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Abstract. We investigate some basic properties of the proper orthogonal decomposition (POD)
method as it is applied to data compression and model reduction of finite dimensional nonlinear
systems. First we provide an analysis of the errors involved in solving a nonlinear ODE initial value
problem using a POD reduced order model. Then we study the effects of small perturbations in
the ensemble of data from which the POD reduced order model is constructed on the reduced order
model. We explain why in some applications this sensitivity is a concern while in others it is not.
We also provide an analysis of computational complexity of solving an ODE initial value problem
and study the computational savings obtained by using a POD reduced order model. We provide
several examples to illustrate our theoretical results.
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1. Introduction.

1.1. Background on proper orthogonal decomposition. Proper orthogo-
nal decomposition (POD), also known as Karhunen–Loève decomposition or principal
component analysis, provides a technique for analyzing multidimensional data. This
method essentially provides an orthonormal basis for representing the given data in
a certain least squares optimal sense. The POD method may be applied to infinite
dimensional data such as fluid flow patterns as well. Truncation of the optimal basis
provides a way to find optimal lower dimensional approximations of the given data.

In addition to being optimal in a least squares sense, POD has the property
that it uses a modal decomposition that is completely data dependent and does not
assume any prior knowledge of the process that generates the data. This property
is advantageous in situations where a priori knowledge of the underlying process is
insufficient to warrant a certain choice of basis. It also helps in exploring patterns in
data that may reveal some insight into the underlying process that generates it.

Combined with the Galerkin projection procedure, POD provides a powerful
method for generating lower dimensional models of dynamical systems that have a
very large or even infinite dimensional phase space. The fact that this approach al-
ways looks for linear (or affine) subspaces instead of curved submanifolds makes it
computationally tractable. However, it must be noted that POD does not neglect the
nonlinearities of the original vector-field. This is so because if the original dynamical
system is nonlinear, then the resulting POD reduced order model will also typically
be nonlinear.

These properties of POD are the reason for its wide application in data analysis,
data compression, and model reduction in various fields of engineering and science.
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Applications of POD include image processing [22], data compression, signal analysis
[2], modeling and control of chemical reaction systems [12, 25, 26], turbulence models
[14], coherent structures in fluids [14], control of fluids [10], electrical power grids
[21, 20, 18], and wind engineering to name a few.

Extensions and modifications to POD have been proposed by various researchers
to accommodate properties of the applications at hand. For instance, instead of
time averaging, arclength-based averaging has been found to be useful in capturing
dynamics involving “intermittent” attractors in [12]. The predefined POD method
has been studied in [8], where modes are selected not only on the basis of energy of
the data but also on some prior knowledge of the system. Structure preserving model
reduction based on POD for mechanical systems with Lagrangian structure has been
developed in [15].

Systems with symmetry deserve special attention. Several authors have made
important contributions. Expanding the data set using symmetry was proposed in
[27, 28, 29], and later works have shown that it is an essential step in capturing the
correct dynamics [3, 4]. Methods for combining reduction theory with POD have been
developed in [23].

1.2. Contributions of this work. In this paper we study some basic ques-
tions about POD. We focus on finite dimensional systems and follow a deterministic
approach. The contributions of this paper include a study of the errors involved in
solving an initial value problem using a POD reduced order model of a dynamical
system, the sensitivity of the results of POD to perturbations in the data that is used
to form the reduced model, as well as computational efficiency gained in using POD
in model reduction applications. Even though these are some fundamental questions
relating to POD, we believe that they have not been given sufficient attention in the
literature.

1.3. Outline of the paper. The rest of the paper is organized as follows. In
section 2, we review the POD method as it is applied in data representation as well as
in model reduction. In section 3, we present some mathematical preliminaries on the
manifold of projection matrices and finite time solution norms of linear time invariant
systems. The former is relevant in the sensitivity analysis, and the latter will be use-
ful since throughout this paper we derive particular results for linear time invariant
systems. In section 4, we provide an error analysis of the POD method of model re-
duction as applied to a general nonlinear system. An example is provided to illustrate
the various factors affecting the errors. In section 5, we study the sensitivity of the
POD projection matrix P (Proposition 5.4), the projected data ỹ, and the reduced
model solution ŷ to perturbations in the data x that is used to form the reduced
model. We also study the particular case y = x, where the particular data/solution
y for which the reduced model is applied is the same as the ensemble of data x from
which the reduced model is constructed. Two examples are provided to illustrate the
sensitivity results, one focusing on the y = x case. In section 6, we present an esti-
mate of the computational complexity involved in integrating a system of ODEs with
and without the use of POD reduced order models. We also provide two examples to
illustrate the various factors affecting the computational savings. Finally, in section
7, we make concluding remarks.

2. Proper orthogonal decomposition (POD). POD provides a method for
finding the best approximating subspace to a given set of data. Originally POD was
used as a data representation technique. For model reduction of dynamical systems,
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POD may be used on data points obtained from system trajectories obtained via
experiments, numerical simulations, or analytical derivations. Additional information
may be found in [14, 19, 17, 16].

2.1. POD in data representation. We shall assume that the data points lie
in R

n. In the case of a dynamical system this is the phase space. A data set is a
collection xα ∈ R

n, where α ∈ I. The index set I may be a finite set {1, . . . , N}, or a
time interval [0, T ], or more generally of the form I = [0, T ]× {1, . . . , N}. The latter
corresponds to a collection of trajectories. For example, in an image coding problem
I is a finite discrete set. In model reduction of dynamical systems, I could be of the
more general form above. We define an inner product between sets of data x1 and
x2 with the same index set I in the obvious way. For example, if x1 and x2 are each
a collection of N trajectories in the common interval [0, T ], i.e., xαi : [0, T ] → R

n for
α = 1, . . . , N and i = 1, 2, then

(x1, x2) =

N∑
α=1

∫ T

0

(xα1 (t))
Txα2 (t)dt.

The corresponding norm is denoted ‖.‖.
Remark 2.1. Note that we are using the inner product in our data space (Rn) to

induce an inner product in the space of data sets with the same index set.

We shall explain the POD method using the index set I = [0, T ] × {1, . . . , N}.
Given a data set x, POD seeks a subspace S ⊂ R

n so that the total square distance

‖x− ρSx‖2 =

N∑
α=1

∫ T

0

‖xα(t)− ρSx
α(t)‖2dt

is minimized. Here ρS is the orthogonal projection onto the subspace S and ρSx is
the projected data set. The solution to this problem requires the construction of the
correlation matrix defined by

R =

N∑
α=1

∫ T

0

xα(t)(xα(t))T dt.

Note that R is symmetric positive semidefinite. Let λ1 ≥ λ2 · · · ≥ λN ≥ 0 be the
ordered eigenvalues of R. Then the minimum value of ‖x − ρSx‖2 over all k(≤ n)
dimensional subspaces S is given by

∑n
j=k+1 λj [14]. In addition the minimizing S is

the invariant subspace corresponding to the eigenvalues λ1, . . . , λk.

Often it may be best to find an affine subspace as opposed to a linear subspace.
This requires us first to find the mean value of the data points

x̄ =
1

NT

N∑
α=1

∫ T

0

xα(t)dt

and then construct the covariance matrix R̄ given by

R̄ =

N∑
α=1

∫ T

0

(xα(t)− x̄)(xα(t)− x̄)T dt.
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Let S0 be the invariant subspace of the largest k eigenvalues of R̄. Then the best
approximating affine subspace S passes through x̄ and is obtained by shifting S0 by
x̄. Algebraically the projection onto the subspace S is given by

z = ρ(x− x̄),(2.1)

where z ∈ R
k are coordinates in the subspace S, x ∈ R

n are coordinates in the original
coordinate system in R

n, and the matrix ρ of the projection consists of row vectors
φT
i (i = 1, . . . , k), where φi are the unit eigenvectors corresponding to the largest k

eigenvalues of R̄. Note that given any point p ∈ S with coordinates z ∈ R
k, the

coordinates x ∈ R
n of the same point in the original coordinate system are given by

x = ρT z + x̄.

The affine projection x̃ ⊂ S of a point x ∈ R
n in the original coordinates is given by

x̃ = P (x− x̄) + x̄,

where P = ρT ρ ∈ R
n×n is the matrix of the (linear) projection expressed in the

original coordinate system in R
n.

Remark 2.2. Note that the reduced subspace is uniquely characterized by the
pair (x̄, P ). Different data sets may lead to the same pair (x̄, P ), and the detailed
information about the data x is lost.

2.2. POD in model reduction. The POD method may also be used in obtain-
ing a lower dimensional model of a dynamical system. In this case, having found the
approximating subspace for our system data, the next task is to construct a vector-
field on this subspace that represents the reduced order model. The procedure we
describe is known as Galerkin projection and has been widely used in reducing PDEs
to ODEs by projecting onto appropriate basis functions that describe the spatial vari-
ations in the solution. The procedure is applicable to any subspace; the subspace
need not be obtained from the POD method. See [14] for more details.

Suppose the original dynamical system in R
n is given by a vector-field f ,

ẋ = f(x, t).

Let S ⊂ R
n be the best k dimensional approximating affine subspace with projection

given by (2.1). A vector-field fa in the subspace S is constructed by the following rule:
for any point p ∈ S compute the vector-field f(p, t) and take the projection ρf(p, t)
onto the subspace S to be the value of fa(p, t). If z are the subspace coordinates of
p, then fa(z, t) = ρf(ρT z + x̄, t). Thus we obtain the following reduced model:

ż = fa(z, t) = ρf(ρT z + x̄, t).(2.2)

If we are solving an initial value problem with x(0) = x0, then in the reduced model
one has the initial condition z(0) = z0, where

z0 = ρ(x0 − x̄).

Hence the approximating solution x̂(t) in the original coordinates in R
n is given by

x̂(t) = ρT z(t) + x̄.

From the above it is easy to see that the approximating solution x̂(t) is the solution
to the following initial value problem:

˙̂x = Pf(x̂, t); x̂(0) = x̂0 = P (x0 − x̄) + x̄.(2.3)

Note that x̂0 is just the projection of x0 onto the affine subspace S.
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3. Mathematical preliminaries.

