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Abstract. In contrast to stiff deterministic systems of ordinary differential equations, in general, the
implicit Euler method for stiff stochastic differential equations is not effective. This paper introduces a
new numerical method for stiff differential equations which consists of interlacing large implicit Euler time
steps with a sequence of small explicit Euler time steps. We emphasize that uniform convergence with respect
to the time scale separation parameter ε is a desirable property of a stiff solver. We prove that the means and
variances of this interlaced method converge uniformly in ε for a suitably chosen test problem. We also illus-
trate the effectiveness of this method via some numerical examples.
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1. Introduction. In deterministic as well as stochastic dynamic models, stiff
systems, i.e., systems with vastly different time scales where the fast scales are stable,
are very common. It is well known that the implicit Euler method is well suited for stiff
deterministic equations (modeled by ODEs) while the explicit Euler method is not. In
particular, once the fast transients are over, the implicit Euler allows for the choice of
time steps comparable to the slowest time scale of the system. In stochastic systems
modeled by stochastic differential equations (SDEs), the picture is more complex. While
the implicit Euler has better stability properties over the explicit Euler, it underesti-
mates the stationary variance. See, for instance, [2], [3], [9], [10]. In general, one may
not expect any method to work successfully by taking time steps of the order of the
slowest time scale.

Let us first consider the following system of ODEs:

dXðtÞ
dt

¼ 1

ε
aðXðtÞ; Y ðtÞÞ;

dY ðtÞ
dt

¼ fðXðtÞ; Y ðtÞÞ;

where ε represents the ratio between the time scales of the system and we assume that a
is such thatXðtÞ is stable. It is well known that when ε ≪ 1, the implicit Euler method is
more effective than the explicit Euler method. Note that ε is a measure of stiffness. It is
worth noting that the implicit Euler works well regardless of ε. When ε is not so small,
the explicit Euler method may be more efficient because of the computational savings,
however, the implicit Euler method with the same step size is expected to be equally

*Received by the editors December 12, 2008; accepted for publication (in revised form) June 13, 2011;
published electronically September 20, 2011. This research was supported by grant NSF DMS-0610013.

http://www.siam.org/journals/mms/9-3/74330.html
†Mathematics and Statistics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore,

MD 21250 (muruhan@umbc.edu).

1217

MULTISCALE MODEL. SIMUL.
Vol. 9, No. 3, pp. 1217–1252

© 2011 Society for Industrial and Applied Mathematics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

4/
13

 to
 1

30
.8

5.
14

5.
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



accurate. Thus, one may expect an effective stiff solver, such as the implicit Euler, to
converge uniformly in ε as the step size approaches zero. For the deterministic part of
the test linear system considered in this paper, this uniform convergence holds. However,
this is not the case for stochastic systems and the effectiveness of the implicit Euler is
compromised. Some relevant numerical results may be found in [3], [9].

In this paper, we propose an efficient numerical method for stiff systems of SDEs
driven by Brownian motion. More exactly, we are interested in systems of the form

dXðtÞ ¼ 1

ε
aðXðtÞ; Y ðtÞÞdtþ 1ffiffiffi

ε
p bðXðtÞ; Y ðtÞÞdB1ðtÞ;

dY ðtÞ ¼ f ðXðtÞ; Y ðtÞÞdtþ gðXðtÞ; Y ðtÞÞdB2ðtÞ;

where B1 and B2 are independent Brownian motions. Our goal is to devise a numerical
scheme which works effectively for a range of ε values, not necessarily very small. Thus,
in general, we only assume that 0 < ε < 1 and attempt to devise a method which is
convergent uniformly in ε. It is worth mentioning at this point that this is what differ-
entiates our approach from the averaging type methods, such as the projective integra-
tion [5], which are primarily concerned with the ε → 0 behavior. See also [4], [6].

We present a composite time-stepping strategy for solving stiff systems of SDEs, by
interlacing a large implicit Euler time step ðOð1ÞÞ with a sequence of m small explicit
Euler time steps ðOð1 ∕ εÞÞ. The alternation of large and small steps resembles the pro-
jective integration methods studied in [5]. However, unlike in the projective integration,
we do not compute the averages (over time or ensemble) of the fast dynamics. We merely
alternate the time steps. Furthermore, our large time steps are implicit and the small
time steps are explicit. The motivation for our method comes from the asymptotic mo-
ment analysis, where numerical methods with constant step size τ are applied to a sui-
tably chosen test SDE. In this analysis, in addition to stability, we compute and compare
the asymptotic moments (usually the first two) of the method with those of the true
solution. This analysis shows that the variance computed by the explicit Euler method
is larger than the variance of the stationary distribution, while the implicit Euler method
underestimates it.

We further present the convergence analysis of this new method as applied to a test
problem. This analysis shows the existence of a range of values for the number of small
explicit time steps, m, such that the method converges uniformly in the time scale se-
paration parameter ε. The outline of the paper is as follows. In section 2, we summarize
some results of the asymptotic moment analysis applied to the Euler methods, motivate
the interlaced method, and comment on the comparison with the trapezoidal method. In
section 3, we provide the error analysis for the first two moments of the interlaced
method when applied to a suitably chosen test system. In section 4, we present the main
result of the paper, the uniform convergence of the interlaced method. Section 5 presents
some numerical examples which demonstrate the effectiveness of the method. Finally, in
section 6, we make some concluding remarks and discuss some extensions of the method
as future work.

2. Interlaced Euler method. In this section, we introduce the interlaced Euler
method. The method consists of interlacing one large implicit time step of size k with a
sequence ofm small explicit time steps of size τ. For stiff stochastic systems, the implicit
Euler underestimates the stationary variance and the explicit Euler overestimates it [2],
[3], [10]. By interlacing, we seek to obtain a composite method which gives an asymptotic
numerical variance close to the exact stationary variance. This provides us the criterion
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for determining m, the number of explicit time steps. We shall choose a test problem
that enables the analysis of finding a formula for m.

2.1. Motivation. The standard test problem for absolute stability analysis in de-
terministic systems is _x ¼ −λx. In stochastic systems, it is important to choose a test
problem which has nonzero asymptotic variance [2], [10]. This leads us to choose the
following test SDE:

dXðtÞ ¼ −λXðtÞdtþ λx̄dtþ μXðtÞdBðtÞ;ð2:1Þ
and we are interested in the stationary mean and variance of XðtÞ, provided that the
first two moments are stable. The differential equations for the moments [3], [8] show
that in order to have finite asymptotic first two moments, the following two stability
conditions must be satisfied:

λ > 0; μ2 < 2λ:ð2:2Þ
It can be shown that

E½Xð∞Þ� ¼ limt→∞ E½XðtÞ� ¼ x̄;

VarðXð∞ÞÞ ¼ limt→∞ VarðXðtÞÞ ¼ μ2x̄2

2λ− μ2 :

We consider the Euler methods with a fixed time step, applied to this SDE. The Euler
methods belong to the family of stochastic theta methods, which we briefly review here
(see, for instance, [7], [8]). Consider the general SDE

dXðtÞ ¼ aðXðtÞÞdtþ bðXðtÞÞdBðtÞ:ð2:3Þ
The stochastic theta method applied to (2.3) is

X̂nþ1 ¼ X̂n þ ð1− θÞaðX̂nÞhþ θaðX̂nþ1Þhþ bðX̂nÞdBn;

where h is a fixed time step, X̂n is the numerical approximation at time tn ¼ nh, and dBn

are independently and identically distributed Gaussian random variables with mean 0
and variance h. Taking θ ¼ 0, we obtain the explicit Euler method, θ ¼ 1 gives the
implicit Euler method (also known as semi-implicit Euler, as referred to in [8]), and
θ ¼ 1 ∕ 2 gives the trapezoidal method.

For explicit Euler with fixed time step τ, applied to our test problem, it is easy to see
[3], [7], [9] that the stability conditions for the mean and variance is

τ <
2λ− μ2

λ2
;ð2:4Þ

provided (2.2) holds. When stability holds it follows that

E½X̂∞� ¼ E½Xð∞Þ� ¼ x̄;

VarðX̂∞Þ ¼ 1

1− λ2τ
2λ−μ2

VarðXð∞ÞÞ > VarðXð∞ÞÞ:

Therefore, the asymptotic mean of the numerical solution obtained by the explicit Euler
method is the same as the asymptotic mean of the exact solution but the stationary
variance is overestimated.
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For the case of the implicit Euler method with fixed time step k applied to our test
problem, the moments are unconditionally stable, provided (2.2) holds. Moreover, the
asymptotic mean and variance are

E½X̂∞� ¼ E½Xð∞Þ� ¼ x̄;

VarðX̂∞Þ ¼ 1

1þ λ2k
2λ−μ2

VarðXð∞ÞÞ < VarðXð∞ÞÞ:

Here we see that the asymptotic mean of the numerical solution obtained by the implicit
Euler method is the same as the asymptotic mean of the exact solution but the station-
ary variance is underestimated. These two observations give us the basic idea for the
interlaced Euler method which consists of interlacing one implicit time step of size kwith
m explicit time steps of size τ satisfying the stability condition (2.4). It can be easily
shown that this method is stable for all k and m and it computes the asymptotic mean
correctly. Moreover, the asymptotic variance VarðX̂∞Þ is a function of τ, k, and m. We
provide below the formula for the ratio VQðm; τ; kÞ ¼ VarðX̂∞Þ ∕ VarðX̂ð∞ÞÞ, which
we shall refer to as variance quotient

VQðm; τ; kÞ ¼ 2λ−μ2

2λ− μ2 − λ2τ

�
1−

ðλ2k2 þ λ2kτÞ½ð1− λτÞ2 þ μ2τ�m
ð1þ λkÞ2 − ð1þ μ2kÞ½ð1− λτÞ2 þ μ2τ�m

�
:ð2:5Þ

It is possible to choosem such that this ratio is close to 1. With such a choice, we expect
the method not only to be stable but also to compute the first two asymptotic moments
correctly.

2.2. Test problem. So far we have discussed the absolute stability and the asymp-
totic moments for a scalar test problem. Our ultimate goal is to obtain a method which
applies to a stiff system of SDEs. We choose the following system of stochastic differ-
ential equations with two different time scales:

dXðtÞ ¼ −
λ0
ε
XðtÞdtþ λ0

ε
x̄dtþ μ0ffiffiffi

ε
p XðtÞdB1ðtÞ;

dY ðtÞ ¼ −λ0Y ðtÞdtþ βXðtÞdB2ðtÞ;ð2:6Þ
where the fast equation resembles our previous scalar test SDE and B1, B2 are two in-
dependent Brownian motions. Here ε > 0 represents the time scale separation para-
meter. When ε ≪ 1, the system is stiff. It is instructive to consider the ε → 0 limit
behavior obtained via the singular perturbation theory for SDEs, which gives the fol-
lowing reduced equation for Y [5], [6]:

d ~Y ðtÞ ¼ −λ0 ~Y ðtÞdtþ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX�Þ2�

q
dBðtÞ;

whereB is another Brownianmotion. In the above equation,X� denotes the random vari-
able with the same asymptotic distribution asXðtÞ. It is clear that the slow variableY ðtÞ
evolves depending on the secondmoment of the fast variable. Thus, one would expect the
implicit Euler method applied to this system with step size of the order of 1 ∕ λ0 ≫ ε ∕ λ0
(the time scale of the slow dynamics) to underestimate the second moment of the fast
variable and hence lead to inaccurate computation of the variance of the slow variable.

