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Abstract

A striking attribute of Instant Runoff Voting (IRV) is that it is subject to monotonicity failure — that

is, getting more (first preference) votes can cause a candidate to lose an election and getting fewer

votes can cause a candidate to win.  Proponents of IRV have argued that monotonicity failure,  while

a mathematical possibility, is highly unlikely to occur in practice. This paper specifies the precise

conditions under which this phenomenon arises in three-candidate elections, and then applies them

to a number of large data sets in order to get a sense of the likelihood of IRV’s monotonicity problem

in varying circumstances.  The basic finding is that the monotonicity problem is significant in many

circumstances and very substantial whenever IRV elections are closely contested by three candidates.

An earlier version of this paper was presented  at the Second World Congress of the Public Choice

Societies, Miami, March 8-11, 2012. This revision uses more extensive simulations, replaces tables

with graphs, and corrects several errors, but it entails no substantial changes in results. The

conference version of the paper has been cited in several subsequent works, which are in turn cited

here. I thank Robert Z. Norman, Joseph Ornstein, and Dan Felsenthal for helpful comments. 



CLOSENESS MATTERS: MONOTONICITY FAILURE IN IRV ELECTIONS

WITH THREE CANDIDATES

1. Introduction

It is generally recognized that ordinary plurality voting (or first-past-the-post) is problematic

in elections with three or more candidates. Instant Runoff Voting (IRV) — also known as the

Alternative Vote, Hare Rule, and Ranked Choice Voting — has been proposed as a less troublesome

alternative. Under IRV, voters rank the candidates in order of preference.  A candidate supported by

a majority of first preferences is elected. Otherwise, the candidate supported by the fewest first

preferences is eliminated and his or her ballots are transferred to other candidates on the basis of

second preferences. This process is repeated until one candidate is supported by a majority of ballots.

Here we consider only three-candidate contests, so IRV is limited to a single ‘instant runoff’ and is

formally equivalent to plurality voting with a runoff between the top two candidates in the event the

leading candidate is not supported by a majority of votes.

A striking feature of IRV is that getting more (first-preference) votes may result in defeat for

a candidate who would otherwise win and getting fewer votes may result in victory for a candidate

who would otherwise lose.  Most voting rules, including plurality voting, never exhibit this anomaly

and accordingly are monotonic. But many years ago, Smith (1973) showed that rules that incorporate

runoffs are subject to monotonicity failure. Several years later, Doron and Kronick (1977; also see

Straffin 1980) observed that Smith’s class of runoff systems includes the Single Transferable Vote

(STV), the single-winner variant of which is IRV. This finding attracted some attention among political

scientists (Riker 1982, pp. 49-50; Brams and Fishburn 1983; Fishburn and Brams 1983).  Recently,

Felsenthal and Tideman (2013, 2014) have confirmed by examples that other runoff systems are

subject to monotonicity failure — indeed, to what in Section 3.3 of this paper is dubbed ‘double

monotonicity failure’.

Many proponents of IRV (and others) have argued that monotonicity failure under IRV, while

a mathematical possibility, is highly unlikely to occur in practice. Thus, Amy (2002, p. 55) says: ‘While

it is clear that nonmonotonicity can theoretically occur in an IRV election, most experts believe that

the conditions needed for this paradox to occur are so special that it would be an extremely rare

occurrence.  One statistical study [Allard 1996] found that if IRV-like elections were to be held

throughout the United Kingdom, a nonmonotonic result would occur less than once a century’. In a

‘hands-on assessment of STV’ based on his years of experience as the Chief Electoral Officer for

Northern Ireland since the introduction of STV in 1973, Bradley (1995) reported that ‘the experience

of the use of STV in Northern Ireland over the past 22 years, involving a range of election types and

sizes, reveals no evidence to support in practice the lack of monotonicity’. A standard text on electoral

systems (Farrell 2001, p. 150) cites both Allard and Bradley to support the claim that ‘there is no

evidence that it [i.e., monotonicity failure under IRV] is a common occurrence’. Fair Vote (2009; also

see Poundstone 2008, pp. 267-268), a US electoral reform group that advocates IRV (but calls it

Ranked Choice Voting), claims that, ‘in terms of the frequency of non-monotonicity in real-world

elections, ‘there is no evidence that this has ever played a role in any IRV election. . . .’
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Since monotonicity failure is a striking and counterintuitive phenomenon, it may be helpful

to provide a (more or less) real-world example — namely, a simplified version of the 2009 IRV

election for mayor of Burlington, Vermont.1 The Republican candidate was supported by 39% of the

first preferences, the Democratic candidate by 27%, and the Progressive (left-of-Democrat) candidate

by 34%. The Democrat therefore was eliminated, with his ballots transferring to one or other

surviving candidate on the basis of second preferences, which were 37% for the Republican and 63%

for the Progressive, representing 10% and 17% of the total electorate. Thus, in the instant runoff the

Republican got 39% + 10% = 49% and the Progressive won the election with 34% + 17% = 51%. 

Now consider a wholly make-believe sequel. A third of the Republicans (13% of all voters) are so

traumatized by the prospect of a Progressive mayor that they flee Burlington for more politically

hospitable climes and are replaced by a like number of newcomers attracted by the prospect of a

Progressive mayor. At the next election, all votes are cast exactly as before, except for the 13% of

the electorate once made up of Republicans now replaced by Progressives. The Progressive candidate

won a squeaker before, so with this augmented support he will surely win more comfortably this time.