3.1. Manifold of projection matrices. Let P ⊂ R
n×n be the manifold of

all rank k(< n) (orthogonal) projection matrices. (P is known in the literature as
the Grassmannian [6].) For a general introduction to manifolds, tangent spaces, and
differentiation on manifolds, see [1, 6]. Since we will be dealing with variations E of
projections P ∈ P in our POD sensitivity analysis, we need a characterization of the
tangent space TPP to P at a given point P ∈ P. The variation E ∈ TPP cannot be
any arbitrary matrix. In fact, the dimension of P and hence that of TPP for any P
is k(n− k).

Without loss of generality, we can induce an orthonormal change of coordinates
in R

n such that a given projection P becomes the canonical projection (P0) in these
coordinates, i.e.,

P0 =

[
Ik×k 0k×n−k

0n−k×k 0n−k×n−k

]
.

In many places in our analysis we shall assume the use of these canonical coordinates.

Let V = TP0P, i.e., the tangent space to P at the canonical projection P0. Using
the relations P 2 = P and PT = P (symmetric) and letting P = P0, it is easy to see
that V consists of matrices of the form[

0k×k Xk×n−k

XT
n−k×k 0n−k×n−k

]
,

where X is arbitrary. We will use the Frobenius norm for projection matrices P and
their variations E in our analysis. We consider the basis {Eij : i = 1, . . . , k; j =
1, . . . , n− k} for V , where

Eij =

[
0 Xij

XT
ij 0

]

and Xij is the k× (n− k) matrix with all zeros except for a 1 in the (i, j)th element.
Clearly ‖Eij‖ = √

2.

Remark 3.1. It may be noted that Eij corresponds to an infinitesimal rotation of
the subspace S (onto which P0 projects) in the plane of the coordinates xi and xj+k.
Consider the family of subspaces S(θ) which are spanned by

{e1, . . . , ei−1, cos θei + sin θej+k, ei+1, . . . , ek},

where e1, . . . , en are the canonical basis vectors in R
n. Note that when θ = 0, S

corresponds to the image of P0. Computing the corresponding family of projection
matrices P (θ), we can see that Eij = dP

dθ (θ = 0).

3.2. Finite time response of a linear time invariant system with time
varying input. Some of the analysis in this paper requires estimating the norm of
the trajectory of a linear time invariant system in a finite interval in response to a
forcing input term.

Consider the system

ẋ = Ax+ u
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(where x ∈ R
n) with input u(t) ∈ R

n and initial condition x(0) = x0 in the interval
[0, T ]. The solution is

x(t) =

∫ t

0

eA(t−τ)u(τ)dτ + eAtx0.

This may be written in the form

x = F (T ;A)u+G(T ;A)x0,(3.1)

where F (T ;A) : L2([0, T ],R
n) → L2([0, T ],R

n) and G(T ;A) : R
n → L2([0, T ],R

n)
are linear operators. It is in general very difficult to obtain sharp estimates for the
norms of F (T ;A) and G(T ;A), and in fact this basically reduces to the problem of
estimating the norm of the matrix exponential. As such we shall not provide an
estimate, but we remark that these norms grow exponentially with T at a rate that is
determined by the largest real part of any eigenvalue of A and in addition depend on
the nonnormality of A. See [11] for an estimate of matrix exponential. In our analysis
we shall estimate ‖x‖ as

‖x‖ ≤ ‖F (T ;A)‖‖u‖+ ‖G(T ;A)‖‖x0‖,(3.2)

expressing the results in terms of ‖F (T ;A)‖ and ‖G(T ;A)‖.
4. Error analysis of the POD method of model reduction. Consider solv-

ing the initial value problem ẋ = f(x, t), x(0) = x0, using a POD reduced order model
in the interval [0, T ]. Then in effect we are solving the initial value problem (2.3).
We shall derive an estimate for the error e(t) = x̂(t) − x(t). Denote the component
of e(t) orthogonal to the subspace S by eo(t) and the component parallel to S by
ei(t). Thus eo(t) and ei(t) are orthogonal vectors. Hence by definition Peo(t) = 0
and Pei(t) = ei(t). It is important to observe that eo(t) comes from the first part of
the method, i.e., the subspace approximation. It is the error between x(t) and its pro-
jection onto the subspace S. If one is considering a data compression problem, then
eo(t) = e(t). But since we form a reduced order model by projecting the vector-field
onto S, we make further approximations resulting in the additional error ei(t).

Remark 4.1. Note that for any function g : [0, T ] → R
n, ‖g(t)‖ is a norm in R

n

which shall be the 2-norm throughout this paper. The function norm will be denoted
by ‖g‖, and unless explicitly stated otherwise it will be assumed to be the 2-norm.

We can derive an error estimate for ei(t) in terms of eo(t). Differentiating eo(t)+
ei(t) = x̂(t)− x(t) and substituting into the ODEs for x̂ and x, we get

ėo + ėi = Pf(x̂, t)− f(x, t).

Multiplying on the left by P and using P 2 = P , we obtain the initial value problem
for ei(t):

ėi = P (f(x(t) + eo(t) + ei, t)− f(x(t), t)); ei(0) = 0.(4.1)

Note that ei(0) = 0 since the starting point x̂0 is the projection of x0 onto S. Thus the
error ei is governed by (4.1), where we may regard x(t) and eo(t) as forcing terms. See
Figure 4.1, where x is the true solution, x̃ the projected solution, and x̂ the solution
of the reduced model. The errors ei and eo are also shown.

In the case of a linear time invariant system ẋ = Ax, (4.1) takes a simple form:

ėi = PAei + PAeo(t); ei(0) = 0.(4.2)
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ei

eo

x

x̃

x̂

S

Fig. 4.1. POD error.

Applying the notation of (3.1), we get the estimate

‖ei‖2 ≤ ‖F (T ; Â)‖‖Ã‖ε.
Hence the total error is

‖e‖2 ≤
(
‖F (T ; Â)‖‖Ã‖+ 1

)
ε.(4.3)

Here Â = ρAρT and Ã = ρAρTc , where ρ is the projection in subspace coordinates
(P = ρT ρ), and ρc is the orthogonal complement to ρ. ε is the 2-norm of eo (i.e.,
‖eo‖2 = ε).

Before we state a proposition for the general nonlinear case, recall the definition
of a logarithmic norm related to a 2-norm of a square matrix A ∈ R

k×k denoted by
µ(A):

µ(A) = lim
h→0,h>0

‖I + hA‖2 − 1

h
,

where I is the identity matrix [13].
Proposition 4.2. Consider solving the initial value problem ẋ = f(x, t), x(0) =

x0, using the POD reduced order model in the interval [0, T ]. Let ρ ∈ R
k×n be the

relevant projection matrix, and let S denote the affine subspace onto which POD
projects. Write the solution (of the full model) x(t) and the solution x̂(t) of the
reduced model as

x(t) = ρTu(t) + ρTc v(t) + x̄

and

x̂(t) = ρTu(t) + ρTw(t) + x̄

so that the errors eo(t) and ei(t) and the projected solution x̃(t) are given by

eo(t) = −ρTc v(t),

ei(t) = ρTw(t),
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and

x̃(t) = ρTu(t) + x̄.

Note that u(t) ∈ R
k, w(t) ∈ R

k, and v(t) ∈ R
n−k. Let γ ≥ 0 be the Lipschitz constant

of ρf(x, t) in the directions orthogonal to S in a region containing x(t) and x̃(t). To
be precise, suppose

‖ρf(x̃(t) + ρTc v, t)− ρf(x̃(t), t)‖ ≤ γ‖v‖
for all (v, t) ∈ D ⊂ R

n−k× [0, T ], where the region D is such that the associated region
D̃ = {(x̃(t) + ρTc v, t) : (v, t) ∈ D} ⊂ R

n × [0, T ] contains (x̃(t), t) and (x(t), t) for all
t ∈ [0, T ]. Let µ(ρ∂f

∂x (x̄+ ρT z, t)ρT ) ≤ µ̄ for (z, t) ∈ V ⊂ R
k × [0, T ], where the region

V is such that it contains (u(t), t) and (u(t) +w(t), t) for all t ∈ [0, T ] and µ denotes
the logarithmic norm related to the 2-norm. Let ε = ‖eo‖2. Then the error ei in the
∞-norm satisfies

‖ei‖∞ ≤ ε
γ√
2µ̄

√
e2µ̄T − 1,(4.4)

and the 2-norm of the total error satisfies

‖e‖2 ≤ ε

√
1 +

γ2

4µ̄2
(e2µ̄T − 1− 2µ̄T ).(4.5)

Proof. We shall closely follow the ideas in [13, pp. 54–60]. Since

ẇ(t) = ρf(x̄+ ρTu(t) + ρTw(t), t)− ρf(x̄+ ρTu(t) + ρTc v(t), t),

for h > 0 using Taylor expansion we have

‖w(t+ h)‖ = ‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t) + ρTc v(t), t)‖
+O(h2)

≤ ‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t), t)‖
+ h‖ρf(x̄+ ρTu(t) + ρTc v(t), t)− ρf(x̄+ ρTu(t), t)‖+O(h2).

Applying the mean value theorem to η �→ η + hρf(x̄+ ρT η, t), we get

‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t), t)‖
≤

(
max

η∈[u(t),u(t)+w(t)]

∥∥∥∥I + hρ
∂f

∂x
(x̄+ ρT η, t)ρT

∥∥∥∥
)
‖w(t)‖,

where for any two vectors η1, η2 in R
k, [η1, η2] denotes the line segment joining the

two. It follows that

‖w(t+ h)‖ − ‖w(t)‖
h

≤ µ̄‖w(t)‖+ γ‖v(t)‖+O(h),

where the O(h) term may be uniformly bounded independent of w(t) [13]. Then it
follows from Theorem 10.3 of [13] (also see Theorem 10.6 in [13]) that

‖ei(t)‖ = ‖w(t)‖ ≤ γ

∫ t

0

eµ̄(t−τ)‖v(t)‖dτ,
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since ei(t) = ρTw(t). After applying the Cauchy–Schwarz inequality on the right side,
we get

‖ei(t)‖ ≤ γ√
2µ̄

√
e2µ̄t − 1

√∫ t

0

‖eo(τ)‖2dτ.(4.6)

From this we readily obtain (4.4). Also bounding
√∫ t

0
‖eo(τ)‖2dτ by ε and integrating

(4.6), we obtain an upper bound for ‖ei‖2 which can be combined with ‖eo‖2 to get
(4.5).

