey data is somewhere between the hypothetical

Table 1C  and 1D above (though of course the number of cases is much smaller).  But the main

problem we have in using this Student Survey data to assess the hypothesis is that, in this data, both

univariate frequencies (especially VOTED?) are highly skewed (rather than being uniform), which

tends to mask any association between the variables.

Let us work one more example using Student Survey data.  Consider sentence #14 from

Problem Sets #3A and #9, which can be stated formally as

DIRECTION OF IDEOLOGY  ==========>     DIRECTION OF VOTE 

                       (Liberal to Conservative)                                          (Dem. vs. Rep.)

The Student Survey includes appropriate data to test this hypothesis.   V27 (Question 27)

provides a standard measure of DIRECTION OF IDEOLOGY.  Measuring DIRECTION OF VOTE

is a bit more problematic, but we can use V8 (Question 8), noting that it refers to preference, not to

an actual vote, in the recent 2004 Presidential election.  Code values 4 and 5 must be excluded as

missing data, and we will exclude code value 3 (Nader) also, since the hypothesis above codes

DIRECTION OF VOTE simply as DEM vs. REP.  Now we set up a 2 × 5 table with PRESI-

DENTIAL PREFERENCE as the row (dependent) variable and IDEOLOGY as the column

(independent) variable, and process the Student Survey data in a manner parallel to the previous
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example.  Since IDEOLOGY values run from left to right to left, let’s rearrange the rows

representing the values of PRESIDENTIAL PREFERENCE into the same “left” (top) to “right”

(bottom) ordering.  Once we do this, we expect to see a (so to speak) “positive” association between

the two variables, i.e., the more conservative a student’s ideology, the more conservative his or her

vote.  Here is the resulting crosstabulation.  (Remember, student respondents who gave an “Other”

or “DK” responses on V10 are excluded as effectively missing.)

TABLE 3.  PRESIDENTIAL PREFERENCE BY IDEOLOGY

I  D  E  O  L  O  G  Y

PRES

PREF 

Liberal Slightly

Liberal

Moderate Slightly

Cons.

Conser-

vative

Total

Kerry 8 11 6 1 0 26

Bush 0 0 1 3 7 11

Total 8 11 7 4 7 37

 a  .  0.7 

Source: POLI 300, Student Survey, Fall 2006

Measures of association calculated by SPSS  mostly range from about 0.6 to 0.9, so overall

the association between variables is about  0.7, i.e., a much stronger association than in Table 2C.

In a 2 × 5 table like this, the notion of a (main) diagonal is rather murky, but notice that, when we

look at how cases are distributed over columns, the “center of gravity” moves consistently

downwards as we scan the table from left to right

SPSS Crosstabulations

As you would expect, SPSS can construct crosstabulations very readily. Instructions are set

out in the Handout on Using Setups 1972-2004 NES Data and SPSS for Windows and SPSS tables

are illustrated in the accompanying handout on Data Analysis Using SETUPS and SPSS.

First, we present the SPSS crosstabulation of SETUPS/NES data (with all nine election years

pooled together) for the variables that best measure LEVEL OF INTEREST and WHETHER/NOT

VOTED and thus is parallel to Table 2C for Student Survey data.

TABLE 4

                 V03 VOTED IN ELECTION * V10 INTEREST IN ELECTION Crosstabulation

 
V10 INTEREST IN ELECTION

Total very much somewhat not much  

V03 VOTED
IN ELECTION

voted 4148 5344 1945 11437 
did not vote 916 1799 1484 4199

Total 5064 7143 3429 15636
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1    However, when I ran this table, it became evident that the value labels for V10 in the data file are listed in

the reverse order [appearing to reverse the direction of the association].  On checking this further, I determined that this

error goes back to the original SETUPS/NES 1970-1992 data that I updated.  I have corrected this error in the data file

on my computer (and thus in Table 4) but it may  not be correct in  the data file that the student PCs access. 

Note that SPSS arranges the rows and columns according to the numerical codes  for the

values of the variables.1 Most measures of association for this table are quite low — on the order

of a . + 0.2.  This is because the distribution of cases with respect to the dependent (row)

variable is so lopsided.  (Even among the “not much interested” respondents, a substantial

majority of claim to have voted.)

TABLE 5

                  V04 PRESIDENTIAL VOTE * V34 R'S OWN IDEOLOGY Crosstabulation

 

                              V34 R'S OWN IDEOLOGY

Total
 

liberal
slightly
 liberal moderate

slightly
conserv conserv

 
V04
PRESIDEN
TIAL VOTE

Dem
971 794 1315 465 307 3852

 
Rep

115 271 1292 1222 1719 4619

Total 1086 1065 2607 1687 2026 8471

Here I have excluded voters for “Other” Presidential candidates, since over the 1972-

2004 period such candidates constitute an ideologically mixed bag.   Measures of association

range from about + 0.6 to + 0.8, generally similar to the student data.