It is relevant at this point to discuss certain parameters of importance.
• Tf represents the relaxation time of the fast dynamics. In (2.6), Tf ¼ ε ∕ λ0.
• Ts represents the time to resolve the slow dynamics. In (2.6), Ts ¼ 1 ∕ λ0.
• T represents the time interval of simulation.
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It is convenient to introduce the following nondimensional parameters:
• ε represents the time scale separation, ε ¼ Tf ∕ Ts. We assume that ε < 1 but

not necessarily ε ≪ 1.
• η ¼ μ2

0 ∕ 2λ0 represents the ratio between drift and diffusion. Note that η < 1 is
required from (2.2).

• α1 represents the accuracy parameter for the implicit time step. Thus, k ¼
α1Ts ¼ α1 ∕ λ0.

• α2 represents the accuracy parameter for the explicit time step. Thus,
τ ¼ α2Tf ¼ α2ε ∕ λ0. Note that α2 < 2ð1− ηÞ is required from (2.4).

• ρ represents the interval of simulation in terms of the slow time scale.
Thus, T ¼ ρTs.

The absolute stability and asymptotic moment analysis of the previous subsection
corresponds to the ε → 0 limit behavior of the fast subsystem. Indeed, making the
change of variables t 0 ¼ t ∕ ε, T  0 ¼ T ∕ ε, we obtain the system

dXðtÞ ¼ −λ0XðtÞdtþ λ0x̄dtþμ0XðtÞd ~B1ðtÞ;
dY ðtÞ ¼ −λ0εY ðtÞdtþ β

ffiffiffi
ε

p
XðtÞd ~B2ðtÞ;

(where ~B1 and ~B2 are two different independent Brownian motions) and taking the limit
ε → 0, we obtain T  0 → ∞ and Y ¼ constant. If we consider a fixed time step h 0 ¼ h∕ ε
with h → 0, we see that the analysis of the dynamics of the initial system reduces to the
asymptotic analysis of the fast variable. Thus, it was instructive to study the asymptotic
behavior of the fast component.

However, we are also interested in the situations when εmight not be much smaller
than 1. Let us consider the deterministic situation corresponding toμ0 ¼ 0, β ¼ 0which
is given by

X  0ðtÞ ¼ −
λ0
ε
XðtÞ þ λ0

ε
x̄;

Y  0ðtÞ ¼ −λ0Y ðtÞ:ð2:7Þ

Then the implicit Euler solution with time step k ¼ α1 ∕ λ0 is

X̂n ¼ ðXð0Þ− x̄ÞMn þ x̄;

Ŷ n ¼ Y ð0ÞPn;

where n ¼ T ∕ k ¼ λ0T ∕ α1 and

M ¼ 1

1þ λ0
ε
k
¼ ε

α1 þ ε
;

P ¼ 1

1þ λ0k
¼ 1

1þ α1

:

The exact solution of (2.7) is given by

XðTÞ ¼ ðXð0Þ− x̄Þe−λ0
ε
T þ x̄;

Y ðTÞ ¼ Y ð0Þe−λ0T :

It can be shown that as α1 → 0, Mn converges uniformly in ε to e−ðλ0 ∕ εÞT . It is therefore
clear that the implicit Euler for ODEs converges uniformly in ε. Thus, the implicit
Euler method applied to the system (2.7) performs effectively, regardless of the size
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of ε. On the other hand, it may be shown that explicit Euler method as well as the
trapezoidal method applied to this system, with step size k ¼ α1 ∕ λ0, do not converge
uniformly in ε. The lack of uniform convergence manifests in a subtle way in the
trapezoidal case, which we discuss in section 2.3.

The investigation of the deterministic case (2.7) leads us to look for a method that is
uniformly convergent with respect to ε, at least in the first two moments for the sto-
chastic case. If such a method is available, one would expect it to work for very stiff
systems as well as moderately stiff systems. The asymptotic moment analysis in
section 2.1 suggests that the implicit Euler method with step size k ¼ α1 ∕ λ0 does
not converge uniformly for the second moment. Our conjecture is that no method with
step size k ¼ α1 ∕ λ0 can converge uniformly for the second moment. Revisiting the in-
terlaced method introduced in the previous subsection, we ask the following question: “Is
there a range of values for m (possibly depending on α1, α2, ε, and η) such that the
method is uniformly convergent (in ε) for the first two moments?”

The choice of (the optimal)m for which the variance quotient VQðmÞ ¼ 1 given by
the asymptotic moment analysis is shown below in terms of the nondimensional
parameters

FIG. 2.1. VQðmÞ plotted againstm. The left figure shows the dependence on ϵ, and the right figure shows
the dependence on η.

FIG. 2.2. VQðmÞ plotted againstm. The left figure shows the dependence on α1, and the right figure shows
the dependence on α2.
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m ¼
ln

� ðϵ2 þ 2α1ϵþ α2
1Þα2

α2ϵ
2 þ 2α1α2ϵþ 2α2

1ð1− ηÞ
�

ln ð1þ α2
2 − 2α2ð1− ηÞÞ :ð2:8Þ

We show the dependence of the optimalm on the problem parameters η and ϵ, as well as
the numerical method parameters, α1 and α2, in Figures 2.1 and 2.2. Here we plot VQ as
a function of m and the constant function 1. The intersection of the graphs gives the
optimal value of m. We observe that the optimal m is a decreasing function of ϵ and α2

and an increasing function of η and α1.
The asymptotic moment analysis also suggests that the interlaced method with the

choice ofm given by(2.8) might be uniformly convergent. Indeed, in this paper, we prove
the existence of a range of values form, which includes the one given by (2.8), such that
uniform convergence of the first two moments holds.

2.3. Comparison with the trapezoidal method. It must be noted that the
asymptotic moment analysis shows that the trapezoidal method captures the first
two moments exactly. However, the trapezoidal method is not uniformly convergent,
even for the first moment. Note that the differential equations for the first moments
are the same as the ODE system (2.7). For the trapezoidal method applied with time
step k ¼ α1Ts, the numerical amplification factor for mean of the fast variable is

Mt ¼
2− α1

ε

2þ α1

ε

:

It is not difficult to see that Mn
t ¼ Mρ∕ α1

t does not converge uniformly to e−λ0T ∕ ε ¼
e−ρ∕ ε as α1 → 0. The lack of uniform convergence specifically presents a problem when
ρ and ε are both small. In this case, since ε is very small, the trapezoidal method reaches
the steady state much later than the true solution, and if ρ is small, the time interval
does not allow the trapezoidal method to catch up with the true solution. In addition,
this phenomenon becomes more pronounced when the eigenvalues are complex with
large imaginary parts [3]. The work in [3] shows numerical examples where the interlaced
method is superior to the trapezoidal method. In section 5, we also present some com-
parisons of the interlaced method with the trapezoidal method.

3. Error analysis. In this section, we derive linear inequalities for the global errors
of the first two (nonmixed) moments for the test problem (2.6). In our derivation, we use
the ordinary differential equations for the first two moments of the exact solution and
the difference equations for the corresponding moments of the numerical solution. Thus,
our error analysis is similar to the ODE case (see [1], for instance).

In section 2.2, the interlaced time step h is given by h ¼ kþmτ with the implicit
time step k ¼ α1 ∕ λ0 and the explicit time step τ ¼ εα2 ∕ λ0. For simplicity, we choose
α1 ¼ α and α2 ¼ Fα, where F is a constant. The stability condition (2.4) becomes
Fα < 2ð1− ηÞ, and the composite time step is

h ¼ kþmτ ¼ αþ Fmαϵ

λ0
:

Note that in this setup, m is given by the following formula:

INTERLACED EULER METHOD FOR STIFF SDES 1223

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

4/
13

 to
 1

30
.8

5.
14

5.
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



m ¼
ln

�
Fε2 þ 2Fαεþ 2ð1− ηÞα

Fε2 þ 2Fαεþ Fα2

�
− ln ð1− 2Fð1− ηÞαþ F2α2Þ .ð3:1Þ

Therefore, the convergence analysis will be done with respect to α. More specifically, we
will prove the uniform convergence with respect to ε as α → 0.

We apply the interlaced method to system (2.6). The time interval of simulation is
½0; T �, and it is discretized as follows: 0 ¼ t0 < t1 < · · · < tN ¼ T , with tn ¼ nh. We de-
note by X̂n and Ŷ n the numerical approximations of the fast and slow variables, respec-
tively, at time tn. Throughout this paper, we will use the following notations:

gðtÞ ¼ E½XðtÞ�; ĝn ¼ E½X̂n�; hðtÞ ¼ E½Y ðtÞ�; ĥn ¼ E½Ŷ n�;
uðtÞ ¼ E½X2ðtÞ�; ûn ¼ E½X̂2

n�; vðtÞ ¼ VarðY ðtÞÞ; v̂n ¼ VarðŶ nÞ:

The numerical solution inside the composite time step plays an important role in the
analysis. We denote by X̂1 ∕ 2;l

n the numerical solution corresponding to the fast compo-
nent at time tn þ kþ lτ, that is, inside the (nþ 1)st composite time step. Then for any
l ¼ 0; : : : ;m− 1 let

ĝ1∕ 2;ln ¼ E½X̂1 ∕ 2;l
n �; û1 ∕ 2;l

n ¼ E½ðX̂1 ∕ 2;l
n Þ2�:

Note that throughout this paper we will also use the notations λ ¼ λ0 ∕ ε and μ ¼
μ0 ∕

ffiffiffi
ε

p
.

The differential equations for the first two moments of a general vector linear SDE
system are derived in [8]. Here we present the corresponding equations for our test
problem.

LEMMA 3.1. The ordinary differential equations for the first two moments of the ex-
act solution of system (2.6) are

g 0ðtÞ ¼ −
λ0
ε
gðtÞ þ λ0

ε
x̄;

u 0ðtÞ ¼ −
2λ0 −μ2

0

ε
uðtÞ þ 2

λ0
ε
x̄gðtÞ;

h 0ðtÞ ¼ −λ0hðtÞ;
v 0ðtÞ ¼ −2λ0vðtÞ þ b2uðtÞ:

The difference equations for the first two moments of the numerical solution ob-
tained by the implicit/explicit Euler with constant time step can be easily derived using
the properties of the Brownian increments. In this section, we will only state the corre-
sponding lemmas and will omit their proofs.