But, in fact, he does not win at all. The Republican candidate now has 26% of the vote, the Democrat

27%, and the Progressive 47%, so the instant runoff is between the Democrat and Progressive, and

the Democrat wins handily by gaining the second preferences of the (remaining) Republican voters

(who find the prospect of a Democratic mayor at least marginally more tolerable than a Progressive

one). The consequence of the Progressive candidate’s first-preference support being augmented by

13% of the electorate is that he loses where before he won.

Section 2 introduces basic notation and terminology and formally defines the phenomenon of

monotonicity failure under IRV. Section 3 specifies the precise conditions under which variants of

monotonicity failure arise in three-candidate elections. These theoretical results tell us that this

problem can occur only in relatively competitive three-candidate elections, but they do not directly

indicate its frequency in such elections. Thus, Section 4 applies the conditions to various sets of

simulated election results and shows that the problem arises quite frequently in competitive elections

and the frequency increases as elections become still more closely contested. Section 5 offers some

concluding observations.

2. Preliminaries

A three-candidate IRV ballot profile is a set of n rankings of candidates X, Y, and Z, one for

each of n voters. We assume that all voters rank all three candidates and that the number of voters

is large (i.e., electorate-sized) and fixed.2 Given a particular ballot profile B, the candidate with the

1     The description here is simplified in that there were other minor candidates and some voters cast

‘truncated’ ballots (that did not rank all candidates). Complete vote tallies may be found at http://rangevoting.

org/Burlington. html.)

2     If the number is small, the problem of ties becomes prominent, but there is no standard way to break

ties under IRV (or either plurality voting). If the number of voters can vary, IRV is subject to additional types of

monotonicity problems; see, for example, Norman (2010), Felsenthal and Tideman (2013) and Felsenthal and

Nurmi (2016). 
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most first preferences is the plurality winner, the candidate with the second most first preferences is

the plurality runner-up, and the candidate with the fewest first preferences is the plurality loser. Let

n (PW), n (P2) and n (PL) be the number of ballots that rank the plurality winner, the plurality runner-

up, and plurality loser first; always n(PL) < n/3 < n (PW).  If n/2 < n(PW), the plurality winner is also

a majority winner.

Given a three-candidate ballot profile B, let x, y and z be the number of ballots giving first-

preference support to candidates X, Y and Z, respectively. Let xy be the number of ballots showing

a first preference for X and second preference for Y (and therefore a third preference for Z), and

likewise for xz and for other candidates. Given a different ballot profile BN, the candidates  have xN,

yN and zN first preferences, respectively, and likewise for the other notation. 

Given a ballot profile B, if a majority of voters rank X over Y, i.e., if x + zx > y + zy, we say

that X beats Y, and likewise for other pairs of candidates. A Condorcet winner beats both of the other

candidates, and a Condorcet loser is beaten by both; otherwise there is a Condorcet cycle such that

X beats Y beats Z beats X or the reverse. 

The IRV winner is the majority winner if one exists and otherwise is either the plurality winner

or the plurality runner-up, depending on which beats the other. A Condorcet winner fails to be the

IRV winner if and only if it is also the plurality loser. If the plurality runner-up beats the plurality

winner, IRV and plurality voting produce different winners and we call such a profile critical.

Profiles in which the plurality loser has at least one quarter of the first-preference support turn

out to be especially significant. We call such profiles competitive; it can be checked that such profiles

have no majority winner.

Our aim is to specify conditions under which an IRV ballot profile B is vulnerable to

monotonicity failure, that is: 

   (a) X wins under B, but there is some other profile BN (i) that differs from B only in that some

voters rank X higher in BN than in B and (ii) under which X loses (Upward Monotonicity

Failure or UMF), or

   (b) X loses under B, but there is some other profile BN (i) that differs from B only in that some

voters rank X lower in BN than in B and (ii) under which X wins (Downward Monotonicity

Failure or DMF).

In either event, every voter ranks Y and Z the same way under B and BN. Following Norman (2010),

we call B and BN companion profiles. 

Given that Z is the plurality loser under profile B, two conditions are necessary and jointly

sufficient to make B vulnerable to (upward or downward) monotonicity failure in the event that X is

moved up or down in some voter orderings.

Condition 1.  This condition pertains to the runoff pair and requires that the ballot changes that

produce BN from B must deprive Y of enough first preferences (for UMF), or give Z enough additional

first preferences (for DMF), that the runoff that had been between X and Y is now between X and Z.
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Condition 2.  This condition pertains to the runoff outcome and requires that X, which won (for

UMF) or lost (for DMF) the runoff against Y under B, must lose (for UMF) or win (for DMF) the

runoff against Z under BN.

3. Conditions for monotonicity failure

As a step along the way to providing analytical expressions for calculating the proportion of

three-candidate ballot profiles in the ‘impartial anonymous culture’ that are vulnerable to

monotonicity failure under both plurality and anti-plurality runoff voting, Lepelly et al. (1996)

specified — very concisely and using rather formidable notation — conditions for UMF and DMF

failure under both voting rules. The conditions for IRV are presented here more transparently, in

terms that highlight the operation of IRV and the plurality and Condorcet concepts reviewed in the

previous section.3

3.1 Upward monotonicity failure

Let X be the IRV winner and let Z be the plurality loser under ballot profile B.  It can be

checked that ballot changes that move X upwards from third to second place, or to first place on

ballots that had Z in first place, cannot change the IRV winner. Therefore, the essential difference

between B and any companion profile BN that produces UMF is that X is ranked first on some ballots

in BN on which Y was ranked first in B.