Remark 4.3. This analysis separates the two different errors and provides a bound
for the total error in terms of the projection error ε of the true solution x(t). The value
of ε depends only on the true solution x(t) and on the pair (P , x̄) which determines
the reduced order model (but not directly on f). If P and x̄ were computed from
the true solution x(t) in the interval [0, T ] (this is somewhat an ideal situation), then

ε =
√∑n

j=k+1 λj , where λi are the eigenvalues of the covariance matrix. However, if

the reduced model was computed from some other trajectories as often is the case in
applications of model reduction methods, then ε would depend on how close x(t) was
to the trajectories used as data in addition to the quantity

∑n
j=k+1 λj (typically the

fractional error ε
‖x‖2

will be larger than
∑n

j=k+1 λj∑n
j=1 λj

). For instance, in hybrid systems

such as power systems where discrete events abruptly change some system parameters,
data obtained from trajectories before the event results in a reduced order model with
a large ε for simulations after the event [7].

Example 1. This example serves to illustrate the various factors that affect ei
given the same projection error eo. We shall consider a linear time invariant system
ẋ = Ax; x(0) = x0. Assume A has distinct eigenvalues and that it possesses some
fast decaying modes (eigenvalues with large negative real parts). Let S ⊂ R

n be the
invariant subspace corresponding to the rest of the eigenvalues, where S is k(< n)
dimensional. If we have sufficiently many trajectories that have initial conditions
symmetrically placed with respect to S, then the POD method will pick S as the
subspace to project onto. We shall assume this to be the case. Performing an or-
thonormal change of coordinates if needed, we may assume that S corresponds to the
last n− k coordinates being zero. In these coordinates, the A matrix has the form

A =

[
A1 A12

0 A2

]
,

where A1 ∈ R
k×k, A12 ∈ R

k×(n−k), and A2 ∈ R
(n−k)×(n−k). In fact the real Schur

decomposition of A will put it in the above form. We shall say A is “block normal”
if the off diagonal block A12 = 0.

Also note that

ρ =
[

Ik×k 0k×(n−k)

]
and

ρc =
[
0(n−k)×k I(n−k)×(n−k)

]
.

Hence µ̄ = µ(A1) and γ = ‖A12‖.
For a given initial condition and time interval, the error eo relates to the last

three components of the solution and does not change if A2 is unchanged. We can
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independently change µ̄ and γ by changing A1 and A12, respectively. We kept A2

unchanged, thus keeping ε = ‖eo‖2 unchanged, and studied the effects of changing
A1 (and hence µ̄) and A12 (and hence γ) independently on the POD error. First we
chose

A1 =




−0.1000 0 0

0 −0.1732 2.0

0 −2.0 −0.1732


 ,

A12 =




0.3893 0.5179 −1.543
1.390 1.300 0.8841

0.06293 −0.9078 −1.184


 ,

and

A2 =




−1.0 0 0

0 −1.226 −0.7080
0 0.7080 −1.226


 .

Note that the eigenvalues of A2 have large negative real parts compared to the eigen-
values of A1, and the eigenvalues of A are the union of these two sets. The correspond-
ing µ̄ = −1 and γ = 2.4419. We randomly chose an initial condition and computed
x(t), x̃(t), and x̂(t) in the interval [0, 5]. Note that the reduced model has dimension
3 and that the last three components of both x̃(t) and x̂(t) are zero. Similarly, the
first three components of ei(t) and eo(t) are zero. See Figure 4.2, where only the
nonzero components are plotted. The computed value of the projection error was
ε = ‖eo‖2 = 1.4575. The sup-norm and the 2-norm of the error in the subspace S
were also computed and found to be ‖ei‖∞ = 1.5589 and ‖ei‖2 = 2.5733. The bounds
provided by the theory were ‖ei‖∞ ≤ 6.3271 and ‖ei‖2 ≤ 10.7930.

The second choice was to keep A1 and A2 the same but scale A12 down by a
factor of 2. We kept the same initial condition and time interval. This results in the
same µ̄, but γ = 1.2209. In fact, according to (4.2), the effect of scaling A12 affects
the error ei linearly, and we expect ei(t) to be scaled down by the same factor of 2.
Figure 4.3 shows a plot of ei(t) for both cases. This highlights how the rate of change
of S components of the vector-field in the directions orthogonal to S affect the error.
In the extreme case when A12 = 0 (i.e., A is “block normal”), the components of the
vector-field parallel to S are invariant in the directions perpendicular to S, and the
error ei is zero. Thus the error ei is zero for a matrix that is “block normal” (with
respect to a decomposition of the space based on “fast decay” and the rest of the
eigenmodes) if the POD indeed captures the attracting subspace S correctly.

The error ei is more influenced by µ̄ than γ (as long as γ > 0), and µ̄ is supposed
to capture the growth or decay of solutions of the vector-field of the reduced model.
Keeping A2 and A12 the same, we changed A1 so that

A1 =




−0.1000 0 1.0

0 −0.1732 2.0

0 −2.0 −0.1732


 .
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Fig. 4.2. Example 1 on POD error. Solid: Projected solution x̃(t). Dashed: Reduced model so-
lution x̂(t). Dotted: Projection error eo(t). Only the three nonzero components x̃1, x̃2, x̃3, x̂1, x̂2, x̂3
and eo4, eo5, eo6 are plotted.
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Fig. 4.3. Example 1 on POD error. The effect of scaling A12 on the error ei in the subspace
S. Solid: ei for unscaled A12. Dotted: ei for scaled down A12. Only the three nonzero components
are plotted.

The corresponding µ̄ = 0.3647. Note that this does not change the eigenvalues of
A1, but it does change its normality. This choice of A1 is no longer normal, and
even though the eigenvalues remain the same, the short term behavior of ei(t) is
changed. In fact, ei(t) does not decay as much as in the normal case. This results
in ‖ei‖∞ = 2.2088 and ‖ei‖2 = 3.4565. The bounds provided by the theory are
‖ei‖∞ ≤ 25.4739 and ‖ei‖2 ≤ 28.3330.

5. Sensitivity of POD to perturbations in data. Given a data set x, POD
constructs a projection P (x) onto a subspace which may then be used to approxi-
mate some other data set y. If POD is applied to model reduction to compute the
approximation ŷ to the true solution y of some ODE initial value problem, then the
projection P (x) will influence ŷ. Typically in POD applications the data set x comes
from experimental measurement or numerical computations. Hence the data x has
some error associated with it. Therefore, it is important to study the effect of these
errors on the outcome of the POD model reduction procedure. In this section, we
shall theoretically investigate the effect of infinitesimal perturbations of x on P (x), ỹ,
and ŷ. We also look at the special case when y = x.
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5.1. POD sensitivity factor. Let x be a data set, and let P (x) be the corre-
sponding POD projection. In this section, we analyze the sensitivities of the POD
projection matrix P (x), with respect to variations in the data x. Our analysis applies
to any data set x taking values in R

n, but for simplicity of exposition we assume x to
be a single trajectory (x : [0, T ] → R

n) whenever we need to be concrete.
Shifting the origin in data space if necessary, we may assume the mean data values

x̄ = 0. In addition, we can find an orthonormal change of coordinates such that the
covariance matrix of x is diagonal. We shall call this a canonical coordinate system
for data set x. Assuming the use of these canonical coordinates, let

x =

n∑
α=1

xαeα,(5.1)

where eα are the standard basis vectors in R
n. Then it can be shown that the scalar

data sets xα are orthogonal. More specifically,

(xα, xβ) = λαδα,β .

Here λ1, λ2, . . . , λn are the eigenvalues of the covariance matrix of x. If, in addition, we
permute the coordinates such that λ1 ≥ λ2 · · · ≥ λn ≥ 0 are the ordered eigenvalues,
then we call this an ordered canonical coordinate system. Throughout the rest of the
analysis, we shall assume that, after ordering, λk > λk+1 unless stated otherwise.

The POD projection matrix P ∈ P ⊂ R
n×n is defined as the minimizer of the

function

e(P, x) = (Px− x, Px− x).

Differentiating with respect to P in the direction of E, we obtain

∂e

∂P
(E) = 2(Px− x,Ex).

Thus stationary points P of e are given by the condition

(Px− x,Ex) = 0, E ∈ TPP.

Performing an orthonormal change of coordinates if necessary, we may assume P = P0

(canonical projection) is a stationary point. Then all variations E ∈ V = TP0P.
Requiring (P0x − x,Eijx) = 0 for all Eij gives us the conditions that (xi, xj+k) = 0
for all 1 ≤ i ≤ k and 1 ≤ j ≤ n − k. This shows that all the stationary points of
e are given by P that project onto any of the k dimensional invariant subspaces of
the covariance matrix of x. A solution P to the above equation will be a strong local

minimum if and only if the second derivative ∂2e
∂P 2 is positive definite and this may be

shown to be equivalent to λk > λk+1. Under this assumption, P is also a well-defined
function of x locally.

Lemma 5.1. Without loss of generality, let P = P0 be a stationary point in some
canonical coordinate system (this may not be ordered). Let E ∈ V and Ẽ ∈ V be given
by

E =

[
0k×k Xk×n−k

XT
n−k×k 0n−k×n−k

]
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and

Ẽ =

[
0k×k X̃T

k×n−k

X̃n−k×k 0n−k×n−k

]
.

Then the Hessian satisfies

∂2e

∂P 2
(E)(Ẽ) = 2(XTx1, X̃

Tx1)− 2(Xx2, X̃x2).(5.2)

Proof. Since e is a function on the manifold P, one could introduce local coordi-
nates on P to compute the Hessian of e at a stationary point. However, we shall use a
coordinate independent method which allows us to work with matrices and keep the
algebra simple. It may be shown that if P (t, s) is a smooth mapping from R

2 into P
such that P (0, 0) = P0, Pt(0, 0) = E ∈ V and Ps(0, 0) = Ẽ ∈ V and if ∂e

∂P (P0) = 0,
then the Hessian at P = P0 is given by

∂2e

∂P 2
(E)(Ẽ) = ets(0, 0),

where P and e are regarded as functions of t and s and subscripts denote partial
derivatives.