Before we proceed with the analysis, we make two important remarks.
Remark 1. Our error analysis in this section and the proof of uniform convergence in

section 4 are still valid if the two Brownian motions B1 and B2 in (2.6) are the same
(B2 ¼ B1) instead of being two independent Brownian motions. This is because our ana-
lysis is confined to the nonmixed first two moments.

Remark 2. Throughout the rest of this paper we shall derive several estimates for
errors which involve certain constants which we shall usually label C;C 1; C 2 : : : , etc.
These constants are independent of α and ϵ. We shall not attempt to obtain sharp es-
timates of these constants. Given this fact, we shall adopt the naming convention that a
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constant denoted by C , C1, etc., has scope only within the statement of a theorem and/
or its proof environment. Two constants denoted by C appearing in different theorems
or lemmas are not meant to be the same.

3.1. Mean of the fast variable. Our first task is to derive the global error for the
mean of the fast variable. Using the difference equation for the numerical solution and
the differential equation for the first moment of the exact solution, we obtain the linear
inequality which characterizes the error propagation for the mean.

LEMMA 3.2. The mean of the fast variable obtained by the implicit Euler method with
time step k is given by

E½X̂nþ1� ¼ ME½X̂n� þ N;

where

M ¼ M ðα; εÞ ¼ 1

1þ λk
¼ ε

αþ ε
; N ¼ Nðα; εÞ ¼ x̄

λk

1þ λk
¼ x̄

α

αþ ε
:

LEMMA 3.3. The mean of the fast variable obtained by the explicit Euler method with
time step τ is given by

E½X̂nþ1� ¼ AE½X̂n� þ B;

where

A ¼ AðαÞ ¼ 1− λτ ¼ 1− Fα; B ¼ BðαÞ ¼ x̄λτ ¼ x̄Fα:

The following result is immediate from the previous two lemmas.
LEMMA 3.4. The mean of the fast variable obtained by the interlaced method is

given by

ĝnþ1 ¼ AmMĝn þAmN þ B
Xm−1

i¼0

Ai:ð3:2Þ

Proof. The proof is straightforward using Lemmas 3.2, 3.3, and B.1. ▯
The next step is to write the mean of the fast variable in the same format as the

mean of the numerical solution. We first write the exact mean using the implicit/explicit
Euler format by means of the Taylor expansion, and then we obtain the exact solution
written in the same format as the interlaced method solution.

Remark 3. Since the ultimate goal is to prove the uniform convergence with respect
to ε, for Taylor expansion it is useful to work with the integral remainder rather than the
more common Lagrange remainder.

LEMMA 3.5. The mean of the fast variable written in the explicit Euler format is

gðtþ τÞ ¼ AgðtÞ þ B þ TruncMeanFastEðt; τÞ;

where TruncMeanFastEðt; τÞ satisfies

jTruncMeanFastEðt; τÞj ≤ Cα2e−
λ0
ε
t ∀ t ≥ 0ð3:3Þ

with constant C independent of ε.
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Proof. Using the ODE for the mean of the fast component, we obtain

gðtþ τÞ ¼ ð1− λτÞgðtÞ þ x̄λτþ TruncMeanFastEðt; τÞ
¼ AgðtÞ þ B þ TruncMeanFastEðt; τÞ

with TruncMeanFastEðt; τÞ ¼ ∫ tþτ
t g 0ðsÞðtþ τ− sÞds. From Lemma B.6, we know

that there exists a constant C , independent of ε, such that jg 0  0ðtÞj ≤ Cðλ20 ∕ ε2Þ
e−ðλ0 ∕ εÞt for all t ≥ 0. Some tedious manipulations yield

jTruncMeanFastEðt; τÞj ≤
Z

tþτ

t
jg 0 0ðsÞjðtþ τ− sÞds ≤ Cα2e−

λ0
ε
t;

which completes the proof. ▯
LEMMA 3.6. The mean of the fast variable written in the implicit Euler format is

gðtn þ kÞ ¼ MgðtnÞ þ N þ TruncMeanFastI ðtn; kÞ;

where TruncMeanFastI ðtn; kÞ satisfies

jTruncMeanFastI ðtn; kÞj ≤ Cðe−λ0h
ε Þn e

α
ε − α

ε
− 1

e
α
ε

ð3:4Þ

with constant C independent of ε.
Proof. We have gðtnÞ ¼ gðtn þ kÞ− kg 0ðtn þ kÞ þ TruncMeanFastI ðtn; kÞ with

TruncMeanFastI ðtn; kÞ ¼
Z

tnþk

tn

g 0 0ðsÞðtn − sÞds;

and using the ODE for the mean, we get

gðtn þ kÞ ¼ 1

1þ λk
gðtnÞ þ x̄

λk

1þ λk
þ 1

1þ λk
TruncMeanFastI ðtn; kÞ

¼ MgðtnÞ þ N þMTruncMeanFastI ðtn; kÞ.

This completes the first part of the proof.
To prove (3.4), we use the bound for g 0 0ðtÞ from Lemma B.6, and computing the

resulting integral, we obtain (3.4). ▯
COROLLARY 3.7. The truncation error of the fast mean in the implicit format satisfies

jTruncMeanFastI ðtn; kÞj ≤ C1

α

ε
e−Fmα ∀ n ≤ 1;

Xn−1

i¼0

jTruncMeanFastI ðti; kÞj ≤
α

ε
;

Xn−1

i¼0

jTruncMeanFastI ðti; kÞj ≤ 1:

Further, we write the exact mean in the same format as the mean of numerical solu-
tion given by the interlaced method.
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LEMMA 3.8. The mean of the fast variable satisfies

gðtn þ kþmτÞ ¼ AmMgðtnÞ þ AmN þ B
Xm−1

l¼0

Al

þ AmMTruncMeanFastI ðtn; kÞ

þ
Xm−1

l¼0

Am−1−l TruncMeanFastEðtn þ kþ lτ; τÞ:ð3:5Þ

Proof. Using Lemmas B.1 and 3.5, we obtain gðtþmτÞ, and then we use Lemma 3.6
with t ¼ tn þ k to obtain (3.5). ▯

Remark 4. Note that TruncMeanFastEðtn þ kþ lτ; τÞ represents the truncation
error from the explicit Euler expansion at step tn þ kþ lτ and from (3.3) we obtain

jTruncMeanFastE ðtn þ kþ lτ; τÞj ≤ Cα2e−
λ0
ε
ðtnþkþlτÞ;

which gives

jTruncMeanFastEðtn þ kþ lτ; τÞj ≤ Cα2e−
α
εðe−λ0h

ε Þnðe−FαÞl:ð3:6Þ

Combining the results from Lemma 3.8 with Lemma 3.4, we obtain our main result
of this subsection.

THEOREM 3.9. The error for the mean of the fast variable, en ¼ ĝn − gðtnÞ, satisfies
the linear inequality

jenþ1j ≤ AmM jenj þ AmM jTruncMeanFastI ðtn; kÞj

þ
Xm−1

l¼0

Am−1−ljTruncMeanFastEðtn þ kþ lτ; τÞj:ð3:7Þ

Proof. Subtracting (3.2) from (3.5) we obtain the result. ▯

3.2. Mean of the slow variable. The linear inequality for the global error for the
mean of the slow variable can be obtained through a similar derivation as for the fast
variable. We present here only the main result for the mean of the slow variable.

THEOREM 3.10. The error for the mean of the slow variable, sn ¼ ĥn − hðtnÞ, satisfies
the linear inequality

jsnþ1j ≤ PmQjsnj þ PmQjTruncMeanSlowI ðtn; kÞj

þ
Xm−1

l¼0

Pm−1−ljTruncMeanSlowEðtn þ kþ lτ; τÞj;ð3:8Þ

where
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P ¼ 1

αþ 1
; Q ¼ 1− Fαε;

jTruncMeanSlowI ðtn; kÞj ≤ C 1α
2;

jTruncMeanSlowEðtn þ kþ lτ; τÞj ≤ C 2α
2ε

with constants C 1, C 2 independent of ε.

3.3. Second moment of the fast variable. In this section, we derive the propa-
gation error for the second moment of the fast variable using a technique similar to the
one in section 3.1.

LEMMA 3.11. The second moment of the fast variable obtained by the implicit Euler
method with time step k is given by

E½X̂2
nþ1� ¼ I 2E½X̂2

n� þ I 1E½X̂n� þ RI ;

where the functions I 2, I 1, and RI satisfy

I 2 ¼ I 2ðα; εÞ ¼
1þ μ2k

ð1þ λkÞ2 ¼
ε2 þ 2ηαε

ðαþ εÞ2 ≤ C
ε

αþ ε
;

I 1 ¼ I 1ðα; εÞ ¼ 2x̄
λk

ð1þ λkÞ2 ¼ 2x̄
αε

ðαþ εÞ2 ≤ 2x̄
α

αþ ε
;

RI ¼ RI ðα; εÞ ¼ x̄2
�

λk

1þ λk

�
2

¼ x̄2
α2

ðαþ εÞ2

with the constant C independent of ε.
LEMMA 3.12. The second moment of the fast variable obtained by the explicit Euler

method with time step τ is given by

E½X̂2
nþ1� ¼ E2E½X̂2

n� þ E1E½X̂n� þ RE;

where the functions E2, E1, and RE satisfy

E2 ¼ E2ðαÞ ¼ ð1− λτÞ2 þ μ2τ ¼ 1− Fα½2ð1− ηÞ− Fα�;
E1 ¼ E1ðαÞ ¼ 2x̄λτð1− λτÞ ¼ 2x̄Fαð1− FαÞ ≤ Cα;

RE ¼ REðαÞ ¼ x̄2λ2τ2 ¼ x̄2F2α2

with the constant C independent of ε.
Remark 5. Note that the stability condition Fα < 2ð1− ηÞ implies E2 < 1.
LEMMA 3.13. The second moment of the fast variable obtained by the interlaced

method is given by

ûnþ1 ¼ Em
2 I 2ûn þ Em

2 I 1ĝn þ E1

Xm−1

l¼0

Em−1−l
2 ĝ1∕ 2;ln þ Em

2 RI þ RE
Xm−1

l¼0

El
2:ð3:9Þ

Proof. The proof follows from Lemmas 3.11, 3.12, and B.1. ▯
Now that we have obtained the formula for the second moment of the fast variable,

we can prove some useful properties of m, which will play an important role in our uni-
form convergence proof and which are summarized in the following corollary.
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COROLLARY 3.14. The optimal m given by formula (3.1) satisfies the following
inequalities:

Em
2

�
α

αþ ε

�
2

≤ C 1αð1− Em
2 Þ;ð3:10Þ

ffiffiffiffiffiffi
E2

p
m α

αþ ε
≤ C 2

ffiffiffi
α

p
;ð3:11Þ

Am α

αþ ε
≤ C 3

ffiffiffi
α

pð3:12Þ

with constants C 1, C 2, and C 3 independent of ε.
Proof. Recall that m is chosen such that the asymptotic variance obtained by the

interlaced method to be equal to the true asymptotic variance. This is û∞ ¼ uð∞Þ,
and from Lemma 3.1 we have uð∞Þ ¼ x̄2 ∕ 1− η. Taking the limit n → ∞ in (3.9)
we obtain

û∞ ¼ Em
2 I 2û∞ þ Em

2 I 1ĝ∞ þ E1

Xm−1

l¼0

Em−1−l
2 ĝ1∕ 2;l∞ þ Em

2 RI þ RE
Xm−1

l¼0

El
2:

It can be easily shown that ĝ∞ ¼ ĝ1∕ 2;l∞ ¼ x̄ for all l ¼ 0; : : : ;m− 1, and using the for-
mulas for E1, E2, RI, RE and simplifying the resulting equation we get

α

αþ ε
¼ Fαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fαð2ð1− ηÞ− FαÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Em

2 ðαÞ
Em

2 ðαÞ

s
:ð3:13Þ

We can relax this condition by replacing “¼” by “≤.” This implies

Em
2

�
α

αþ ε

�
2

≤ C 1αð1− Em
2 Þ

with C 1 ¼ F ∕ 1− η, which proves the first inequality. Taking the square root in the
above inequality, we obtain (3.11), with C 2 ¼

ffiffiffiffiffiffi
C1

p
. Note also that for any

α ≤ ð1− 2ηÞ ∕ F we have 1− Fα ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Fα½2ð1− ηÞ− Fα�p

. This gives A ≤
ffiffiffiffiffiffi
E2

p
which yields (3.12). ▯

The next step in our derivation is to write the exact solution in the same format.
LEMMA 3.15. The second moment of the fast variable written in the implicit Euler

format is given by

uðtn þ kÞ ¼ I 2uðtnÞ þ I 1gðtnÞ þ RestI þ TruncSecondMomentFastI ðtn; kÞ;
where the functions RestI and TruncSecondMomentFastI satisfy

jRestI j ≤ C1

�
α

αþ ε

�
2

;ð3:14Þ

Xn−1

i¼0

jTruncSecondMomentFastI ðti; kÞj ≤ C 2

α

αþ ε
ð3:15Þ

with the constants C 1, C 2 independent of ε.
Proof. Using the ODE for the second moment of the fast variable we obtain

uðtn þ kÞ ¼ uðtnÞ− 2ð1− ηÞλkuðtn þ kÞ þ 2x̄λkgðtn þ kÞ þ TrUðtn; kÞð3:16Þ
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with TrU ðtn; kÞ ¼ ∫ tnþk
tn

u 0ðtÞðt− tnÞdt. Using the bound ju 0 0ðtÞj ≤ C1ð1 ∕ ε2Þe−ðC2 ∕ ϵÞt

for all t ≥ 0 from Lemma B.6, with constants C 1, C 2 independent of ε, an easy manip-
ulation yields

jTrUðtn; kÞj ≤ C 1e
−C2tn

ε

�
1− e−

C2k

ε −
C 2k

ε
e−

C2k

ε

�
:

Further, we obtain

Xn−1

i¼0

jTrUðti; kÞj ≤ C1

1− e−
C2k

ε − C2k
ε
e−

C2k

ε

1− e−
C2k

ε

≤ C3

α

ε
;ð3:17Þ

where we have used
P

n−1
i¼0 ðe−C2h ∕ εÞi < 1 ∕ ð1− e−C2k∕ εÞ and Lemma B.3.

Moreover, we have gðtn þ kÞ ¼ gðtnÞ þ TrGðtn; kÞ with TrGðtn; kÞ ¼ ðx̄−
X0Þe−λtnð1− e−λkÞ satisfying

Xn−1

i¼0

jTrGðti; kÞj ≤ Cð1− e−λkÞ
Xn−1

i¼0

e−λti ≤ Cð3:18Þ

with C ¼ jX0 − x̄j. The solution is therefore given by

uðtn þ kÞ ¼ uðtnÞ− 2ð1− ηÞλkuðtn þ kÞ þ 2x̄λk½gðtnÞ þ TrGðtn; kÞ� þ TrUðtn; kÞ

¼ 1þ 2ηλk

1þ 2ð1− ηÞλk uðtnÞ þ 2x̄
λk

ð1þ λkÞ2 gðtnÞ

þ
�

1

1þ 2ð1− ηÞλk −
1þ 2ηλk

ð1þ λkÞ2
�
uðtnÞ

þ 2x̄λk

�
1

1þ 2ð1− ηÞλk −
1

ð1þ λkÞ2
�
gðtnÞ

þ 2x̄
λk

1þ 2ð1− ηÞλkTrGðTn; kÞ þ
1

1þ 2ð1− ηÞλkTrUðtn; kÞ

¼ uðtnÞ þ I 1gðtnÞ þ RestI þ TruncSecondMomentFastðtn; kÞ;

where

RestI ¼
�

1

1þ 2ð1− ηÞλk −
1þ 2ηλk

ð1þ λkÞ2
�
uðtnÞ

þ 2x̄λk

�
1

1þ 2ð1− ηÞλk −
1

ð1þ λkÞ2
�
gðtnÞ:

Note that from Lemma B.6 we know that juðtÞj and jgðtÞj are uniformly bounded for any
t ≥ 0, and some easy manipulations show that the coefficients of uðtÞ and gðtnÞ in the
above expression are also uniformly bounded. Using this in the above equation, we ob-
tain (3.14).

To prove (3.15), note that

TruncSecondMomentFastI ðtn; kÞ ¼
2x̄λkTrGðtn; kÞ
1þ 2ð1− ηÞλk þ TrUðtn; kÞ

1þ 2ð1− ηÞλk :
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Using 1 ∕ ð1þ 2ð1− ηÞλkÞ ≤ maxf1; 2ð1− ηÞgð1 ∕ 1þ λkÞ and the bounds from (3.17)
and (3.18), we obtain (3.15). ▯

LEMMA 3.16. The second moment of the fast variable written in the explicit Euler
format is given by

uðtþ τÞ ¼ E2uðtÞ þ E1gðtÞ þ RestE;

where RestE satisfies jRestEj ≤ Cα2, with constant C independent of ε.
Proof. Using the ODE for uðtÞ and matching the coefficients with those given by

explicit Euler solution, we obtain

uðtn þ τÞ ¼ ½ð1− λτÞ2 þ μ2τ�uðtnÞ þ 2x̄λτð1− λτÞgðtnÞ þ
τ2

2
u 0ðξnÞ

þ ½1− ð2λ−μ2Þτ− ð1− λτÞ2 − μ2τ�uðtnÞ þ 2x̄λτ½1− ð1− λτÞ�gðtnÞ
¼ E2uðtnÞ þ E1gðtnÞ þ RestE;

where

RestE ¼ τ2

2
u 0 0ðξnÞ þ ½1− ð2λ− μ2Þτ− ð1− λτÞ2 − μ2τ�uðtnÞ

þ 2x̄λτ½1− ð1− λτÞ�gðtnÞ

¼ τ2

2
u 0 0ðξnÞ− λ2τ2uðtnÞ þ 2x̄λ2τ2gðtnÞ;

with ξn ∈ ðtn; tn þ τÞ. Using the bounds for u 0  0, g, and u from Lemma B.6, we obtain

jRestEj ≤ Cλ2τ2 ¼ CF2α2;

with the constant C independent of ε. ▯
LEMMA 3.17. The second moment of the fast variable satisfies

uðtn þ kþmτÞ ¼ Em
2 I 2uðtnÞ þ Em

2 ðαÞI 1gðtnÞ
þ Em

2 RestI þ Em
2 TruncSecondMomentFastI ðtn; kÞ

þ E1

Xm−1

l¼0

Em−1−l
2 gðtn þ kþ lτÞ

þ RestE
Xm−1

l¼0

El
2:ð3:19Þ

Proof. The proof is straightforward, first using Lemmas B.1 and 3.16 to obtain
uðtþmτÞ and then using Lemma 3.15 with t ¼ tn þ k. ▯

LEMMA 3.18. The error of the second moment of the fast variable, fn ¼ ûn − uðtnÞ,
satisfies the linear inequality
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jfnþ1j ≤ Em
2 I 2jfnj þ C 1ð1− Em

2 Þjenj þ C2αð1− Em
2 Þ

þ C 3E
m
2 jTruncSecondMomentFastI ðtn; kÞj

þ C 4α
Xm−1

l¼0

Em−1−l
2 je1 ∕ 2;ln j;ð3:20Þ

with constants C 1, C 2, C3, and C 4 independent of ε.
Proof. Subtracting (3.9) from (3.19), we obtain

jfnþ1j ≤ Em
2 I 2jfnj þ Em

2 I 1jenj þ Em
2 ðjRestI j þ jRI jÞ

þ E2mjTruncSecondMomentFastI ðtn; kÞj þ E1

Xm−1

l¼0

Em−1−l
2 je1 ∕ 2;ln j

þ ðjRestEj þ jREjÞ
Xm−1

l¼0

El
2.

Further, we have

Em
2 I 1 ¼ C1E

m
2

αε

ðαþ εÞ2 < C 1E
m
2

α2

ðαþ εÞ2
1

α
< C 2αð1− Em

2 Þ
1

α
¼ C 2ð1− Em

2 Þ;

and using the bounds forRestI,RI,RestE,RE, and the bound for Em
2 ðα2 ∕ ðαþ εÞ2Þ from

inequality (3.10), we obtain the result. ▯

3.4. Variance of the slow variable. Finally, in this section, we derive a linear
inequality for the global error of the slow variable.

LEMMA 3.19. The variance of the slow variable obtained by the implicit Euler method
is given by

VarðŶ nþ1Þ ¼ I yVarðŶ nÞ þ I xE½X̂2
n�;

where the functions I y and I x are given by

I y ¼ I yðαÞ ¼
1

ð1þ λ0kÞ2
¼ 1

ð1þ αÞ2 ;

I x ¼ I xðαÞ ¼
b2k

ð1þ λ0kÞ2
¼ b2

λ0

α

ð1þ αÞ2 :

LEMMA 3.20. The variance of the slow variable obtained by the explicit Euler method
is given by

VarðŶ nþ1Þ ¼ EyVarðŶ nÞ þ ExE½X̂2
n�;

where the functions Ey and Ex are given by

Ey ¼ Eyðα; εÞ ¼ ð1− λ0τÞ2 ¼ ð1− FαεÞ2; Ex ¼ Exðα; εÞ ¼ b2τ ¼ b2F

λ0
αε:

LEMMA 3.21. The variance of the slow variable obtained by the interlaced method is
given by
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v̂nþ1 ¼ Em
y I yv̂n þ Em

y I xûn þ Ex

Xm−1

l¼0

Em−1−l
y û1∕ 2;l

n :ð3:21Þ

Proof. The result is a straightforward application of Lemmas 3.19, 3.20,
and B.1. ▯

Next, using the ODE for the second moment, we want to write the exact solution in
the same format.