If profile B is vulnerable to UMF, Condition 1 requires that X can gain enough first-preference

ballots at Y ’s expense that two things are simultaneously true in the resulting ballot profile BN: (i) X

is still not a majority winner, and (ii) Y becomes the plurality loser instead of Z.  This can occur

whenever n /2 ! x > y ! z, which simplifies to z > n/4. Condition 2 requires that Z beat X under BN

and thus under B. Condition 1 can be simplified and, given Condition 1, Condition 2 can be restated

in terms of the original profile B (see Appendix).   

Proposition 1.  A three-candidate ballot profile B in which X is the IRV winner and Z is the plurality

loser is vulnerable to UMF if and only if: 

   Condition 1U:   B is competitive, i.e., z > n /4; and 

   Condition 2U:   the plurality loser beats the IRV winner, i.e., z + yz > x + yx.

UMF can therefore occur only in relatively closely contested elections such that all three

candidates receive between 25% and 50% of the first preference votes. However, both critical and

non-critical profiles may be vulnerable to UMF.

3.2 Downward monotonicity failure

Let Y be the IRV winner and Z be the plurality loser under ballot profile B. It can be checked that

ballot changes that move X downwards from second to third place, or increase Y ’s first preferences

3     While Lepelley et al. (1996) provide a proof of their version of Proposition 2 in their Appendix A,

they do not provide a proof of their version of Proposition 1 (but rather cite Berg and Lepelley, 1993), so one is

provided in the appendix of this paper.
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by moving X downwards, cannot change the IRV winner. Therefore, the essential difference between

the initial ballot profile B and any companion ballot profile BN that produces DMF is that X is ranked

second and Z first on some ballots in BN on which X was ranked first in B.

If profile B is vulnerable to DMF, Condition 1 requires that X can lose enough first-preference

ballots in favor of Z that Y becomes the plurality loser rather than Z. This can occur whenever x ! y

> y ! z, which simplifies to n/3 > y.  Furthermore, in order for Z to gain these first preferences rather

than Y, it must be that xz > y ! z.  Condition 2 requires that X beat Z under BN. This requires that X

beat Z under B and that X must still beat Z after (y ! z) first-preference ballots shift from X to Z,

which simplifies to yz < n/2 ! y. 

Proposition 2.  A three-candidate ballot profile B in which Y is the IRV winner and Z is the plurality

loser is vulnerable to DMF if and only if: 

   Condition 1D: (a)  the IRV winner has the first-preference support of fewer than one-third of the

voters, i.e., y < n /3, and (b) xz > y ! z; and

   Condition 2D: yz < n /2 ! y.

Since y < n /3, Y cannot be the plurality winner, so only critical profiles are vulnerable to

DMF. Since X and Z together have more than two-thirds of the first-preference support and X cannot

be a majority winner, z < n /6, suggesting that elections vulnerable to DMF may be less closely

contested than those vulnerable to UMF. 

The following corollary states more transparent necessary (but not sufficient) conditions for

DMF.

Corollary 2.1.  A three-candidate ballot profile B is vulnerable to DMF under IRV only if  

   (1) the IRV winner has the first-preference support of fewer than one-third of the voters; and

   (2) the plurality winner beats the plurality loser.

Proposition 1 and Corollary 2.1 together imply that a three-candidate ballot profile B in which

the plurality winner is also a Condorcet winner is not vulnerable to either UMF or DMF. 

3.3 Double monotonicity failure

There is an obvious connection between UMF and DMF.  If profile B is vulnerable to UMF

with respect to profile BN, profile BN in turn is vulnerable to DMF with respect to profile B. In this

sense, UMF and DMF are the same phenomenon.

A further question is whether a single profile B can simultaneously be vulnerable to both

UMF and DMF. We dub this vulnerability to Double Monotonicity Failure (2MF). Proposition 1 and

Corollary 2.1 together imply that a three-candidate ballot profile is vulnerable to 2MF under IRV only

if it is competitive, critical, and cyclical.4  Such a profile must satisfy Conditions 1U and 1D and also

4   Cyclicity follows because UMF implies that the plurality loser beats the IRV winner but DMF implies

that it cannot be a Condorcet winner. However, Felsenthal and Tideman (2014) show that, given five or more

candidates, cyclicity is not required for 2MF.
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Conditions 2U and 2D.  That such a ballot profile can exist is shown by the following example with

n = 100, in which Z is the plurality loser and X is the IRV winner:

 38  32  30

  Y   X   Z

  Z   Y   X

  X   Z   Y

The profile is vulnerable to UMF because, if 9 of the 38 YZX voters move X to the top of their

ballots, Y becomes the plurality loser instead of Z, and X loses to Z in the runoff. At the same time,

the profile is vulnerable to DMF because, if 3 of the 38 YZX voters drop Y to second or third

preference, Y remains the plurality winner but X becomes the plurality loser, and Y then beats Z in the

runoff.