Differentiating e = 2(Px− x, Px− x) with respect to t, we get

et = 2(Ptx, Px− x),

and differentiating again with respect to s, we get

ets = 2(Ptsx, Px− x) + 2(Ptx, Psx).(5.3)

Suppose

Pts(0, 0) =

[
W1 W2

W3 W4

]
.

The matrices W1,W2,W3, and W4 are not arbitrary but satisfy some relations. These
are obtained by differentiating the relation P 2 = P twice. In fact, we get

PtsP + PtPs + PsPt + PPts = Pts,

and after substituting expressions for P, Pt, Ps, and Pts (at (t, s) = (0, 0)) in the above
and using the fact that Pts is symmetric, we obtain that W1 = −X̃XT −XX̃T ,W4 =
X̃TX+XT X̃,WT

3 = W2, where W2 is an arbitrary k× (n−k) matrix. It then follows
that Pts(0, 0) = F +W , where

F =

[ −X̃XT −XX̃T 0

0 X̃TX +XT X̃

]

and

W =

[
0 W2

WT
2 0

]
,

and hence W ∈ V . Hence from (5.3) we obtain

ets(0, 0) = 2(Fx, P0x− x) + 2(Wx,P0x− x) + 2(Ex, Ẽx).
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Since ∂e
∂P = 0 at P (0, 0) = P0 by assumption and W ∈ V , it follows that (Wx,P0x−

x) = 0. Let x = (x1, x2), where x1(t) ∈ R
k and x2(t) ∈ R

n−k. It is easy to see that

(Ex, Ẽx) = (Xx2, X̃x2) + (XTx1, X̃
Tx1),

where the inner products on the right-hand side are in the appropriate function spaces.
Since (Fx, P0x − x) = ((P0 − 1)Fx, x), after computing (P0 − 1)F it can be shown
that

(Fx, P0x− x) = −(X̃TXx2 +XT X̃x2, x2) = −2(Xx2, X̃x2).

Equation (5.2) follows from this.

Remark 5.2. From (5.2) it may be shown that the Hessian ∂2e
∂P 2 has Eij as its

eigenvectors with corresponding eigenvalues 2(λi − λj+k) for 1 ≤ i ≤ k and 1 ≤ j ≤
n−k (note that we did not order the eigenvalues). Thus the stationary point P = P0

is a strong minimum (maximum) if and only if the first k eigenvalues are strictly
greater (smaller) than the rest. It is clear that if, after ordering, λk > λk+1, then
there is a unique strong minimum and a unique strong maximum. The rest of the
stationary points are saddle points.

The sensitivity of P to variations in data x is given by dP
dx (δx), the directional

derivative of P with respect to x in the direction δx, where δx : [0, T ] → R
n is

assumed to be a unit-norm variation of x (‖δx‖ = 1). It suffices to consider zero mean
variations. This is because one may decompose any variation δx ∈ L2([0, T ] → R

n)
into a constant function plus a zero mean function, and it is easy to see that the
constant function part affects only the mean value x̄ of the data while the zero mean
function part affects only the projection P .

Remark 5.3. Variations of variables are denoted by prefix δ except for variations
of P , which are denoted by E (or Ẽ, etc.). We will use the 2-norm for functions and
the Frobenius norm for matrices P and E.

The norm ‖dP
dx ‖ is defined by

∥∥∥∥dP

dx

∥∥∥∥ = sup‖δx‖=1

∥∥∥∥dP

dx
(δx)

∥∥∥∥
and measures the worst-case sensitivity of P to unit-norm variations of x. However,
it makes more sense to consider the nondimensional quantity defined by

Sk(x) =

∥∥∥∥dP

dx

∥∥∥∥ ‖x− x̄‖,(5.4)

which we shall call the POD sensitivity factor. It is the worst-case ratio (in the limit

of zero perturbation) of the perturbation of P to the fractional perturbation δ(x−x̄)
‖x−x̄‖ .

We use x− x̄ instead of x because P depends only on x− x̄. If we scale the data set x
by a constant c ∈ R, then both x̄ and x− x̄ also scale by c, but P remains unchanged
(P (cx) = P (x)). The definition of Sk takes care of this scaling symmetry. In fact, we
get Sk(x) = Sk(cx). Note that the suffix k stands for the dimension of the reduced
subspace S ⊂ R

n in which the projected data lives.
Proposition 5.4. Consider applying POD to a data set x to find the best approx-

imating k(< n) dimensional subspace. Let the ordered eigenvalues of the covariance
matrix of the data x be given by λ1 ≥ · · · ≥ λn. Suppose λk > λk+1, which ensures
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that P (x) is well defined. Then

Sk(x) = max
i≤k, j≤n−k

√
2

√
λi + λj+k

λi − λj+k

√
λ1 + · · ·+ λn ≥

√
2.(5.5)

Furthermore, in the ordered canonical coordinates corresponding to data x, the unit-
norm variation δx that causes the maximal variation in P is given by

δx =
E ĩ,j̃(x− x̄)√
λĩ + λj̃+k

,(5.6)

where i = ĩ and j = j̃ maximize the right-hand side of (5.5).
Proof. In this proof we will use ordered canonical coordinates. Differentiating

∂e
∂P (E) = 0 totally with respect to x in the δx direction, we get

∂2e

∂P 2
(E)

(
dP

dx
(δx)

)
+

∂2e

∂P∂x
(E)(δx) = 0 ∀E ∈ V.(5.7)

Hence dP
dx (δx) is implicitly defined through the above equation.

The mixed partial ∂2e
∂P∂x is given by

∂2e

∂P∂x
(E)(δx) = 2(Ex, (P − 1)δx) + 2(Eδx, (P − 1)x)

= 2((PE − E)x, δx) + 2((EP − E)x, δx)

= −2(Ex, δx),

(5.8)

where in the first step we used the fact that ET = E and PT = P , and in the
second step we used the fact that PE + EP = E (which comes from P 2 = P ). Note
that if x̄ �= 0, then e = (P (x − x̄) − (x − x̄), P (x − x̄) − (x − x̄)). Even though we
assumed without loss of generality that x̄ = 0, when we take variations of x we need
to consider the corresponding variations of x̄. However, since we care only about
zero mean variations δx, for those the corresponding variation δx̄ = 0. Hence we are
justified in neglecting the term x̄.

It is instructive to examine the finite dimensional space U of R
n-valued functions

defined by

U = span{E′(x− x̄) : E′ ∈ V }.(5.9)

From (5.8) (note that we assumed x̄ = 0) it can be seen that if δx is orthogonal to

U , then ∂2e
∂P∂x = 0, and hence by (5.7) dP

dx (δx) = 0. Since we are only interested in
variations δx that introduce nonzero variations in P , we shall assume δx ∈ U . It can
be shown that the map E′ ∈ V → E′(x− x̄) ∈ U is an isomorphism. This is readily
seen by evaluating this map on the basis Eij and showing that Eij(x − x̄) = Eijx
form an independent set. In fact,

Eijx = xiej+k + xj+kei,

and hence

(Eijx,Elmx) = λi + λj+k, l = i, j = m,

= 0 otherwise.
(5.10)
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Hence {Eijx : i = 1, . . . , k; j = 1, . . . , n − k} is an orthogonal set (and is clearly
independent as well).

Substitute (5.2) and (5.8) into the implicit equation (5.7) for dP
dx , and let

dP

dx
(δx) =

[
0 X̃

X̃T 0

]

and δx = (δx1, δx2), where δx1(t) ∈ R
k and δx2(t) ∈ R

n−k. Then we obtain an
equation for X̃:

(XTx1, X̃
Tx1)− (Xx2, X̃x2) = (Xx2, δx1) + (XTx1, δx2) ∀X ∈ R

k×(n−k).(5.11)

Let δx = E′x ∈ U , where

E′ =
∑
l,m

αlm
Elm√

λl + λm+k

,

and let X̃ =
∑

l,m βlmXlm. Substituting these into (5.11) for X = Xij , we get

βij = αij

√
λi + λj+k

λi − λj+k
.

Hence it follows that

dP

dx
(δx) =

∑
i,j

αij

√
λi + λj+k

λi − λj+k
Eij .(5.12)

The requirement that ‖δx‖ = 1 is equivalent to
∑

i,j α
2
ij = 1. Since ‖Eij‖ =

√
2, it

follows that ∥∥∥∥dP

dx

∥∥∥∥ = max
i≤k, j≤n−k

√
2

√
λi + λj+k

λi − λj+k
,(5.13)

with the maximizing unit-norm variation δx given by (5.6). (Note that we need to
replace x by x− x̄, since we assumed for simplicity that x̄ = 0.) The equation in (5.5)
follows from this. The inequality in (5.5) follows because

max
i≤k,j≤n−k

√
λi + λj+k

λi − λj+k

√
λ1 + · · ·+ λn ≥ max

i≤k,j≤n−k

λi + λj+k

λi − λj+k
≥ 1.

The following corollary is obvious from the above proof.
Corollary 5.5. Assuming λk > λk+1 as before and the use of ordered canonical

coordinates, the linear map δx ∈ U �→ E(x−x̄) ∈ U , where E = dP
dx (δx), is self-adjoint

and has as its eigenvectors the orthonormal basis of U given by {uij} for i = 1, . . . , k
and j = 1, . . . , n− k, which are defined by

uij = Eij(x− x̄) =
xiej+k + xj+kei√

λi + λj+k

.

The corresponding eigenvalues are
λi+λj+k

λi−λj+k
. Hence the induced 2-norm of this operator

is λk+λk+1

λk−λk+1
.
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x

x + δx

(x̄,P (x) = P )

(x̄ + δx̄, P (x + δx) = P + E)

x̃

ξ = ‖x̃− x‖2

x̃ + δx̃1

ξ + δξ1 = ‖x̃ + δx̃1 − x‖2

x̃ + δx̃2

ξ + δξ2 = ‖x̃ + δx̃2 − x‖2

x̃ + δx̃

ξ + δξ = ‖x̃ + δx̃− x‖2
Fig. 5.1. POD sensitivity for y near x: This shows the four different possibilities of using

the reduced models computed from x and y = x + δx to approximate these data sets. The solid
arrows indicate the construction of a POD reduced model from a data set. A pair of dashed and
dotted arrows together show the reduced model being applied to a data set to obtain a reduced and
approximate data set. The approximate data obtained and its square error with respect to x are
shown on the far right.