LEMMA 3.22. The variance of the slow variable written in the implicit Euler format is

vðtn þ kÞ ¼ I yvðtnÞ þ I xuðtnÞ þ RestSlowI þ TruncVarSlowI ðtn; kÞ;

where the functions RestSlowI and TruncVarSlowI satisfy

jRestSlowI j ≤ C1α
2;ð3:22Þ

Xn−1

i¼0

jTruncSlowVarI ðti; kÞÞj ≤ C 2α;ð3:23Þ

with constants C 1, C 2 independent of ε.
Proof. To write vðtþ kÞ in the same format as the corresponding numerical solu-

tion, we first Taylor expand vðtþ kÞ using the explicit format and then we match the
coefficients with the coefficients of the variance of the numerical solution given by the
implicit Euler method.

vðtn þ kÞ ¼ vðtnÞ þ kv 0ðtnÞ þ TruncVarSlowI ðtn; kÞ
¼ ð1− 2λ0kÞvðtnÞ þ b2kuðtnÞ þ TruncVarSlowI ðtn; kÞ

¼ 1

ð1þ λ0kÞ2
vðtnÞ þ

b2k

ð1þ λ0kÞ2
uðtnÞ þ TruncVarSlowI ðtn; kÞ

þ
�
1− 2λ0k−

1

ð1þ λ0kÞ2
�
vðtnÞ þ b2k

�
1−

1

ð1þ λ0kÞ2
�
uðtnÞ

¼ I yvðtnÞ þ I xuðtnÞ þ RestSlowI þ TruncVarSlowI ðtn; kÞ;

with TruncVarSlowI ðtn; kÞ ¼ ∫ tnþk
tn

v  0ðtnÞðtn þ k− tÞdt and

RestSlowI ¼
�
1− 2λ0k−

1

ð1þ λ0kÞ2
�
vðtnÞ þ b2k

�
1−

1

ð1þ λ0kÞ2
�
uðtnÞ.

Using the fact that vðtÞ and juðtÞ are uniformly bounded for all t ≥ 0 and simplifying the
coefficients of uðtnÞ; vðtnÞ, we obtain RestSlowI ≤ Cα2, with C independent of ε. From
Lemma B.6, we have jv 0 0ðtÞj < C 1 þ C 2½ðC ∕ εÞe−ðC ∕ εÞt� for all t ≥ 0 which gives

jTruncVarSlowI ðtn; kÞj ≤
Z

tnþk

tn

jv 0 0ðtÞjðtn þ k− tÞdt

≤ C 1

k2

2
þ C 2

C
ðCk− εþ εe−Ck

εÞe−Ctn
ε :

Therefore,
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Xn−1

i¼0

jTruncVarSlowI ðti; kÞj < C 1

Xn−1

i¼0

α2 þ C 2

C
ðCk− εþ εe−Ck

εÞ
Xn−1

i¼0

ðe−Ch
ε Þi

< C 3αþ C 2

C

Ck− εþ εe−Ck
ε

1− e−
Ck
ε

:

Note that in the above inequality we have used nα < nh ≤ T and e−Ch ∕ ε < e−Ck∕ ε.
Finally, Lemma B.4 implies

Xn−1

i¼0

jTruncVarSlowI ðti; kÞj < C 3αþ C 2

C
Ck < C 4α

and this completes the proof. ▯
LEMMA 3.23. The variance of the slow component written in the explicit Euler

format is

vðtþ τÞ ¼ EyvðtÞ þ ExuðtÞ þ RestSlowE;

where the function RestSlowE satisfies

jRestSlowEj ≤ Cα2ε;

with constant C independent of ε.
Proof. Using the ODE for vðtÞ, we get

vðtþ τÞ ¼ ð1− 2λ0τÞvðtÞ þ b2τuðtÞ þ τ2

2
v 0  0ðξÞ

¼ ð1− λ0τÞ2vðtÞ þ b2τuðtÞ þ τ2
�
v 0  0ðξÞ
2

− λ20uðtÞ
�

¼ EyvðtÞ þ ExuðtÞ þ RestSlowE

with RestSlowE ¼ τ2ðv 0 0ðξÞ2 − λ20uðtÞÞ and ξ ∈ ðt; tþ τÞ. From Lemma B.6, there exists a

constant C 1 independent of ε such that j v 0 0ðξÞ2 − λ20uðtÞj < C1

ε
for all t ≥ 0 and

ξ ∈ ðt; tþ τÞ. Hence

jRestSlowEj <
�
F2

λ20
α2ε2

��
C 1

ε

�
< Cα2ε;

which proves the lemma. ▯
LEMMA 3.24. The variance of the slow component satisfies

vðtn þ kþmτÞ ¼ Em
y I yðαÞvðtnÞ þ Em

y I xðαÞuðtnÞEm
y RestSlowI

þ Em
y TruncVarSlowðtn; kÞ þ Ex

Xm−1

l¼0

Em−1−l
y uðtn þ kþ lτÞ

þ RestSlowE
Xm−1

l¼0

El
y:ð3:24Þ

Proof. The result follows immediately from Lemmas 3.22, 3.23, and B.1. ▯
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LEMMA 3.25. The global error of the variance of the slow component

esn ¼ VarðŶ nÞ− VarðY ðtnÞÞ

satisfies the linear inequality

jesnþ1j ≤ Em
y I yjesnj þ Em

y I xjfnj þ Em
y jRestSlowI j þ Em

y jTruncSlowI ðtn; kÞj

þ Ex

Xm−1

l¼0

Em−1−l
y jf 1∕ 2;ln j þ jRestSlowEj

Xm−1

l¼0

El
y:ð3:25Þ

Proof. Subtracting (3.24) from (3.21), we obtain the result. ▯
Remark 6. As observed in the previous derivations, there exists a discrepancy be-

tween the difference equations for the second moments obtained from the numerical
solutions given by the implicit/explicit Euler methods applied to SDEs, and the differ-
ence equations obtained by applying the implicit/explicit Euler methods to the differ-
ential equations for the second moments. This explains the presence of the termsRI,RE,
RestI, RestE, RestSlowI, and RestSlowE which we shall refer to as displacement terms.

TABLE 3.1
Amplification factors.

Equation: fast mean M ¼ ε
αþε

Type: implicit

Equation: fast mean A ¼ 1− Fα

Type: explicit

Equation: fast second moment I 2 ¼ ε2þ2ηαε
ðαþεÞ2 ≤ C1

ε
αþε

Type: implicit
Term: fast second moment

Equation: fast second moment I 1 ¼ 2x̄ αε
ðαþεÞ2 ≤ C2

α
αþε

Type: implicit
Term: fast mean

Equation: fast second moment E2 ¼ 1− Fα½2ð1− ηÞ− Fα�
Type: explicit

Term: fast second moment

Equation: fast second moment E1 ¼ 2x̄Fαð1− FαÞ ≤ C3α

Type: explicit
Term: fast mean

Equation: slow variance I y ¼ 1
ð1þαÞ2

Type: implicit
Term: slow variance

Equation: slow variance I x ¼ b2

λ0
α

ð1þαÞ2
Type: implicit

Term: fast second moment

Equation: slow variance Ey ¼ ð1− FαεÞ2
Type: explicit

Term: slow variance

Equation: slow variance Ex ¼ b2F
λ0

αε

Type: explicit
Term: fast second moment
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The truncation errors for the moments, the amplification factors, and the displace-
ment terms play an important role in the uniform convergence proof. Tables 3.1, 3.2,
and 3.3 summarize these properties.

4. Uniform convergence. In this section, we prove the uniform convergence with
respect to ε for the composite time step and for the first two moments of the fast and
slow variables. Specifically, we show that each of the errors corresponding to these four
moments satisfies

limα→0 sup
ε>0

Errorðα; ϵÞ ¼ 0:

To prove this, we derive uniform bounds in ε for each error.
THEOREM 4.1. The composite time step h converges uniformly in ε to 0 as α → 0.
Proof. We have

h ¼ kþmτ ¼ α

λ0
þm

Fαε

λ0
¼ 1

λ0
ðαþ FmαεÞ.

Recall that (3.1) gives the following equation for m:

TABLE 3.2
Displacement terms.

Equation: fast second moment jRestI j þ jRI j ≤ C1
α2

ðαþεÞ2
Type: implicit

Equation: fast second moment jRestEj þ jREj ≤ C2α
2

Type: explicit

Equation: slow variance jRestSlowI j ≤ C3α
2

Type: implicit

Equation: slow variance jRestSlowEj ≤ C4α
2ε

Type: explicit

TABLE 3.3
Truncation errors.

jTruncMeanFastI ðtn; kÞj ≤ C1
e
α
ε−α

ε
−1

e
α
ε

ðe−FmαÞnðe−α
εÞn

Xn−1

i¼0

jTruncMeanFastI ðti; kÞj ≤ α
ε

Xn−1

i¼0

jTruncMeanFastI ðti; kÞj ≤ 1

jTruncMeanFastEðtn þ kþ lτ; τÞj ≤ C2α
2e−

α
εðe−λ0h

ε Þnðe−FαÞl
Xn−1

i¼0

jTruncSecondMomentFastIFastI ðti; kÞj ≤ C3
α

αþε

Xn−1

i¼0

jTruncVarSlowðti; kÞj ≤ C4α
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m ¼
ln

�
Fε2 þ 2Fαεþ 2ð1− ηÞα

Fε2 þ 2Fαεþ Fα2

�
− ln ð1− 2Fð1− ηÞαþ F2α2Þ :

Assuming Fα ≤ 1− η, Lemma B.2 implies

1

− ln ð1− Fα½2ð1− ηÞ− Fα�Þ <
1

Fð1− ηÞα :

Further, using lnð1þ xÞ ≤ 2
ffiffiffi
x

p
for all x ≥ 0, we obtain

ln

�
1þ 2ð1− ηÞα− Fα2

Fε2 þ 2Fαεþ Fα2

�
< 2

ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1− ηÞ− Fα

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fε2 þ 2Fαεþ Fα2

p < C 1

ffiffiffi
α

p
ε

;

where C 1 ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1− ηÞp

∕
ffiffiffiffi
F

p Þ. Combining these two results, we obtain

m ≤
C1

ffiffiffi
α

p
Fð1− ηÞαε :

Therefore, mαε < C 2

ffiffiffi
α

p
, with C 2 independent of ε. This yields h ¼ ð1 ∕ λ0Þðαþ

FmαεÞ < ð1 ∕ λ0Þðαþ FC 2

ffiffiffi
α

p Þ for all ε > 0.
Hence there exists a constant C such that h < C

ffiffiffi
α

p
for all ε > 0 (and all α small

enough) which implies that h converges uniformly to 0 as α → 0. ▯
Remark 7. Note that mαε ≤ C

ffiffiffi
α

p
is a sufficient condition for the uniform conver-

gence of the composite time step.
Table 4.1 summarizes the properties ofm that we have obtained so far which will be

used in our uniform convergence proofs.
THEOREM 4.2. The global error for the mean of the fast variable is uniformly bounded

in ε, for any n ≥ 0; that is, there exists a constant C independent of ε such that

jenj ≤ C
ffiffiffi
α

p
∀ n ≥ 0:

Proof. From (3.7), we have jenþ1j ≤ ajenj þ cn þ dn, where

a ¼ AmM ¼ ð1− FαÞm 1

1þ α
ε

;

cn ¼ AmM jTruncMeanFastI ðtn; kÞj;

dn ¼
Xm−1

l¼0

Am−1−ljTruncMeanFastEðtn þ kþ lτ; τÞj:

TABLE 4.1
Properties of m.