3.4 Monotonicity failure with single-peaked profiles

Suppose that one of the three candidates is a ‘centrist’ with respect to ideology or policy

relative to the other two candidates, who in turn are (relatively) ‘extreme’ but in opposite directions

(e.g., one to the ‘left’ and the other to the ‘right’ of the centrist candidate).  If the centrist candidate

is universally viewed as a ‘compromise’ between the two more extreme ones, no voters have the

centrist as their third preference. Such a profile, which includes only four of the six possible rankings

of three candidates, is called single-peaked; since one candidate is never ranked lowest, it can also

be called bottom-restricted. In such a profile, only the centrist candidate can be a plurality loser that

beats the IRV winner, giving the following:

Proposition 3.  If a three-candidate ballot profile B is single-peaked, B is vulnerable to UMF under

IRV if and only if  

   (1) B is competitive, and

   (2) the centrist candidate is the plurality loser.

However, given single-peakedness, the conditions for DMF cannot be simultaneously fulfilled.

Proposition 4.  If a three-candidate ballot profile B is single-peaked, B is not vulnerable to DMF (or

2MF) under IRV.

Proposition 2 stipulates that in profile B the plurality loser is Z and the IRV winner is Y.

Suppose that Y is extreme: if X is centrist, Y can beat X only if Y is a majority winner, so B cannot be

vulnerable to DMF; if Z is centrist, yz = y and DMF implies that y < n/2 ! y, which simplifies to y <

n/4 implying that X is a majority winner and contradicting the stipulation that Y is the IRV winner.

Therefore, Y must be the centrist candidate. But this cannot be true either, because single-peakedness

then implies that xz = 0, contradicting the requirement for DMF that xz > y ! z. 

3.5 Monotonicity failure with clone candidates

One important way in which plurality voting is deemed to be problematic is that it is

susceptible to spoiler effects — that is, even though candidate X would win a ‘straight fight’ against
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candidate Y, Y may win if a third candidate Z enters the contest. IRV is sometimes advocated as a

voting rule that precludes this problem. Indeed, IRV does preclude what is often dubbed the ‘Nader

problem’, referring to the fact that Ralph Nader’s place on the ballot in Florida in 2000 presumably

drew more votes from Gore than Bush and therefore cost Gore Florida’s electoral votes (and the

presidency). However, under IRV Gore would have won, since the instant runoff would have been

equivalent to the straight fight that Nader ‘spoiled’. Moreover, profiles exhibiting the ‘Nader

problem’ cannot be  vulnerable to monotonicity failure under IRV, since the third candidate receives

few votes.

But now consider a three-candidate election in which two candidates C1 and C2 have rather

similar policy positions or otherwise appeal to the same group of voters, while a third candidate D

has a distinctive policy position or otherwise appeals to a different group of voters. This implies that

voters are partitioned into two subsets with substantially opposed preferences: those who prefer both

C1 and C2 to D and those who prefer D to both C1 and C2. C1 and C2, being adjacent in every voter’s

ballot ranking, may be called clones (Tideman 1987), while D is the distinctive candidate whom no

one ranks second.  Therefore, as with single-peakedness, profiles with clone candidates include only

four of the six possible rankings of the three candidates but these preferences are middle-restricted.

The case in which D supporters are a large minority, i.e., n/3 < d < n/2, is of special interest. 

If C supporters are sufficiently equally divided between the two clones with respect to their first

preferences, D becomes the plurality winner — and would be elected under plurality voting — even

though D is also the Condorcet loser. Put otherwise, the clones are ‘mutual spoilers’ in that either

clone wins if the other is not a candidate but, if both are candidates, each spoils the other’s chance

of election.  IRV also resolves the mutual problem to the advantage of the majority of voters favoring

the clone candidates, because at least one clone must get into the instant runoff and thereby becomes

the IRV winner.5 But this advantage of IRV now comes at the cost of vulnerability to UMF.

Proposition 1 restricted to the special case of middle-restricted preferences gives the

following:

Proposition 5.  If a three-candidate profile B is middle-restricted, B is vulnerable to UMF under IRV

if and only if 

   (1) B is competitive, and 

   (2) the plurality loser is the clone candidate that beats the other clone.

However, given middle-restricted preferences, the conditions for DMF cannot be

simultaneously fulfilled.

Proposition 6.  If a three-candidate ballot profile B is middle-restricted, B is not vulnerable to DMF

(or 2MF) under IRV.

5     However, IRV presents another spoiler problem: which clone candidates wins may depend on

whether D enters the election. 
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Proposition 2 stipulates that Z is the plurality loser and Y is the IRV winner. Given a middle-

restricted profile without a majority winner, Y must be one of the two clone candidates. If X is the

other clone and Z is the distinctive candidate, it follows that xz = 0; but, given that Z is the plurality

loser, y ! z > 0, so Condition 1D(b) cannot hold.  If Z is the other clone and X is distinctive, yz = y,

so Condition 2D implies y < n/4 and that X is a majority winner, contradicting the stipulation that Y

is the IRV winner.

Finally, we may note that bottom-restricted and middle-restricted preferences are instances

of value-restricted preferences (Sen 1966), of which there is a third category, namely top-restricted

preferences. But if only two candidates are ranked first, one or the other is a majority winner, so no

such profiles are vulnerable to monotonicity failure.

4. Monotoncity failure in simulated ballot profiles

As noted earlier, it has been claimed that monotonicity failure, while mathematically possible,

is highly unlikely to occur in practice. The preceding theoretical results tell us that three-candidate

IRV ballot profiles are vulnerable to monotonicity failure only once specific thresholds of election

closeness are crossed. However, they do not directly suggest how frequently such vulnerability occurs

in competitive elections. Proposition 1 suggests (but does not prove) that, once they become

competitive, vulnerability to UMF increases as elections become more closely contested, though

Proposition 2 suggests that the opposite may hold with respect to DMF. 