Remark 5.6. Proposition 5.4 was concerned with the POD method of finding the
best approximating affine subspace using the mean and the covariance matrix of the
data x. Instead, if we considered the POD method of finding the best approximating
linear subspace using the correlation matrix, then we get the same equations and the
same final expression (5.5) for Sk(x) (in the definition of the space U , (x− x̄) needs to
be replaced by x). However, x, the perturbation δx, and the worst-case perturbation
of δx as well as functions in the space U are no longer necessarily zero mean.

5.2. Sensitivity of the projected data ỹ = P (x)(y − x̄) + x̄ and the
error ‖ỹ − y‖2 when y = x and/or y = x+ δx. In some applications the POD
reduced model (x̄, P (x)) constructed from a data set x may be used to approximate
x itself (y = x situation) or some nearby data y = x + δx. For instance, consider
coding a 512 × 512 grey scale image by dividing it into subimages of size 8 × 8 to
provide an ensemble of 4096(= 64× 64) points in the 64 dimensional subimage space.
Suppose that by applying POD to this ensemble we find a subspace of dimension 6
that captures 99.9% of the energy. We could then apply the POD projection to the
subimages and code the entire image using 4096 × 6 grey scale values. This is the
y = x situation. If we have a sequence of nearby images (such as in video), then we
can use the same reduced model (x̄, P (x)) for the nearby images y = x+ δx.

From a theoretical point of view, several different sensitivities may be of interest.
These are shown in Figure 5.1. The sensitivities δx̃1 and δξ1 correspond to the
situation where the same reduced model (x̄, P (x)) (obtained from x) is applied to
both x and to a nearby y = x + δx. The quantity δx̃1 is the perturbation of the
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approximate data, and δξ1 is the perturbation of the square error ξ = ‖x̃−x‖2. Thus

δx̃1 = (P (x)(x+ δx− x̄) + x̄)− x̃

and

δξ1 = ‖(x̃+ δx̃1)− (x+ δx)‖2 − ξ,

where x̃ = P (x)(x − x̄) + x̄. This is the most common kind of sensitivity one is
interested in in practice. Note that the reason for considering the square of the error
rather than the error ‖x̃− x‖ itself is because the square root is not smooth when its
argument is zero.

The sensitivities δx̃2 and δξ2 correspond to the situation where two nearby re-
duced models (x̄, P (x)) and (x̄+ δx̄, P (x+ δx) are applied to the same data x. Thus

δx̃2 = (P (x+ δx)(x− (x̄+ δx̄)) + (x̄+ δx̄))− x̃

and

δξ2 = ‖(x̃+ δx̃2)− x‖2 − ξ.

The sensitivities δx̃ and δξ correspond to the situation where two nearby reduced
models (x̄, P (x)) and (x̄+ δx̄, P (x+ δx)) are applied to the respective data sets x and
x+ δx from which they were constructed. Thus

δx̃ = (P (x+ δx)((x+ δx)− (x̄+ δx̄)) + (x̄+ δx̄))− x̃

and

δξ = ‖(x̃+ δx̃)− (x+ δx)‖2 − ξ.

We provide a useful and easy-to-prove lemma stated without proof.
Lemma 5.7. Let L : H → H be a linear operator in the Hilbert space H. Let K ⊂

H be a closed linear subspace of H. Then we can write H = K ⊕K⊥. Furthermore,
suppose L(K) ⊂ K and L(K⊥) ⊂ K⊥ and that the restrictions L|K and L|K⊥ are
bounded operators. Then ‖L‖2 = max{‖L|K‖2, ‖L|K⊥‖2}.

Proposition 5.8. Consider applying POD to a data set x to find the best approx-
imating k(< n) dimensional subspace. Let the ordered eigenvalues of the covariance
matrix of the data x be given by λ1 ≥ · · · ≥ λn. Suppose λk > λk+1, which en-
sures that P (x) is well defined. Consider the sensitivities depicted in Figure 5.1. For
unit-norm (infinitesimal) variations δx of x, the worst-case variations are given by

‖δx̃1‖ = ‖δx‖,(5.14)

‖δx̃2‖ = λk + λk+1

λk − λk+1
> 1,(5.15)

‖δx̃‖ = λk +
√

λkλk+1

λk − λk+1
> 1,(5.16)

|δξ1| = |δξ| = 2‖x̃− x‖ = 2
√

ξ,(5.17)

δξ2 = 0.(5.18)

(All norms are 2-norms.)
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Proof. We shall use the ordered canonical coordinate system whenever necessary.
We define some relevant subspaces. As before we shall consider the data x to be a

single trajectory x : [0, T ] → R
n for simplicity of exposition. However, the results will

hold for more general types of data. We shall assume x ∈ L2([0, T ],R
n), the space of

all square integrable R
n-valued functions in [0, T ]. Let Z ⊂ L2([0, T ],R

n) denote the
(closed) subspace of all zero mean functions:

Z =

{
x ∈ L2([0, T ],R

n) :

∫ T

0

xdt = 0

}
.

Its orthogonal complement Z⊥ is finite dimensional and consists of functions that are
constant-valued (almost everywhere) in [0, T ]. We shall further decompose Z into the
orthogonal sum Z = W ⊕ Y , where

W = span

{
xα√
λα

eβ : α = 1, . . . , ñ, β = 1, . . . , n

}
.(5.19)

Here ñ is the number of nonzero eigenvalues of the covariance matrix associated
with trajectory x (thus W depends on x), and xα are its components in the ordered
canonical coordinate system. Since Y is the orthogonal complement of W in Z, it
is closed. The nñ dimensional W is further decomposed into the orthogonal sum
W = U ⊕ U2 ⊕ V1 ⊕ V2, where

U = span

{
uij =

xiej+k + xj+kei√
λi + λj+k

: i = 1, . . . , k; j = 1, . . . , n− k

}
,

U2 = span

{
u2
ij =

λj+kxiej+k − λixj+kei√
λiλj+k(λi + λj+k)

: i = 1, . . . , k; j = 1, . . . , ñ− k

}
,

V1 = span

{
xieα√

λi

: i = 1, . . . , k; α = 1, . . . , k

}
,

V2 = span

{
xj+keβ+k√

λj+k

: j = 1, . . . , ñ− k; β = 1, . . . , n− k

}
.

It should be noted that the spanning elements above form orthonormal bases for the
respective subspaces. Furthermore, define Ũ = U ⊕ U2 and V = V1 ⊕ V2. Also note
that U defined above is the same as in (5.9).

The perturbation δx̃1 is given by

δx̃1 = P (x)(x+ δx− x̄) + x̄− P (x)(x− x̄)− x̄

and simplifies to δx̃1 = P (x)δx. Hence the worst perturbation δx is in the image of
P (x), resulting in δx̃1 = δx. Note that this holds for finite as well as infinitesimal
perturbations.

The variation δx̃2 is given by

δx̃2 = E(x− x̄) + (1− P (x))δx̄,

where E = dP
dx (δx). Note that δx ∈ Z⊥ implies that E = 0 and hence that δx̃2 =

(1−P )δx̄ ∈ Z⊥. Also note that δx ∈ Z implies δx̃2 ∈ Z. Furthermore, if δx ∈ Z and
δx ⊥ U , then δx̃2 = 0. If δx ∈ U , then δx̃2 = E(x − x̄) ∈ U ⊂ Z. From Corollary
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5.5 and Lemma 5.7 it is clear that the worst-case variation ‖δx̃2‖ = λk+λk+1

λk−λk+1
> 1 and

that it corresponds to δx = xkek+1+xk+1ek√
λk+λk+1

.

The variation δx̃ is given by

δx̃ = E(x− x̄) + Pδx− Pδx̄+ δx̄.

Denote by L the operator that maps δx to δx̃. The following are easy to establish:
L(Z) ⊂ Z, L(Z⊥) ⊂ Z⊥, L(W ) ⊂ W , L(Y ) ⊂ Y , L(V ) ⊂ V , and L(Ũ) ⊂ Ũ . If
δx ∈ Z⊥, then δx̃ = δx = δx̄, so ‖L|Z⊥‖ = 1. If δx ∈ Z and δx ⊥ Ũ , it follows that
δx̃ = Pδx. Hence by Lemma 5.7

‖L‖ = max{‖L|Ũ‖, 1}.

It can be verified that the following orthonormal basis of Ũ are eigenvectors of
the finite dimensional operator L|Ũ : Ũ → Ũ :{

xiej+k√
2λi

+
xj+kei√
2λj+k

,
xiej+k√

2λi

− xj+kei√
2λj+k

,
xiej̃+k√

2λi

: i = 1, . . . , k; j = 1, . . . , ñ− k;

j̃ = ñ− k + 1, . . . , n− k

}
.

The eigenvectors {xiej̃+k√
2λi

} all have eigenvalue 1. The eigenvectors {xiej+k√
2λi

+
xj+kei√

2λj+k

}

have corresponding eigenvalues
λi+

√
λiλj+k

λi−λj+k
> 1. The eigenvectors {xiej+k√

2λi
− xj+kei√

2λj+k

}

have corresponding (positive) eigenvalues
λi−

√
λiλj+k

λi−λj+k
< 1. Hence the norm ‖L|Ũ‖ is

given by the largest eigenvalue
λk+

√
λkλk+1

λk−λk+1
> 1. Hence ‖L‖ = λk+

√
λkλk+1

λk−λk+1
.

The (infinitesimal) variation δξ1 is given by

δξ1 = 2(x̃− x, δx̃1 − δx) = (x̃− x, (P − 1)δx),

and hence the worst case is when δx = ± x̃−x
‖x̃−x‖ and results in |δξ1| = 2‖x̃− x‖.

The variation δξ is given by

δξ = 2(x̃− x, δx̃− δx)
= 2(x̃− x,E(x− x̄)) + 2(x̃− x, (1− P )δx̄) + 2(x̃− x, (1− P )δx)
= 2(x̃− x, (1− P )δx).