Em
2 ð α

αþε
Þ2 ≤ C1αð1− Em

2 Þ
Em

2
α

αþε
≤ C2

ffiffiffi
α

p
ffiffiffiffiffiffi
E2

p
m α

αþε
≤ C3

ffiffiffi
α

p

Am α
αþε

≤ C4

ffiffiffi
α

p

mαε ≤ C5

ffiffiffi
α

p
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Using e0 ¼ 0, we get jenj ≤
P

n−1
i¼0 a

n−1−ici þ
P

n−1
i¼0 a

n−1−idi. First, we will find some use-
ful bounds for a and dn. We have

a ¼ ð1− FαÞm 1

1þ α
ε

≤
1

1þ Fmαþ α
ε

≤
1

1þ x
;

where x ¼ λ0h∕ ε ¼ Fmαþ α ∕ ε. Some easy manipulations give

dn ¼
Xm−1

l¼0

Am−1−ljTruncMeanFastEðtn þ kþ lτ; τÞj

≤
Xm−1

l¼0

ð1− FαÞm−1−lCα2e−
α
εðe−λ0h

ε Þnðe−FαÞl

≤ C 1αxe
−xðe−xÞn;

where we have used 1− Fα < e−Fα. Let us denote S1 ¼
P

n−1
i¼0 a

n−1−ici and S2 ¼P
n−1
i¼0 a

n−1−idi. We have

S1 ¼
Xn−1

i¼0

an−1−ici ≤
Xn−1

i¼0

ci ¼ AmM
Xn−1

i¼0

jTruncMeanFastI ðti; kÞj ≤ Am α

αþ ε
;

S2 ¼
Xn−1

i¼0

an−1−idi ≤ C 1αxe
−x

Xn−1

i¼0

ðe−xÞi
ð1þ xÞn−1−i ≤ C 2α:

This implies jenj ≤ C 1αþ C 2A
mðα ∕ ðαþ εÞÞ for all n ≥ 0. Further, using Amðα ∕

ðαþ εÞÞ ≤ C
ffiffiffi
α

p
, we obtain

jenj ≤ C
ffiffiffi
α

p
∀ n ≥ 0;

which completes the proof. Let us note that we were able to obtain the uniform con-
vergence for any n ≥ 0 due to the property (3.12) of m. ▯

The second moment of the fast variable also depends on the mean of the fast variable
inside the composite time step. Here we derive the global mean for the correspond-
ing error.

THEOREM 4.3. The error of the mean of the fast variable inside the composite time
step, e1∕ 2;ln ¼ ĝ1 ∕ 2;ln − gðtn þ kþ lτÞ; l ¼ 0; : : : ;m− 1, satisfies the inequality

je1 ∕ 2;ln j ≤ C 1

ffiffiffi
α

p þAlðε ∕ ðαþ εÞÞjTruncMeanFastI ðtn; kÞj ∀ n ≥ 0:ð4:1Þ

Proof. Taking m ¼ l in (3.5) and (3.2) and subtracting, we obtain

je1 ∕ 2;ln j ≤ AlM jenj þAlM jTruncMeanFastI ðtn; kÞj

þ
Xl−1

j¼0

Al−1−jjTruncMeanFastEðtn þ kþ jτ; τÞj
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for any l ¼ 0; : : : ;m− 1. Let us denote

Sl ¼
Xl−1

j¼0

Al−1−jjTruncMeanFastEðtn þ kþ jτ; τÞj:

Using

A ¼ 1− Fα < e−Fα; Flαe−Flα ≤ 1;

jTruncMeanFastEðtn þ kþ jτ; τÞj < Cα2e
α
εðe−λ0h

ε Þnðe−FαÞj;

we obtain Sl ≤ C1α. Further, jenj ≤ C
ffiffiffi
α

p
for all n ≥ 0 implies

je1 ∕ 2;ln j ≤ C
ffiffiffi
α

p þ AlMTruncMeanFastI ðtn; kÞ;

which combined with M ¼ ε ∕ ðαþ εÞ yields (4.1). ▯
The proof of uniform convergence for the mean of the slow variable is similar to the

convergence proof for the mean of the fast variable; here we present only the main result.
THEOREM 4.4. The global error for the mean of the slow variable, sn ¼ ĥn − hðtnÞ, is

uniformly bounded in ε; that is, there exists a constant C independent of ε such that

jsnj ≤ C
ffiffiffi
α

p
∀ n ≥ 0:

THEOREM 4.5. The global error of the second moment of the fast component is uni-
formly bounded; that is, there exists a constant C independent of ε such that

jfnj ≤ C
ffiffiffi
α

p
∀ n ≥ 2:ð4:2Þ

Proof. Using the bounds for en and e1 ∕ 2;ln , which are satisfied for any n ≥ 0, and
applying Theorem 3.18, we get

jfnþ1j ≤ Em
2 I 2jfnj þ C 1

ffiffiffi
α

p ð1− Em
2 Þ þ C 2αð1− Em

2 Þ
þ C 3E

m
2 jTruncSecondMomentFastI ðtn; kÞj

þ α

�
C 4

ffiffiffi
α

p Xm−1

l¼0

El
2 þ C 5

ε

αþ ε

Xm−1

l¼0

AlEm−1−l
2 jTruncMeanFastI ðtn; kÞj

�
.

Recall that E2 ¼ 1− Fα½2ð1− ηÞ− Fα� and by assuming Fα ≤ 1− η, we obtain
1 ∕ ð1− E2Þ < Cð1 ∕ αÞ, with C ¼ 1 ∕ ðFð1− ηÞÞ. This implies

P
m−1
l¼0 Em

2 ≤ Cðð1−
Em

2 Þ ∕ αÞ. Moreover,A ≤
ffiffiffiffiffiffi
E2

p
, which implies

P
m−1
l¼0 AlEm−1−l

2 ≤ Cm
ffiffiffiffiffiffiffi
Em

2

p
, with constant

C independent of ε. Using these two results and combining the like terms, we
obtain

jfnþ1j ≤ Em
2 I 2jfnj þ C 1

ffiffiffi
α

p ð1− Em
2 Þ þ C 2E

m
2 jTruncSecondMomentFastI ðtn; kÞj

þ C 3α
ε

αþ ε
m

ffiffiffiffiffiffiffi
Em

2

p jTruncMeanFastI ðtn; kÞj:

Further, f 0 ¼ 0 yields
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jfnj ≤ C 1

ffiffiffi
α

p ð1− Em
2 Þ

Xn−1

i¼0

ðEm
2 I 2Þi

þ C 2E
m
2

Xn−1

i¼0

ðEm
2 I 2Þn−1−ijTruncSecondMomentFastI ðti; kÞj

þ C 3m
αε

αþ ε

ffiffiffiffiffiffiffi
Em

2

p Xn−1

i¼0

ðEm
2 I 2Þn−1−ijTruncMeanFastI ðti; kÞj:

Using
P

n−1
i¼0 E

m
2 I 2 ≤

P
n−1
i¼0 Em

2 ≤ 1 ∕ ð1− Em
2 Þ and ðEm

2 I2Þn−1−i ≤ 1, we obtain

jfnj ≤ C1

ffiffiffi
α

p þ C 2E
m
2

Xn−1

i¼0

jTruncSecondMomentFastI ðti; kÞj

þ C 3m
αε

αþ ε

ffiffiffiffiffiffiffi
Em

2

p ðEm
2 I 2Þn−1jTruncMeanFastI ðt0; kÞj

þ C 4m
αε

αþ ε

ffiffiffiffiffiffiffi
Em

2

p Xn−1

i¼1

jTruncMeanFastI ðti; kÞj:

Using the inequalities

ðEm
2 I 2Þn−1 < Em

2 I 2 < CEm
2

ε

αþ ε
∀ n ≥ 2;

jTruncMeanFastI ðti; kÞj ≤ e−Fmα
e

α
ε − α

ε
− 1

e
α
ε

ðe−α
εÞi ∀ i ≥ 1;

jTruncMeanFastI ðt0; kÞj ≤
α2

ε2
;

the properties of m listed in Table 4.1, and those of the truncation errors listed in
Table 3.3, we obtain

jfnj ≤ C 1

ffiffiffi
α

p þ C 2ðmαEm
2 Þ

ffiffiffiffiffiffiffi
Em

2

p α2

ðαþ εÞ2 þ C 3ðmαe−FmαÞ ffiffiffiffiffiffiffi
Em

2

p α

αþ ε

for all n ≥ 2. It can be easily shown that mαEm
2 < C 1 and mαe−Fmα < C 2, with

constants C1, C 2 independent of ε, which combined with
ffiffiffiffiffiffiffi
Em

2

p ðα ∕ ðαþ εÞÞ ≤ C3

ffiffiffi
α

p
yields (4.2). ▯

Remark 8. Note that the term
ffiffiffiffiffiffiffi
Em

2

p ðα ∕ ðαþ εÞÞ plays an important role in the uni-
form convergence. Specifically, α ∕ ðαþ εÞ does not converge uniformly to 0, but when
multiplied by

ffiffiffiffiffiffi
E2

p
m we obtain the uniform convergence. This also explains why implicit

Euler method (which corresponds tom ¼ 0) does not converge uniformly in ε as α → 0.
The variance of the numerical solution for the slow component depends on the nu-

merical solution for the fast component inside the composite time step. The following
theorem characterizes the second moment of the fast component inside the composite
time step.