As also noted earlier, Lepelley et al. (1996) provide analytical results for the frequency of

monotonicity failure given an impartial anonymous culture, in which each anonymous profile (i.e.,

each specification of the number of voters with each possible ballot ranking) is equally likely to occur.

They find that, with a large number of voters, 4.51% of such ballot profiles are vulnerable to UMF

and 1.97% to DMF. In unpublished work, Smith (2010) reports identical rates based on simulation

results. Given an impartial culture (in which each distinct profile is equally likely to occur), other

simulations by Smith (2010) show that 12.16% of profiles are vulnerable to UMF and 4.95% to

DMF.  More recently, Plassmann and Tideman (2014) generated a large sample of profiles for three-

candidate elections based on ‘a statistical model that simulates voting situations that follow the same

distributions as voting situations in actual elections’, and they examined how frequently different

voting rules, including IRV, encounter various problems including monotonicity failure. In their data,

only about 1% of profiles were vulnerable to monotonicity failure, reflecting the fact that ‘voting

situations in actual elections’ typically are not competitive.

More directly relevant are the results of Ornstein and Norman (2014), building on earlier work

by Ornstein (2010).  Analyzing simulated elections generated by various configurations of voter ideal

points in a two-dimensional space with three candidates competing for first-preference support, they

find that the resulting profiles are vulnerable to UMF ‘in anywhere from 0.7% to 51% of all cases,

and between 15% and 51% of competitive elections’ (Ornstein and Norman 2014, p. 6) with the

higher rates in the most competitive profiles. However, they examine UMF only and their analysis

focuses primarily on how vulnerability to UMF varies as the simulated candidate competitions

proceed. 
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4.1 Monotonicity failure in random profiles

To supplement the work of Ornstein and Norman and to extend the analysis to DMF (and

2MF), we examine three large and diverse samples, RAN1, RAN2 and RAN3, each with 256,000

randomly generated ballot profiles for about 30 million voters. In each sample, each candidate receives

on average about one-third of the first-preference votes, but RAN1 has little dispersion in this respect

so almost all profiles are competitive, RAN2 has more dispersion and about two-thirds are

competitive, and RAN3 has the most dispersion and fewer than half are competitive.6

Table 1 reports, for each sample, the percentage of profiles that are vulnerable to UMF, DMF

and 2MF as well as ‘total’ monotonicity failure (TMF = UMF + DMF !2MF).  It also shows similar

percentages for competitive, critical, and cyclical profiles, as well as profiles that meet the conditions

given in Corollary 2.1. Vulnerability to monotonicity failure varies among the three samples in the

expected manner. 

However, Figure 1 shows that when we plot vulnerability to monotonicity failure against

election closeness measured by the percentage of first-preference support for the plurality loser, all

three samples look about the same.7 As soon as the logical threshold of 25% is crossed, about 10%

to15% of profiles are vulnerable to UMF, increasing to about 45% in the closest contests. In contrast,

vulnerability to DMF does not become evident as soon as the logical threshold of about 17% is

crossed but begins to appear when the plurality loser wins about 20% of the vote and increases to

about 15% in the closest contests. Once the 25% threshold is crossed, about half of the profiles

vulnerable to DMF are also vulnerable to UMF (and thus also to 2MF). When elections are contested

most closely, more than 50% of profiles are vulnerable to some kind of monotonicity failure.

In summary, in this diverse —  and perhaps most representative — set of simulated profiles,

vulnerability to monotonicity failure in three-candidate IRV elections is hardly a rare event, increases

as elections become more competitive, and occurs more than half the time in the most closely

contested elections.

4.2 Monotonicity failure in single-peaked profiles

We next examine three large samples of single-peaked ballot profiles. Sample SP1 was

generated in the same manner as RAN2, except that Y was assigned as the second preference on all

6     Specifically, each sample was generated by drawing the number of first preferences for candidate X

from a normal distribution with a mean of 10 million and standard deviation of 1.2 or 2.4 or 3.3 million, subject to

the constraint that x $0, and rounding to the nearest integer.  Then the number of such ballots ranking Y second

was drawn from a normal distribution with a mean of x/2 and a standard deviation of x/6, subject to the constraint

that 0 # xy # x, with Z ranked second in the remaining xz = x ! xy ballots. The numbers for the other rankings were

determined in like manner.

7    This measure of election closeness directly ties in with the definition of competitiveness used in

Proposition 1 and elsewhere. The percent of first-preference support for the plurality winner minus that for the

plurality loser is an alternative measure, which entails no specific threshold for UMF; in figures based on this

measure, UMF and DMF both appear gradually (though DMF appears earlier) as closeness increases, but otherwise

they are very similar to those presented here.
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ballots with X or Z ranked first (making Y the ‘centrist’ candidate). In the other two samples,

preferences are restricted in the same way, but one candidate is on average less popular than the two

others, with an average of 6 million first preferences while the other two average 12 million, thereby

making fewer profiles competitive.  Sample SP2 has a weak centrist candidate Y and SP3 has a weak

extreme candidate Z. 

Table 2 shows the rate of vulnerability to UMF for each sample. Perhaps the most striking

feature of the table is the very high incidence of vulnerability among competitive profiles with a weak

center candidate, which results because the center candidate is very likely to be the plurality loser; but

since many fewer profiles are competitive, the overall rate of vulnerability is less than in the symmetric

case.