As before, the worst-case variation is given by δx = ± x̃−x
‖x̃−x‖ and results in |δξ| =

2‖x̃− x‖.
The variation δξ2 is given by

δξ2 = 2(x̃− x, δx̃2)
= 2(x̃− x,E(x− x̄)) + 2(x̃− x, (1− P )δx̄).

Since x̃− x ∈ V2, E(x− x̄) ∈ U , and (1− P )δx̄ ∈ Z⊥, it follows that δξ2 = 0.
Remark 5.9. The above proposition shows that the projected data x̃ may become

extremely sensitive to perturbations in the data set when λk ≈ λk+1. However, the
(square of the) error itself does not show this sensitivity. This is related to the fact
that when λk = λk+1 there are infinitely many choices for P (x) and thus for x̃, and
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these different choices for x̃ may be quite different from each other. However, they
all have exactly the same error

√
λk+1 + · · ·+ λn. It should also be noted that our

sensitivity results hold for infinitesimal variations, and finite perturbations are likely
not to be as sensitive as the first derivative may suggest.

Example 2. This example illustrates a situation where the reduced model solution
is very sensitive to perturbations of the trajectory x used as POD data. We consider
a dissipative ODE example which has a periodic orbit which is a global attractor.
Consider the ODE

ẋ = A(x− f(t)) + f ′(t), x ∈ R
n,

where f : R → R
n is smooth. Observe that for any choice of A and f , x = f(t) is a

trajectory of this system. We exploit this fact to independently choose f(t) and A to
create an interesting example which highlights some of the potential problems with
the POD procedure.

We chose f(t) to be periodic and A to be a constant matrix with all of its eigen-
values in the complex left half plane. Thus x = f(t) will be a global attractor of this
system. Specifically we chose f(t) to be of the form

f(t) =

(√
a1 sin

(
2πt

25

)
,
√
a2 cos

(
2πt

25

)
,
√
a3 sin

(
4πt

25

)
,
√
a4 cos

(
4πt

25

))T

,

where ai are real nonnegative constants. This trajectory has period 25. If we use
this trajectory in the interval [0, 50] (two periods) as POD data, we will get a reduced
model with x̄ = 0 and a diagonal covariance matrix R with Rii = 25ai. This is because
the component functions of f(t) in the interval [0, 50] form an orthogonal set. If we
choose a4 = 0 (or very small), then the POD procedure based on this trajectory will
give a reduced model ODE by projecting onto the first three components in R

4. This
projection will preserve all (or almost all) of the energy of the POD data trajectory.
Now consider a matrix A that has all of its eigenvalues in the complex left half plane,
but its submatrix consisting of the first three rows and columns (i.e., the projection
of A onto the first three components in R

4) has an eigenvalue in the complex right
half plane. Such a choice of A will lead to a reduced model which is unstable. If
a4 = 0, the global attractor x = f(t) will still be a trajectory of the reduced model
but it will not be an attractor. Thus the qualitative behavior of the reduced model
will be quite different even though the POD procedure is based on a global attractor
of a dissipative system.

In order to find such an A, we first chose A to be diagonalizable with eigenvalues

λ(A) = {−0.7 + 0.4i,−0.7− 0.4i,−0.2,−0.1}.
Then by trial and error, applying random similarity transformations, we found an A
with the above canonical form such that its submatrix consisting of the first three
rows and columns had an eigenvalue of about 1.8 in the complex right half plane.

If we choose a4 = 0, then with k = 3 we do not expect high sensitivity to per-
turbations in the data. However, we get an interesting example where doing POD on
a lower dimensional global attractor still leads to a reduced model which is unstable
and qualitatively different. Since we were interested in studying the effects of per-
turbations in the POD data on the final outcome of a POD reduced model solution,
instead of choosing a4 = 0, we chose the following values for ai:

a1 = 5, a2 = 0.5, a3 = 0.011, a4 = 0.01,
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Fig. 5.2. Example 2: True solution x(t).

where a3 ≈ a4. With this choice, a reduced model of dimension k = 3 will capture
most of the energy, but we will expect high sensitivity to small perturbations in the
POD data. We chose the initial value problem with x(0) = f(0) and time interval
[0, 50]. Thus the solution trajectory is x = f(t) and consists of two periods. In order
to incoorporate the effects of numerical errors, we computed the solution using the
MATLAB solver ode45 and then computed the POD reduced model of dimension
k = 3 numerically. We also numerically computed the projected trajectory x̃ as well
as the solution x̂ of the reduced ODE model. We found that the POD procedure
preserved 99.8% of the energy and that the sensitivity factor was Sk = 480. We found
‖x‖ = 11.75 and ‖x̃‖ = 11.74. The reduced model solution was highly unstable and
‖x̂‖ = 1.25×1038. The eigenvalues of the reduced model matrix were {1.80,−0.281+
0.217i,−0.281− 0.217i}.

Then we perturbed the trajectory x by δx in the direction given by (5.6) that
creates the worst perturbation in P . We chose ‖δx‖ = 0.1. We then computed
the POD reduced model corresponding to x + δx and also computed the perturbed
projected trajectory x̃ + δx̃ as well as the perturbed reduced model solution x̂ + δx̂.
Figure 5.2 shows a plot of the numerically computed true solution x(t) (i.e., the full
model solution). Figures 5.3 and 5.4 show how a small perturbation in x leads to
a larger perturbation in x̃, and Figure 5.5 shows an even larger perturbation in x̂.
We also observed that while the unperturbed reduced model projected almost onto
the first three components in R

4, the perturbed reduced model was projecting onto a
subspace that consisted of the span of {e1, e2} and a combination of e3 and e4, and
this subspace was rotated from the span of {e1, e2, e3} by an angle of about 41◦ (ei
being the standard basis vectors in R

4). It was also observed that the eigenvalues of
the perturbed reduced model matrix were {2.89,−0.337,−0.166}, which correspond
to a larger instability and a qualitatively different nonoscillatory behavior from that
of the unperturbed reduced model.

This example illustrates two potential inadequacies of the POD method. One
is that even capturing 100% of the energy of a globally attracting low dimensional
trajectory may still lead to a POD reduced model with the wrong dynamics. Second,
it also illustrates how POD sensitivity to the data trajectory may lead to qualitatively
different reduced models.

The first problem is related to two factors. One is that a single trajectory (even
a global attractor) or a set of trajectories alone does not carry all the information
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Fig. 5.3. Example 2. Perturbation of x: Solid: x; dashed: x+ δx. The perturbation is so small

( ‖δx‖‖x‖ = 0.0085) that the two trajectories are barely distinguishable. Note that all four components

are plotted for both x and x+δx. The perturbation is only noticeable in the two smaller components.
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Fig. 5.4. Example 2. Perturbation of x̃: Solid: x̃; dashed: x̃ + δx̃. The perturbation is larger
than that of x but still not noticeable for the two large components.

about the dynamics. Second, the projection of a vector-field onto a given subspace
does not preserve its stability characteristics. Our example has these characteristics
and in addition has a high sensitivity factor.

5.3. Effect of POD sensitivity in data representation and model re-
duction. Consider the reduced model (x̄, P (x)) obtained from a data set x. Sup-
pose we apply this reduced model to represent another data set y and obtain ỹ =
P (x)(y − x̄) + x̄. The previous subsection was concerned with the special situation
where y = x. In general situations, the data set y is different from x. The variation
δỹ due to a variation δx is given by

δỹ = E(y − x̄) + δx̄− Pδx̄,

where E is the corresponding variation of P . Since ‖E‖ ≤ Sk
‖δ(x−x̄)‖
‖x−x̄‖ (assuming

‖x− x̄‖ �= 0), we obtain

‖δỹ‖ ≤ Sk
‖y − x̄‖
‖x− x̄‖‖δ(x− x̄)‖+ ‖δx̄‖.
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Fig. 5.5. Example 2. Perturbation of x̂: Solid: x̂; dashed: x̂ + δx̂. Note that x̂ appears to be
zero since it is of the order 1038, while x̂+ δx̂ is of the order 1061.

Assuming further that ‖y‖ �= 0, we obtain the following fractional sensitivity relation:

‖δỹ‖
‖y‖ ≤ Sk

‖y − x̄‖
‖y‖

‖δ(x− x̄)‖
‖x− x̄‖ +

‖δx̄‖
‖y‖ .(5.20)

Now let us consider the case where we use the reduced model (x̄, P (x)) to compute
the solution of an ODE initial value problem for a linear time invariant system ẏ = Ay,
with initial condition y(0) = y0 in the interval [0, T ]. Let y denote the true solution
and ŷ denote the reduced model solution. Then ŷ satisfies the initial value problem
˙̂y = PAŷ, ŷ(0) = P (y0 − x̄) + x̄. Taking variations, we get

δ ˙̂y = PAδŷ + EAŷ,

with initial condition δŷ(0) = E(y0 − x̄) − Pδx̄ + δx̄. Hence applying the estimate
(3.2), we get

‖δŷ‖ ≤ ‖F (T ;PA)‖‖E‖‖A‖‖ŷ‖+ ‖G(T ;PA)‖‖E‖‖y0 − x̄‖+ ‖G(T ;PA)‖‖δx̄‖,

where F and G are defined by (3.1). Since ‖E‖ ≤ Sk
‖δ(x−x̄)‖
‖x−x̄‖ , it follows that

‖δŷ‖
‖ŷ‖ ≤

(
‖F (T ;PA)‖‖A‖+ ‖G(T ;PA)‖‖y0 − x̄‖

‖ŷ‖
)

Sk
‖δ(x− x̄)‖
‖x− x̄‖

+ ‖G(T ;PA)‖ ‖δx̄‖
‖x− x̄‖ .