THEOREM 4.6. The error of the second moment of the fast component inside the com-
posite time step satisfies
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jf 1 ∕ 2;ln j ≤ C 1

ffiffiffi
α

p þ C 2

ffiffiffiffiffiffi
El

2

q
ðα ∕ ðαþ εÞÞ þ C 3E

l
2jTruncSecondMomentFastI ðtn; kÞj

ð4:3Þ

for all l ¼ 0; : : : ;m− 1 and n ≥ 2.
Proof. Taking m ¼ l in (3.19) and (3.9) and using the bounds for E1 and RestE,

RE, we obtain

jf 1∕ 2;ln j ≤ El
2I 2jfnj þ El

2I 1jenj þ El
2

�
α ∕ ðαþ εÞ

�
2

þ El
2ðαÞjTruncSecondMomentFastI ðtn; kÞj

þ C 1α
Xl−1

j¼0

El−1−j
2 je1∕ 2;jn j þ C2α

2
Xl−1

j¼0

Ej
2:

Let us denote Sl ¼
P

l−1
j¼0E

l−1−j
2 je1 ∕ 2;jn j. Using the bound for e1∕ 2;ln from Theorem 4.3 and

A <
ffiffiffiffiffiffi
E2

p
, we obtain

Sl ≤ C 1

ffiffiffi
α

p
α

þ C 2

ε

αþ ε
jTruncMeanFastI ðtn; kÞj

�
l

ffiffiffiffiffiffi
El

2

q �
:

Next, using jenj ≤ C 1

ffiffiffi
α

p
and jfnj ≤ C2

ffiffiffi
α

p
and combining the like terms, we obtain

jf 1 ∕ 2;ln j ≤ C 1

ffiffiffi
α

p þ C 2E
l
2

�
α ∕ ðαþ εÞ

�
2

þ C 3E
l
2jTruncSecondMomentFastI ðtn; kÞj

þ C 4α
ε

αþ ε
jTruncMeanFastI ðtn; kÞj

�
l

ffiffiffiffiffiffi
El

2

q �

for all n ≥ 2.
From Corollary 3.7, we have

jTruncMeanFastI ðtn; kÞj ≤ C
α

ε
e−Fmα ∀ n ≥ 1:

Using lαe−Fmα ≤ 1 ∕ F , we obtain

α
ε

αþ ε
jTruncMeanFastI ðtn; kÞjl

ffiffiffiffiffiffi
El

2

q
≤

ffiffiffiffiffiffi
El

2

q
α

αþ ε
;

and (4.3) follows. ▯
THEOREM 4.7. The global error for the variance of the slow component is uniformly

bounded; that is, there exists a constant C independent of ε such that

jesnj < C
1

ln

�
2ð1−ηÞ
Fα

� ∀ n ≥ 2:ð4:4Þ

Proof. Using the bounds for Ex, RestSlowI, RestSlowE, and I x in Theorem 3.25,
we get
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jesnþ1j ≤ Em
y I yjesnj þ C 1E

m
y αjfnj þ C 2α

2Em
y þ Em

y jTruncVarSlowI ðtn; kÞj

þ C 3αε
Xm−1

l¼0

Em−1−l
y jf 1∕ 2;ln j þ C 4α

2ε
Xm−1

l¼0

El
y:

Using es0 ¼ 0, we obtain

jesnj ≤ C 1E
m
y α

Xn−1

i¼0

ðEm
y I yÞn−1−ijf ij þ C2α

2Em
y

Xn−1

i¼0

ðEm
y I yÞi

þ Em
y

Xn−1

i¼0

ðEm
y I yÞn−1−ijTruncVarSlowI ðti; kÞj

þ C3αε
Xn−1

i¼0

�
ðEm

y I yÞn−1−i
Xm−1

l¼0

Em−1−l
y jf 1∕ 2;li j

�

þ C4α
2εðð1− Em

y Þ ∕ ð1− EyÞÞ
Xn−1

i¼0

ðEm
y I yÞi:ð4:5Þ

Let us denote S ¼ P
m−1
l¼0 Em−1−l

y jf 1∕ 2;li j. Using the bound for f 1 ∕ 2;li from Theorem 4.6, we
obtain

S ≤ C 1

ffiffiffi
α

p Xm−1

l¼0

El
y þ C 2

α

αþ ε

Xm−1

l¼0

Em−1−l
y El

2

þ C3jTruncSecondMomentFastI ðti; kÞj
Xm−1

l¼0

Em−1−l
y El

2

for all i ≥ 2.
Further, let us denote Sm ¼ P

m−1
l¼0 Em−1−l

y El
2. The sequence fEm−1−l

y gl≥0 is an in-

creasing sequence, and the sequence fEl
2gl≥0 is a decreasing sequence. Chebyshev’s

inequality implies

Sm ¼
Xm−1

l¼0

Em−1−l
y El

2

≤
1

m

�Xm−1

l¼0

Em−1−l
y

��Xm−1

l¼0

El
2

�
¼ 1

m

1− Em
y

1− Ey

1− Em
2

1− E2

.

Recall that Ey ¼ ð1− FαεÞ2. An easy calculation shows that there exists a constant C
independent of ε such that 1 ∕ ð1− EyÞ ≤ Cð1 ∕ αεÞ. This implies

S ≤ C 1

ffiffiffi
α

p 1− Em
y

αε
þ C2

α

αþ ε

1

m

1− Em
y

αε

1− Em
2

1− E2

þ C 3mjTruncSecondMomentFastI ðti; kÞj:

We use the above bound in (4.5), as well as the following inequalities:
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Xn−1

i¼0

ðEm
y I yÞi ≤

Xn−1

i¼0

I iy ≤
Xn−1

i¼0

�
1 ∕ ð1þ αÞ

�
i

≤ 2 ∕ α;

Xn−1

i¼0

jTruncVarSlowI ðti; kÞj ≤ Cα;

Xn−1

i¼0

jTruncSecondMomentFastI ðti; kÞj ≤ Cα ∕ ðαþ εÞ;

mαε ≤ C
ffiffiffi
α

p
; jf 1j < 1; jf ij < C

ffiffiffi
α

p
∀ i ≥ 2;

jf 1∕ 2;l0 j < 1; jf 1 ∕ 2;l1 j < 1;

jf 1∕ 2;li j<C1

ffiffiffi
α

p þC 2E
l
2ðα ∕ ðαþ εÞÞþC3E

l
2jTruncSecondMomentFastI ðti; kÞj ∀ i≥2

to prove that

jesnj ≤ C 1

ffiffiffi
α

p þ C 2

1

m

α

αþ ε

1− Em
2

1− E2

:

Let us denote Tðα; εÞ ¼ 1

m
α

αþε

1−Em
2

1−E2
. Some tedious manipulations in (3.13) yield

1− Em
2

1− E2

¼ 1

F2ðαþ εÞ2 þ Fα½2ð1− ηÞ− Fα�

which combined with (3.1) gives

Tðα; εÞ ¼ α

αþ ε

− ln ð1− Fα½2ð1− ηÞ− Fα�Þ
ln

�
F2ðαþεÞ2þFα½2ð1−ηÞ−Fα�

F2ðαþεÞ2

� 1

F2ðαþ εÞ2 þ Fα½2ð1− ηÞ− Fα� :

From Lemma B.5, we have that the function Tðα; εÞ is a decreasing function of ε, thus

Tðα; εÞ ≤ Tðα; 0Þ ¼ − ln ð1− Fα½2ð1− ηÞ− Fα�Þ
ln

�
1þ 2ð1−ηÞ−Fα

Fα

� 1

2ð1− ηÞFα

≤
− ln ð1− 2ð1− ηÞFαÞ

2ð1− ηÞFα
1

ln

�
2ð1−ηÞ
Fα

� :

Assuming Fα < 1 ∕ 2, we have 2ð1− ηÞFα ≤ 1− η which implies

− ln ð1− 2ð1− ηÞFαÞ
2ð1− ηÞFα ≤

− ln η

1− η
:

Hence Tðα; εÞ ≤ Cð1 ∕ ln ð2ð1− ηÞ∕ FαÞÞ with C ¼ − ln η ∕ ð1− ηÞ. Note also thatffiffiffi
α

p
≤ 1 ∕ ln ð1 ∕ αÞ ≤ 1 ∕ ln ð2ð1− ηÞ∕ FαÞ provided F > 2ð1− ηÞ, and combining these

two results, we obtain (4.4). ▯
Remark 9. Our convergence analysis shows that in order for the uniform condition

to hold, we can relax the condition on m, by allowing a range of values as opposed to a
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single value. In fact, examining the proofs of uniform convergence, we observe that it is
adequate that m satisfies the following three conditions:

mαε ≤ C 1

ffiffiffi
α

p
;ð4:6Þ

Em
2 ðαÞ

α2

ðαþ εÞ2 ≤ C 2αð1− Em
2 Þ;ð4:7Þ

1

m

α

αþ ε

1− Em
2 ðαÞ

1− E2

≤ C 3

1

ln

�
2ð1−ηÞ
Fα

� ;ð4:8Þ

where C 1, C 2, C 3 are some arbitrary constants independent of α and ϵ.
The first two inequalities are monotone in m and provide upper and lower bounds.

The proofs provided so far demonstrate that there exist constants C 1, C 2, C3 such that
the optimal m given by formula (3.1) satisfies these three inequalities. On the other
hand, enlarging these constants if necessary, one may obtain a nonempty interval of
values (dependent on α and ε) for m that satisfies these three inequalities.

Since we do not have sharp estimates of these constants, the existence of this inter-
val of values does not provide practical algorithms as such but rather provides some
comfort that an approximate choice of m might be reasonable. This will be useful in
circumstances when there are more than one scale separation; for instance, if the (multi-
dimensional) fast subsystem has a scale separation by a factor of 10 or so within itself.

5. Numerical examples. In this section, we consider several examples and illus-
trate via numerical experiments the efficiency of the interlaced method. We first apply
the interlaced method to our test system (2.6). Further, we consider three other exam-
ples: a fully coupled 2D linear system, a linear system with a 3D fast subsystem, and a
nonlinear system. The question we want to address is how to choose the optimal m in
these situations. Our numerical examples suggest that we can use the choice of m
given by (3.1).

5.1. Test problem. First we apply the interlaced method to our test system (2.6)
and we compare the results with the implicit Euler method. The setup of the problem is
λ0 ¼ 1, μ0 ¼ 1, ε ¼ 10−5, x̄ ¼ 100, β ¼ 2, and the time interval for simulations is [0,1].
The initial conditions areXð0Þ ¼ 300,Y ð0Þ ¼ 500. The exact values of the variances are
VarðXð1ÞÞ ¼ 10000 and VarðY ð1ÞÞ ¼ 34594.