Figure 2 shows the rate of vulnerability to UMF by election closeness in each sample. In the

symmetric case, each candidate is equally likely to be the plurality loser, so the centrist candidate has

this status in one-third of the profiles regardless of closeness. A weak centrist candidate typically, but

not always, is the plurality loser, so almost all competitive profiles are vulnerable to UMF; however,

as support for the plurality loser increases, the centrist candidate is less likely to have this status, so

vulnerability actually declines. In contrast, when an extreme candidate is weak, the more typical

pattern holds.

4.3 Monotonicity failure with clone candidates 

We next examine two large samples of ballot profiles with clone candidates. Sample CL1 was

generated in the same manner as RAN2, except that no ballots with X or Z ranked first had Y assigned 

as the second preference (making Y the distinctive candidate), whereas in sample CL2 the distinctive

candidate has on average the first-preference support of 12 million voters compared to 9 million for

each of the clones, making the spoiler problem under plurality voting especially prominent.

Table 3 suggests that a strong distinctive candidate increases the frequency of vulnerability to

UMF. Figure 3 refines this conclusion by showing that profiles with a strong distinctive candidate are

considerably more likely to be vulnerable to UMF than equally competitive profiles from the symmetric

sample.  As competitiveness increases, the frequency of vulnerability to monotonicity failure increases

in both samples, but more rapidly in the latter, so that the frequencies almost converge at about 30%

in the most competitive elections.

4.4 Monotonicity failure in English general elections: 1992-2010

Finally, we examine data derived from constituency-level results from the five U.K. general elections

from 1992 through 2010.8 Only results from English constituencies are used, because virtually all

constituency elections in England during this period were essentially three-party (Labour, Liberal

Democrat and Conservative) affairs, while those in Wales, Scotland, and Northern Ireland almost

always included significant (and sometimes winning) candidates of ‘nationalist’ parties as well (and

in 2015 many constituencies in England included significant UK Independence Party candidates). The

8   These data come from Pippa Norris’s Shared Datasets website (http://www.hks.harvard.edu/fs/pnorris/

Data/Data.htm). 
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very few English constituencies that did not closely fit a three-candidate pattern were excluded. The

five general elections provide a sample of 2642 three-candidate elections, with an average of about

45,000 voters each.

An obvious problem is that these elections were conducted under plurality voting and therefore

the results provide us only with (what we take to be) the first preferences of voters, while IRV requires

that voters rank the three candidates in order of preference. This problem is addressed by allocating

second preferences in each district and each year in proportion to second preferences nationwide, as

determined by surveys that provide individual level data about second preferences for each of the five

elections.9 These surveys indicate that English voter preferences were ‘partially single-peaked’ — that

is, most but not all Labour (‘left-of-center’) voters had the Liberal Democrats (the ‘centrist’ party) as

their second preference as did most but not all Conservative (‘right-of-center’) voters, while Liberal

Democrat voters had more evenly divided second preferences. In addition to this sample (designated

ENG1), two other samples with different second (and third) preferences were generated: in ENG2

preferences are strictly single-peaked and in ENG3 second preferences are assigned randomly in the

same manner as the RAN samples. 

Table 4 is set up in the same manner as Table 1.  The most obvious and striking feature of the

English data is that considerably fewer profiles (on the order of 1% to 2%) are vulnerable to

monotonicity failure than in the wholly simulated data sets. This might suggest that frequencies based

on the latter are largely irrelevant and misleading — once we look at (more or less) ‘real’ electoral

data, the problem of monotonicity failure under IRV almost disappears, perhaps not to the vanishingly

low level claimed by Allard (1996), but to a very low level indeed. 

However, very few of these English elections — like the actual elections used to calibrate the

statistical model of Plassmann and Tideman (2014) — were competitive three-candidate contests (in

part because they were conducted under plurality voting, not IRV).  In fact, 60% have a majority

winner and 95% are non-competitive. But Table 5 shows that, among the small number of competitive

three-candidate English elections, vulnerability to monotonicity failure was quite common.

The underlying similarity between the English and simulated data is evident in Table 5, which

shows vulnerability to monotonicity failure in the English data by election closeness in the same

manner as the preceding figures. (A table format with collapsed categories of closeness is used because

of the small number of cases.) For a given level of closeness, vulnerability to monotonicity failure

appears to be approximately as common in the English data as in the simulated data and, in particular,

it approaches or exceeds 50% in the most closely contested elections.

5. Concluding remarks

This paper has set out the precise conditions under which vulnerability to monotonicity failure

arises in three-candidate IRV elections and has applied them to several large and varied sets of

9    The survey estimates for 1992 through 2005 come from Curtice (2009) and for 2010 from Ritchie and

Gardini (2012). Respondents who did not express a second preference or expressed a fourth-party second

preference were excluded from these calculations.
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simulated ballot profiles in order to get a sense of the severity of IRV’s monotonicity problems in

varying circumstances. Confirming and extending the work of Ornstein and Norman (2014), it

demonstrates that vulnerability to monotonicity failure should not be dismissed as a phenomenon that

is logically possible but occurs very rarely. In particular, a substantial proportion of competitive IRV

ballot profiles — and upwards of 50% of the most closely contested profiles — are vulnerable to

monotonicity failure. 