(5.21)

Example 3. We considered the same initial value problem of Example 2 in the
same interval. However, instead of using the true solution as POD data, we used the
set of eight trajectories x obtained by solving the system in the same interval with
the symmetrically placed initial conditions x(0) = ei and x(0) = −ei for i = 1, . . . , 4,
where ei ∈ R

4 are the standard basis vectors as POD data, and computed the rank 3
projection matrix P (x). The sensitivity factor was Sk = 10.140. We then perturbed
this data set x in the direction given by (5.6) (this gives the worst perturbation in
P ) by an amount ‖δx‖ = 0.5. The norm of the data set was ‖x‖ = 54.070, and
‖x− x̄‖ = 52.90. Thus we had the fractional change ‖δx‖/‖x− x̄‖ = 0.0095. We also
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Fig. 5.6. Example 3. Perturbation of ỹ: Solid: ỹ; dashed: ỹ + δỹ.
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Fig. 5.7. Example 3. Perturbation of ŷ: Solid: ŷ; dashed: ŷ + δŷ.

computed the projections P (x) and P (x + δx) corresponding to the data sets x and
x+ δx.

Denote by y the true solution of the initial value problem. (This is the same as
x(t) of Example 2 in Figure 5.2.) We applied both reduced models P (x) and P (x+δx)
to compute ỹ = P (x)(y − x̄) + x̄ and ỹ + δỹ = P (x + δx)(y − x̄ − δx̄) + x̄ + δx̄, the
projected solutions. Figure 5.6 shows the two different projected solutions.

We then computed the reduced model solutions ŷ and ŷ+δŷ corresponding to P (x)
and P (x + δx), respectively. These are plotted in Figure 5.7. This again illustrates
how a small perturbation in the POD data set may cause a large perturbation in the
reduced model solution.

Remark 5.10. In this section we basically saw how POD results may be very
sensitive to slight perturbations in the data when λk ≈ λk+1. However, one needs to
be careful in interpreting these results. This raises the question of whether one should
consider the sensitivity factor Sk (in addition to the projection error

√
λk+1 + · · ·+ λn)

as an important factor in choosing an appropriate dimension k for the reduced model.
Sometimes the distribution of eigenvalues may be such that seeking higher accuracy
may lead to a high sensitivity factor Sk. The importance of Sk depends on the na-
ture of the application. It must also be noted that our sensitivity analysis holds only
for infinitesimal perturbations; the sensitivity for finite perturbations is likely to be
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different. For instance, infinitesimal analysis predicts that in the limit λk → λk+1

the sensitivity of P with respect to x grows indefinitely. However, since projection
matrices live on a compact set (‖P‖ = 1), the finite perturbations of P cannot grow
indefinitely. As mentioned in Remark 5.9, when y ≈ x, for data compression type
problems we have already argued that the sensitivity factor is not a serious issue.
However, in reduced order models for ODEs, Examples 2 and 3 show how a small
perturbation in the POD data may lead to very large perturbations in the reduced
model solutions.

In addition, we would like to note that in iterative methods based on POD such
as the DIRM method [20, 21], the convergence of the iterations will depend on the
sensitivity factor. This has been theoretically and numerically demonstrated in [20].

6. Computational complexity of POD reduced order models. Since the
POD method of model reduction results in a smaller dimensional system of ODEs, one
might expect computational savings when integrating the resulting system. However,
this may not be so in practice. In this section we shall take a close look at the
complexity of computation for integrating a system of ODEs (initial value problems)
and evaluate the savings if any in using the POD method.

To be precise, by complexity we shall mean the asymptotic behavior of the number
of floating point operations (flops—addition, multiplication, and elementary functions
each count as one flop) involved per integration step as the system size n (k for re-
duced models) becomes very large. Table 6.1 shows the complexity of various basic
operations that are used in integration of ODEs. All matrices are n× n and vectors
are n dimensional. Banded matrices are assumed to have b+ 1 nonzero entries sym-
metrically placed around the diagonal. See [11] for details on complexity of linear
algebraic operations. We slightly abuse the notation and denote by f(n) the number
of flops involved in computing a nonlinear vector-field f(x, t), where f : R

n×R → R
n.

Computing the reduced order vector-field ρf(ρT z+ x̄, t) could potentially be more ex-
pensive than f(n). If this is naively treated as a composition of functions, then the
complexity is f(n)+4nk (two matrix-vector multiplications should be included). De-
pending on the form of f , one may not be able to improve on this. However, often
the analytical formula ρf(ρT z+ x̄, t) may be simplified, especially if f is a polynomial

in x. We shall denote the complexity of this term by f̂(k, n). This may be bounded
as follows:

f̂(k, n) ≤ f(n) + 4nk.

For Jacobian evaluations we have assumed the use of centered finite differences. See
[9] for efficient numerical evaluation of banded Jacobians by finite difference approx-

imation. Throughout the rest of this section we will assume that f(n) and f̂(k, n)
are of order greater than or equal to n and k, respectively. Under this assumption we
can ignore the subtractions and divisions involved in computing the finite differences.
If analytical Jacobians are used, the corresponding complexity is likely to be similar
[5]. It must be noted that even if the original Jacobian is banded, the reduced model
Jacobian is not likely to be.

First we shall consider a linear time invariant system ẋ = Ax. Table 6.2 shows
the asymptotic complexities for various cases. The explicit method considered is for-
ward Euler, and the implicit method considered is backward Euler. The explicit case
(xn = xn−1+hnAxn−1) involves basically a matrix-vector product. The implicit case
involves solving the equation (I−hnA)xn = xn−1 at each time step. We assumed that
this is done by Gaussian elimination, first doing an LU decomposition and then two
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Table 6.1
Complexity of some basic operations. Dense and banded refer to the full model Jacobians.

Jacobian evaluation assumes centered finite differencing.

Dense Banded

Matrix-vector product Ab 2n2 2bn

LU decomposition 2n3

3
b2n
2

Triangular linear system solve n2 bn

Nonlinear function evaluation f(n) f(n)

Nonlinear function evaluation (reduced model) f̂(k, n) f̂(k, n)

Nonlinear Jacobian evaluation 2nf(n) 2(b+ 1)f(n)

Nonlinear Jacobian evaluation (reduced model) 2kf̂(k, n) 2kf̂(k, n)

Table 6.2
Asymptotic complexity for linear systems.

Full model Reduced model Full model Reduced model
explicit explicit implicit implicit

Dense 2n2 2k2 n3

15
k3

15

Banded 2bn 2k2 ( b
2

20
+ 3b+ 2)n k3

15

triangular system solves (one forward and one backward). Usually the LU decomposi-
tion needs to be computed only whenever the time step hn changes. Throughout this
section we shall assume that on average, the LU decomposition needs to be computed

only once every 10 time steps. Thus we obtain a complexity of n3

15 +2n2+ n2

10 +
n
10 ∼ n3

15

for a dense matrix A and ( b
2

20 + 3b + 2)n for a banded matrix A (the quantity b is
held constant). If a POD reduced order model of dimension k(< n) is used, then we
replace n by k in most of the expressions except for that for banded A (the reduced
model matrix ρAρT is not likely to be banded, and we shall assume it to be dense). It
must be noted that in several examples when n → ∞, the adequate size k of a reduced
model remains constant after an initial growth. This is especially true in discretized
PDE systems, since a finite number of empirical modes are adequate to capture any
given percentage of the energy. As a result the asymptotic formulae for k → ∞ are
often not applicable.

For nonlinear systems ẋ = f(x, t), the explicit method (forward Euler) involves
evaluating xn = xn−1 + hnf(xn−1, tn−1); hence the complexity is f(n) + 2n ∼ f(n).
If the reduced model is used, then one needs to evaluate ρf(ρT zn−1 + x̄, tn−1), and

the corresponding complexity is f̂(k, n) + 2k ∼ f̂(k, n).

For the implicit case one needs to solve the nonlinear system of equations

F (xn) � xn − xn−1 − hnf(xn, tn) = 0

for xn. This is done typically by Newton iteration[
I − hn

∂f

∂x

]
δ(m)
n = xn−1 − x(m−1)

n + hnf(x
(m−1)
n , tn),(6.1)

where δ
(m)
n = x

(m)
n − x

(m−1)
n is the correction. Ideally

∂f

∂x
=

∂f

∂x
(x(m−1)

n , tn);
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Table 6.3
Asymptotic complexity for nonlinear systems.

Full model Reduced model Full model Reduced model
explicit explicit implicit implicit

Dense f(n) f̂(k, n) nf(n)
5

+ n3

15
kf̂(k,n)

5
+ k3

15

Banded f(n) f̂(k, n) bf(n)
5

+ b2n
20

kf̂(k,n)
5

+ k3

15

hence the Jacobian should be evaluated at every Newton iteration inside a given time
step. In practice it has been observed that one could get away with keeping the
Jacobian unchanged not only during the Newton iteration but also for a few time
steps, without severely compromising the accuracy. We assumed that the Jacobian
update and the LU decomposition typically need to be done only once every 10 time
steps. Note that the right-hand side of (6.1), however, needs to be computed at every
Newton iteration. The evaluation of the right-hand side alone requires an asymptotic
complexity of f(n) at every Newton iteration for the full model. For the model
reduced system one needs to evaluate ρf(ρT zn+ x̄, tn), which involves an asymptotic

complexity of f̂(k, n). It is reasonable to assume that the number of Newton iterations
per time step is on average a number independent of system size n (or k for the reduced
model). Often in practice this could be about 2. Thus asymptotically the complexity
of the Jacobian evaluations dominates over the complexity of evaluating the right-
hand side of (6.1). Under these assumptions we get the asymptotic complexities
shown in Table 6.3.

For nonlinear systems with explicit solver the asymptotic savings depend solely on
the complexity of the nonlinear function evaluations f(n) and f̂(k, n). Hence savings
can be expected only if ρf(ρT z + x̄, t) can be analytically simplified.

For nonlinear systems with implicit solver the complexity has two components:
one from the nonlinear function evaluations and the other from the linear algebra.
Depending on the complexity of f (or f̂ for reduced models), one of these terms
may be dominant. Asymptotic savings achieved depend on several factors including
complexity of f(n) and f̂(k, n) as well as the assumptions on asymptotic behavior of
k as n → ∞.

In our complexity analysis we have made several assumptions which are not always
valid in practice. Even though most of these assumptions are reasonable, the combined
error in our estimate of computational savings can sometimes be wrong by more than
a factor of 10. For instance, we looked at complexity per time step. This is useful only
if both the full model and the reduced model took more or less the same number of
time steps. In the two examples here, the number of time steps did not vary by more
than a factor of 2, except for the case of the explicit solver applied to the nonlinear
PDE example with reduced model dimension k = 6. The asymptotic formulae may
not be very applicable for the reduced models because of their smaller size. In addition
we ignored computations associated with adaptive stepsize control, which seem to be
a significant percentage, for the banded Jacobian case.