A common argument in favor of IRV is that it mitigates the ‘wasted vote’ psychology that

handicaps third (and additional) candidates under ordinary plurality voting, both by discouraging them

from entering and discouraging voters from supporting them if they do enter — that is to say, IRV is

intended to produce, and probably would produce, fewer essentially two-candidate elections and more

relatively closely contested three-candidate (or multi-candidate) elections, exactly the sort most

vulnerable to monotonicity failure.10  

However, to demonstrate that vulnerability to monotonicity failure is a relatively common

phenomenon does not establish that it is also an especially significant or worrisome phenomenon.11

Having avoided issues pertaining to its significance thus far, I take note of some such considerations

in these concluding remarks.

First, the phenomenon itself is often misstated or misunderstood. Advocates of IRV often say

that there is little or no evidence that IRV produces ‘non-monotonic election results’.12 But non-

monotonicity applies not to any particular ‘election result’ but to the IRV voting rule itself. Here I

have been careful to say that an IRV ballot profile (effectively, an IRV ‘election result’) may be

‘vulnerable to monotonicity failure’. This emphasizes that the problem entails an implicit comparison

between companion profiles that are related in a non-monotonic and paradoxical fashion.

Second, I noted above that IRV is advocated in part to avoid the ‘wasted vote’ psychology

under plurality voting that encourages supporters of third-party candidates to vote ‘strategically’ for

the ‘lesser of two evils’ between the two major-party candidates. However, as discussed by Felsenthal

and Tideman (2014), vulnerability to monotonicity failure under IRV provides an incentive for a

different kind of strategic voting. This incentive is most evident and always exists given a profile

vulnerable to DMF: candidate X loses when everyone votes sincerely but some supporters of X can

cause X to win by strategically lowering X in their ballot rankings. A similar incentive can exist in a

more indirect way given a profile vulnerable to UMF: X wins when everyone votes sincerely but X

loses when some voters who have Y as their first preference and Z as their second strategically move

X to the top of their rankings. Of course, all voting rules are vulnerable to strategic voting of one sort

10     While this analysis has been restricted to the case of three-candidate elections, it also applies to the

penultimate stage of a multi-candidate IRV election in which three candidates survive. This suggests that

vulnerability to monotonicity failure is no less frequent, and likely more frequent, in multi-candidate elections.

11     However, Felsenthal (2012) characterizes non-monotonicity as an ‘especially intolerable’ property

for a  voting rule.

12     For example, see the quotations in the introductory section.
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or other, and the incentives for strategic voting under plurality voting are surely easier to discern than

those under IRV.

Third, the non-monotonicity of IRV can also cause problems when some voters change their

‘true’ preferences — in particular, non-monotonicity means that successful persuasive efforts may

backfire. Suppose that shortly before an election public opinion (as determined by a poll) corresponds

to a profile that projects candidate X to be the IRV winner but is also vulnerable to UMF. Suppose

further that candidate X’s campaign makes a final persuasive effort to secure his victory. This effort

may be successful in that it raises candidate X in some voters’ rankings (while no other preference

change), but at the same time it may be self-defeating in that this increased support leads to X’s defeat.

Finally, since monotonicity failure entails a (typically hypothetical) comparison with some

companion profile, the phenomenon is for the most part hidden from view.  It is thus not surprising

that Chief Election Officer Bradley (1995) never saw ‘evidence’ of lack of monotonicity in his many

years of experience in supervising elections. However, an election recount could bring a companion

profile into explicit view. For example, suppose that the close part of the 2009 Burlington election had

been its first-preference component, rather than the instant runoff, and suppose it had been close

enough to trigger a recount. Suppose that it is first reported that the Republican candidate got 28%

of the first-preference support, the Democrat 27%, and the Progressive 45%, but that the recount

produces the following announcement: (1) the initial winner of the election, i.e., the Progressive

candidate, was mistakenly denied, and the Republican candidate mistakenly credited with, 2% of the

vote; and (2) therefore the Progressive actually lost the election. It would be fair to expect that this

announcement would produce considerable confusion and consternation, perhaps coupled with

demands for a change in the voting system.13

13     In fact, after the Burlington election local activists examined the IRV ballots with enough care to

discover companion profiles that rendered the original profile vulnerable to monotonicity failure. This provoked

enough controversy to lead to the enactment of a different voting system, namely ordinary plurality plus runoff —

which has the same problem but hides it better.
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Appendix: Proof of Proposition 1

Condition 1 requires that n /2 ! x > y ! z.   Substituting (n ! y ! z) into this expression in

place of x, removing parentheses, and simplifying gives 

n/2 ! n + y + z > y ! z,

which further simplifies to Condition 1U.  Thus z > n /4 puts Z, rather than Y, into the runoff with X

under BN.

Condition 2 requires that Z beat X in the runoff under BN.  This implies that Z also beats X

under B.  Therefore, Condition 2U is necessary for UMF, but it needs to be shown that  it is also

sufficient.

In the event that yx $ y ! z, all the first-preference ballots that X must gain at Y ’s expense to

make Y the Plurality Loser under BN can come from the yx ballots that would in any case transfer to

X in a runoff with Z under B, so Z beats X by the same margin under BN as under B.  If  yx < y ! z, it

is evidently more difficult for Z to beat X under BN than under B because, to the extent that y ! z

exceeds yx, Z loses and X gains [(y ! z) ! yx] transferred ballots from Y in the runoff.  Therefore, it

must be that 

z + yz ! [(y ! z) !yx]  > x + yx + [(y ! z) !yx].