It must also be noted that we assumed that we care only about the solution value
at the final time (or perhaps only at a few different points in the time interval), and
this allowed us to ignore the cost of computing x̂ = ρT z + x̄. The next two examples
illustrate how various complex factors can affect the computational savings achieved
by the use of POD reduced order models.

Example 4 (RC circuit—dense Jacobian). We considered the example of an
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electric circuit with resistors and capacitors. By connecting each node to every other
node, we obtain a dense Jacobian. One of the nodes is considered the ground (has
zero voltage). Such a circuit with n nodes other than ground is described by a first
order system of n linear ODEs. The current ijk from the jth node to the k node is
given by

ijk = gjk(vj − vk) + cjk(v̇j − v̇k),

where gjk and cjk are the appropriate conductances and the capacitances, and v ∈ R
n

is the vector of node voltages. We may add a nonlinearity to the resistors to obtain

ijk = gjk(vj − vk) + hjk(vj − vk)
3 + cjk(v̇j − v̇k).

These equations when combined with Kirchoff’s current law give rise to an equation
v̇ = f(v).

We chose the parameter values somewhat ad hoc so that the resulting linearized
system had a reasonable range of eigenvalues. We chose a system with n = 500. A
random initial condition was chosen, and the time interval was chosen to be [0, 2].
Both linear and nonlinear versions were simulated, with both explicit and implicit
solvers ode45 and ode15s from MATLAB. Reduced order models were computed
from the resulting trajectories and applied to both the linear and nonlinear systems.
A reduced order model of size k = 50 was used, even though a size of k = 2 would
have preserved more than 99% of the energy. The reason for using k = 50 is that
k = 2 is too small for the asymptotic formulae to be valid. The number of floating
point operations as counted in MATLAB are shown in Table 6.4.

The asymptotic complexity of function evaluations for this example are given by

f(n) = Cn2,

where C = 13 for the nonlinear (cubic) case and C = 2 for the linear case. The
complexity for the nonlinear reduced model is

f̂(k, n) = Cn2 + 4nk,

when ρf(ρT z + x̄) is not analytically simplified. Since f(x) is cubic for the nonlinear
case, it is possible to analytically simplify ρf(ρT z+ x̄). This will improve the savings
achieved by the reduced order model. In fact assuming that we get a cubic polynomial
(in z) with all the possible monomials (dense cubic), we can estimate the complexity of

f̂ . Table 6.5 compares the complexities of f̂ after analytical simplification (assuming
a dense cubic) for different values of k with that of f(n). It is clear that for values of
k = 15 or k = 8 we can expect significant savings.

We can see from Table 6.6 that the savings predicted by our theory is within an
order of magnitude of the actual savings. It must be noted that our theory is only
valid asymptotically as n and k get arbitrarily large and that our theory was based
on forward and backward Euler methods, while the example used a Runge–Kutta
method for the explicit case and a numerical differentiation formula (NDF) for the
implicit case [24]. The discrepancies are due to several other factors as well. One
is that the reduced model size k = 50 is not large enough to use the asymptotic
formula. This is an important factor in the linear implicit case but not in the explicit
case. Another reason is that the number of steps taken were different for the full
model and the reduced model. Furthermore, there are computations associated with
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Table 6.4
Computational cost in 103 flops: RC circuit. Full model versus unsimplified reduced model with

k = 50.

Full model Reduced model (unsimplified, k = 50)
Linear explicit 37, 632 645

Nonlinear explicit 238, 382 305, 041
Linear implicit 646, 460 2, 323

Nonlinear implicit 2, 609, 800 400, 177

Table 6.5
Cost (in flops) of f and simplified f̂ : RC circuit.

Full model Reduced model Reduced model Reduced model
n = 500 k = 50 k = 15 k = 8
3250000 2342500 24450 2624

Table 6.6
Computational savings ratio: RC circuit, unsimplified reduced model with k = 50.

Observed savings Asymptotic theoretical savings
Linear explicit 58 100

Nonlinear explicit 0.78 1
Linear implicit 278 1000

Nonlinear implicit 6.5 10

adaptive stepsize control which were not accounted for by our theory. The latter was a
significant factor in the explicit case. We found that the computations associated with
adaptive stepsize control grew linearly with system dimension. Furthermore, we found
that the Jacobian evaluations were done much less often than the LU decomposition,
contrary to our initial assumption. In fact there was only one Jacobian evaluation for
the whole simulation in all of the implicit solvers.

Example 5 (reaction-diffusion PDE in one dimension—banded Jacobian). We
considered the one dimensional reaction diffusion equation

xt = 0.1xss − cx3

in the spatial interval s ∈ [0, 6] with zero boundary conditions. We discretized the
spatial dimension on a uniform grid of n interior points using centered differences
for both first and second derivatives. This yields a system of ODEs: ẋ = f(x) with
x ∈ R

n. We chose two values c = 0 and c = 1. The first gives rise to a linear
system and the second to a nonlinear system, both being dissipative. In both cases
the Jacobian is a tridiagonal matrix (hence is banded with b = 2). We chose a system
of size n = 499 and used a reduced order model of size k = 50. The following smooth
initial condition was chosen:

x(0, s) = exp

(
− (s− 3)2

9

)
sin2(

πs

2
), s ∈ [0, 6].

The time interval of simulation was [0, 5]. We simulated the systems with two dif-
ferent MATLAB solvers: ode23 (explicit) and ode15s (implicit). The cost of the
computation is shown in Table 6.7.

The asymptotic complexity of function evaluations for this example is given by

f(n) = Cn,
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Table 6.7
Computational cost in 103 flops: One dimensional PDE example, full model and unsimplified

reduced model with k = 50.

Full model Reduced model (unsimplified, k = 50)
Linear explicit 149, 150 69, 527

Nonlinear explicit 182, 310 1, 342, 400
Linear implicit 1, 732 3, 508

Nonlinear implicit 2, 089 30, 458

Table 6.8
Computational savings factor: One dimensional PDE example, k = 50, unsimplified f̂ .

Observed savings Asymptotic theoretical savings
Linear explicit 2.1 0.6

Nonlinear explicit 0.14 0.048
Linear implicit 0.49 0.49

Nonlinear implicit 0.069 0.002

where the constant C = 2(b+ 1) = 6 for the linear case and C = 10 for the nonlinear
case. The complexity of the nonlinear reduced model function evaluations is

f̂(k, n) = Cn+ 4nk,

when ρf(ρT z + x̄) is not analytically simplified.
The computational savings achieved and the theoretical asymptotic values are

compared in Table 6.8. With the exception of the nonlinear implicit case, the asymp-
totic theory is within an order of magnitude of the observed values. For the same
reasons as in the dense Jacobian case, one cannot expect the theory to be very accu-
rate. In addition, in the banded Jacobian case there are other factors. Since the costs
associated with overhead such as stepsize control as well as the rest of the computa-
tional costs grow linearly with system size for the unreduced systems, it is no longer
valid to neglect the cost of such overhead even asymptotically. Hence the theory un-
derestimates the cost for the unreduced case. This basically explains why the savings
were better than predicted by theory. Another reason for the observed discrepancies
is that MATLAB (version 5) does not take advantage of the banded structure of the
Jacobian. It uses only the sparsity pattern. As a result, the cost of LU decomposition
and triangular system solves is greater than that predicted by the theory.

It must be noted that one reason why there are no computational savings is
due to the fact that the cost of function evaluation is significantly worse for the
reduced model in the nonlinear case: f̂ ≈ 10n + 4nk = 210n � 10n ≈ f(n). This
was with no expression simplification applied to ρf(ρT z + x̄). If we simplify the
expression and treat it as a dense cubic, the cost of evaluation (for the k = 50

case) is f̂ = 2342500 � 104790 = 217n, which is even worse. This is because the
cubic nonlinearity in f is diagonal in the original x coordinates, while the simplified
expression for f̂(z) is (typically) a dense cubic. The cost of evaluating a dense cubic

R
k → R

k is of order k4

3 and can be prohibitively large if k is not sufficiently small.
However, if we use a smaller reduced order model of size k = 6, which in this example
preserves all of the energy of the solution trajectory up to eight digit accuracy, we
indeed get significant computational savings. For k = 6, the cost of function evaluation
(assuming a dense cubic) is only ≈ 996 flops. Table 6.9 shows the savings factor for

k = 6 when the simplified expression for nonlinear f̂ is used and compares this with the
theoretical asymptotic values. The theoretical values are within an order of magnitude
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Table 6.9
Computational savings factor: One dimensional PDE example, k = 6, simplified nonlinear f̂ .

Observed savings Asymptotic theoretical savings
Nonlinear explicit 860 105
Nonlinear implicit 10.9 1.75

of the observed values. The discrepancies are again due to various factors.

This example illustrates how a multitude of factors affects the computational costs
of using a POD reduced model in place of the full original model.

7. Conclusions. We investigated some basic properties of the POD method in
finite dimensions. We provided an analysis of the errors involved in computing the
solution of a nonlinear ODE initial value problem using a POD reduced order model.
In addition to providing quantitatively reasonable error estimates, the analysis also
explains the various factors that affect the error.

We also provided a sensitivity analysis of the POD method. We introduced the
POD sensitivity factor which was a nondimensional measure of the sensitivity of the
resulting projection with respect to perturbations in the data. We studied the effect
of data perturbation on the projected data as well as the reduced model solution of
the POD method. The POD sensitivity factor is relevant in some applications of POD
while it is not in some other applications. We provided a discussion of this issue.

In addition to the error and sensitivity analysis, we also provided an analysis of
computational complexity in using the POD reduced model in computing the solution
to an ODE initial value problem. Our analysis showed that the computational savings
achieved by POD depend on several factors and that the complexity of the nonlinear
function evaluations can significantly affect the savings that might be gained by the
use of a POD reduced model. Our examples suggest that combining expression sim-
plification with reduced order models (for the class of polynomial vector-fields) may
achieve significant savings if the reduced models are small enough.
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