Suppose to the contrary that  

z + yz ! [(y ! z) !yx]  # x + yx + [(y ! z) !yx].

Removing parentheses and rearranging terms, we get

3z # x + y.

Substituting (n ! z) for (x + y) and further simplifying, we get z # n/4, contradicting Condition 1U.

Thus, given that Condition 1U holds, it follows that, if Z beats X under B, Z also beats X under BN and

therefore implies UMF.
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Random Ballot Profiles
% of

profiles
UMF DMF 2MF TMF

RAN1

[Lower

Variability]

All 100.0% 31.2%    9.3%     4.2% 36.3%

Competitive   98.2% 31.8%    9.4%     4.3% 36.9%

Critical   37.0% 39.0%  25.1%   11.4% 52.7%

Cyclical   19.9% 99.2%  21.2%   21.2% 99.2%

Corollary 2.1 10.9% 44.7% 84.7%  38.4% 91.0%

RAN2

[Medium

Variability]

All 100.0% 16.4%    5.5%     2.4% 19.5%

Competitive   69.0% 23.8%    7.6%     3.4% 28.0%

Critical   25.6% 28.9%   21.3%     9.2% 41.0%

Cyclical   12.5% 88.3%  19.4%   18.9% 88.7%

Corollary 2.1  6.8% 41.6% 81.0% 34.9% 87.7%

RAN3

[Greater

Variability]

All 100.0% 10.2%    3.8%     1.5% 12.5%

Competitive  48.3% 21.2%    7.3%     3.2% 25.4%

Critical 19.3% 23.9%  19.5%     8.0% 35.4%

Cyclical   8.6%  81.2%  18.7%   17.9% 82.0%

Corollary 2.1  4.7% 39.1% 79.6%   32.8% 86.2%

Table 1   Vulnerability to monotonicity failure in random ballot profiles
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Single-Peaked

Ballot Profiles

SP1 [Symmetric] SP2 [Weak Center] SP3 [Weak Extreme] 

% of

profiles

UMF

(= TMF)

% of

profiles

UMF 

(= TMF)

% of

profiles

UMF

(= TMF)

All 100.0% 23.0% 100.0% 10.6% 100.0% 1.2%

Competitive 69.1% 33.3% 13.2% 80.5% 13.2% 9.5%

Critical 40.9% 16.4% 17.7% 13.5% 40.3% 0.5%

Table 2   Vulnerability to monotonicity failure in single-peaked ballot profiles

Ballot Profiles

with Clone

Candidates

CL1

 [Symmetric]

CL2 [Strong

Distinctive

Candidate]

% of

profiles

UMF

(= TMF)

% of

profiles

UMF

(= TMF)

All 100.0% 13.4% 100.0% 16.9%

Competitive 69.1% 19.3% 57.6% 29.3%

Critical 57.6% 21.3% 65.5% 21.6%

Table 3    Vulnerability to monotonicity failure in ballot profiles with clone candidates
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English Ballot Profiles
% of

profiles
UMF DMF 2MF TMF

ENG1

[Survey

Second

Preferences]

All 100.0% 1.4%   0.3% 0.0%   1.7%

Competitive 4.2% 33.0%   7.1% 0.0% 40.2%

Critical 8.3% 5.5%   3.7% 0.0%   9.1%

Cyclical 0.3% 0.0%   0.0% 0.0%   0.0%

Corollary 2.1 1.2% 0.0% 25.8% 0.0% 25.8%

ENG2

[S-P Second

Preferences]

All 100.0% 2.2%   0.0% 0.0%   2.2%

Competitive 4.2% 50.9%   0.0% 0.0% 50.9%

Critical 11.8% 3.2%   0.0% 0.0%   3.2%

ENG3

[Random

Second

Preferences]

All 100.0% 0.4%   0.3% 0.1%   0.6%

Competitive 4.2% 9.8%   6.3% 2.7% 13.4%

Critical 4.7% 4.0%   6.5% 2.4%   8.1%

Cyclical 1.1% 32.1% 10.7% 10.7% 32.1%

Corollary 2.1 0.3% 33.3% 88.9% 33.3% 88.9%

Table 4    Vulnerability to monotonicity failure in English ballot profiles

English Ballot

Profiles
ENG1 [Survey Second Prefs.]

ENG2

[S-P]
ENG3 [Random Second Prefs.]

Support

for PL
Freq. UMF DMF 2MF TMF UMF UMF DMF 2MF TMF

0-24% 2530 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

25% 35 25.7% 2.9% 0.0% 28.6% 51.4% 5.7% 2.9% 0.0% 8.6%

26% 32 21.9% 6.2% 0.0% 28.1% 53.1% 0.0% 3.1% 0.0% 3.1%

27% 19 42.1% 5.3% 0.0% 47.4% 47.4% 5.3% 10.5% 5.3% 10.5%

28% 12 41.7% 8.3% 0.0% 50.0% 41.7% 8.3% 0.0% 0.0% 8.3%

29-30% 11 63.6% 18.2% 0.0% 81.8% 63.6% 54.5% 9.1% 9.1% 54.5%

31-33% 3 33.3% 33.3% 0.0% 66.7% 33.3% 33.3% 67.7% 33.3% 66.7%

Table 5    Vulnerability to monotonicity failure of English ballot profiles by election closeness
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