For the numerical methods, we use α ¼ 0.01. This gives the implicit time
step k ¼ 10−2. For the interlaced method, we take F ¼ 10 which gives m ¼ 24. There-
fore, the interlaced time step is h ¼ 10−2 þ 24 · 10−6. The results are shown in
Figures 5.1, 5.2, and 5.3, and Tables 5.1 and 5.2.

Figure 5.1 shows two sample paths for each variable along with the corresponding
expected values. One sample path is obtained with benchmark explicit Euler with time
step τ ¼ 10−6 and the other one corresponds to the interlaced solution. The histograms
of fast and slow variables at time T ¼ 1 are shown in Figure 5.2. We compare the results
obtained by the interlaced method and the implicit method, with the benchmark explicit
Euler. We see that the implicit solver produces a distribution which is too narrow.

Figure 5.3 shows the time evolution of the fast and slow variances. The implicit
method underestimates the variance of both components while the interlaced method
gives the correct variances.
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Tables 5.1 and 5.2 show the values of the stationary variances of the fast and slow
variables obtained with the interlaced method and implicit method with fixed time steps
k ¼ 10−2, 10−5, and 10−6. The interlaced method with composite time step h ¼ 10−2 þ
24 · 10−6 gives the variance close to the true variance for both variables. The implicit
method requires a much smaller time step, k ¼ 10−6, to compute the variances correctly.
This makes the interlaced method almost 400 times faster than the implicit method for
this example.

5.2. Fully coupled 2D system. Now we consider a fully coupled 2D system. The
goal is to show that the optimal m given by (3.1) works in this case too. This is because
for small ε, Y ðtÞ behaves like a constant in the equation of XðtÞ and hence can be as-
similated with x̄. Since m does not depend on x̄, we expect that for small values of ε the
optimal m is independent of the slow variable.

FIG. 5.1. Sample paths forXðtÞ andY ðtÞ and the corresponding mean. The left figure shows a sample path
for XðtÞ obtained by benchmark explicit Euler, the interlaced method, and E½XðtÞ�. The right figure shows the
corresponding sample paths for Y ðtÞ and E½Y ðtÞ�.

FIG. 5.2. Histograms (100,000 samples) of Xð1Þ and Y ð1Þ. The left figure shows the histogram of the fast
variable obtained by benchmark explicit Euler, the interlaced method, and the implicit Euler. The right figure
shows the histogram of the slow variable.
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We consider the following system:

dXðtÞ ¼
�
−
1

ϵ
XðtÞ þ 0.1

ϵ
Y ðtÞ þ 500

ϵ

�
dtþ

�
1ffiffiffi
ϵ

p XðtÞ þ 0.01ffiffiffi
ϵ

p Y ðtÞ
�
dBðtÞ;

dY ðtÞ ¼ ðXðtÞ−Y ðtÞ þ 900Þdtþ ð0.1XðtÞ þ 0.001Y ðtÞÞdBðtÞ:ð5:1Þ

We take ε ¼ 10−10 and the time simulation interval [0,0.1]. The initial conditions are
Xð0Þ ¼ 300, Y ð0Þ ¼ 500, and the values for the exact variances are VarðXð0.1ÞÞ ¼
319231 and VarðY ð0.1ÞÞ ¼ 627. We further apply the interlaced method with α ¼
0.0025 and we compare the results with the trapezoidal method with different time
steps. The results are shown in Tables 5.3 and 5.4. We can see that for this example,

FIG. 5.3. Variance of the exact solution and numerical solutions of system (2.6). The top figure shows the
time evolution of the variance of the fast variable and the bottom figure shows the variance for the slow variable.

TABLE 5.1
Variance of the fast variable of system (2.6).

Fast variable Interlaced Implicit Implicit Implicit

Time step 10−2 þ 24 · 10−6 10−2 10−5 10−6

VarðX̂ð1ÞÞ 9958 10 5000 9091

TABLE 5.2
Variance of the slow variable of system (2.6).

Slow variable Interlaced Implicit Implicit Implicit

Time step 10−2 þ 24 · 10−6 10−2 10−5 10−6

VarðŶ ð1ÞÞ 34196 17148 25940 33014
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the interlaced method is more efficient than the trapezoidal, which requires a much
smaller time step in order to get the variances correct. This makes the interlaced method
almost 20 times faster than the trapezoidal method.

5.3. Fast subsystem. Further, we investigate a linear system with a fast subsys-
tem.When the fast subsystem is diagonal, we choose the optimalm corresponding to the
fastest reaction. Here we consider the following system:

dX1ðtÞ ¼
�
−
10

ϵ
X1ðtÞ þ

100

ϵ

�
dtþ 4ffiffiffi

ϵ
p X1ðtÞdBðtÞ;

dX2ðtÞ ¼
�
−
9

ϵ
X2ðtÞ þ

500

ϵ

�
dtþ 3ffiffiffi

ϵ
p X2ðtÞdBðtÞ;

dX3ðtÞ ¼
�
−
7

ϵ
X3ðtÞ þ

300

ϵ

�
dtþ 2ffiffiffi

ϵ
p X3ðtÞdBðtÞ;

dX4ðtÞ ¼ −2X4ðtÞdt− ð2X1ðtÞ þ 5X2ðtÞ þ 7X3ðtÞÞdBðtÞ:ð5:2Þ

We take ε ¼ 10−10 and the time interval for simulations [0,0.1]. The initial conditions are
X1ð0Þ ¼ 300,X2ð0Þ ¼ 500,X3ð0Þ ¼ 100, andX4ð0Þ ¼ 200. The values for the exact var-
iances at time t¼0.1 are VarðX1ð0.1ÞÞ¼400, VarðX2ð0.1ÞÞ¼3086, VarðX3ð0.1ÞÞ ¼
735, and VarðX4ð0.1ÞÞ ¼ 49603.

We apply the interlaced method with α ¼ 0.0025. This gives m ¼ 249, and the
results are shown in Table 5.5.

Next, we apply the trapezoidal method with the same time step as the interlaced
method, k ¼ α ¼ 0.00025. In this case, the trapezoidal method gives the incorrect var-
iances as shown in Table 5.6. Our simulations show that a much smaller time step is
needed for the trapezoidal method. For example, k ¼ α ∕ 1000 ¼ 2.5× 10−7 gives results
similar to those obtained by the interlaced method, but only for the fast variables; the
variance of the slow variable is still overestimated. Even for this choice of time step,

TABLE 5.3
Interlaced method applied to system (5.1).

α m VarðX̂ð0.1ÞÞ VarðŶ ð0.1ÞÞ CPU time

0.0025 149 319120 614 0.275s

TABLE 5.4
Trapezoidal method applied to system (5.1).

k VarðX̂ð0.1ÞÞ VarðŶ ð0.1ÞÞ CPU time

0.0025 2596 398 0.012s

0.000016 56681 416 0.532s

0.000008 166595 460 1.058s

0.000004 296996 548 2.117s

0.000002 318214 607 4.245s
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the interlaced method is three times faster than the trapezoidal, but as the results
show, the trapezoidal methods need an even smaller time step.

5.4. Nonlinear system. Finally, we investigate nonlinear systems. We study sys-
tems which are nonlinear only in the slow variable. In this case, we can choose the
optimal m to be determined by the fast variable only, that is, m given by(3.1). We con-
sider the system

dXðtÞ ¼ −
λ0
ε
XðtÞdtþ λ0

ε
x̄dtþ μ0ffiffiffi

ε
p XðtÞdBðtÞ;

dY ðtÞ ¼ −λ0 sinðY ðtÞÞdtþ ðbXðtÞ þ c cosðXðtÞÞÞdBðtÞ;ð5:3Þ
and we compare the interlaced method with the benchmark explicit Euler. The setup
for this problem is λ0 ¼ 1, μ0 ¼ 1, x̄ ¼ 100, b ¼ 2, c ¼ 0.5, and ε ¼ 10−5. The initial
conditions are Xð0Þ ¼ 500, Y ð0Þ ¼ 300. For the interlaced method, we choose
α ¼ 0.01 which gives m ¼ 24. For the benchmark Euler, the time step is τ ¼ 10−6.
We run 100,000 Monte Carlo simulations, and the results are presented in Table 5.7.
We can see that for this problem the interlaced method performs very well. Once again,
we see that the variance obtained by the implicit Euler is underestimated for both fast
and slow variables.

6. Concluding remarks. We have proposed a strategy called the “interlaced
Euler method” for computing numerical solutions of stiff systems of SDEs by interlacing
one large implicit time step with m small explicit time steps. We have proven the uni-
form convergence (of the mean and variance) of the interlaced method with respect
to the time scale separation parameter ε for a singularly perturbed family of 2D linear

TABLE 5.5
Interlaced method applied to system (5.2).

α m VarðX̂1ð0.1ÞÞ VarðX̂2ð0.1ÞÞ VarðX̂3ð0.1ÞÞ VarðX̂4ð0.1ÞÞ
0.00025 249 400 3153 743 51105

TABLE 5.6
Trapezoidal method applied to system (5.2).

α VarðX̂1ð0.1ÞÞ VarðX̂2ð0.1ÞÞ VarðX̂3ð0.1ÞÞ VarðX̂4ð0.1ÞÞ
0.00025 100 192 6 874283

0.000000025 539 3086 735 92592

TABLE 5.7
Variance of the fast/slow variables of system (5.3).

Benchmark Interlaced Implicit

Variance fast variable: Xð0.1Þ 10514 10360 42.27

Variance slow variable: Y ð0.1Þ 84312 89473 49812
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systems. We have also shown via numerical experiments the efficiency of the interlaced
Euler method for linear/nonlinear systems.

More importantly, the interlaced Euler method serves as a template and a proof of
concept, rather than as a final product.We regard the key message to be the feasibility of
the development of time-stepping methods for stiff SDEs whose performance is uniform
in the time scale separation parameter ε. We have shown that such methods are possible
when explicit time steps of the order of the fast time scale are interlaced with implicit
time steps of the order of the slow time scale.

We have limited the convergence analysis to the mean and the variance to manage
the complexity. Our proof of uniform convergence was “hand crafted” rather than ob-
tained via a more general overarching approach. In the future, we hope that such an
approach will be possible. We also anticipate the development of more sophisticated
time-stepping methods that can deal with multiple time scales as well as adaptivity
of the step sizes.

Appendix A. Derivation of the formula for the variance quotient. Equa-
tion (2.5) for the variance quotient is somewhat tedious to derive and was accomplished
with the aid of Maple. We show some steps here. We first recall two basic facts from
probability theory. IfX andY are two random variables, and if EðY jXÞ andVarðY jXÞ,
respectively, denote the conditional expectation and conditional variance of Y given X ,
then EðY Þ and VarðY Þ are given by

EðY Þ ¼ EðEðY jXÞÞðA:1Þ

and

VarðY Þ ¼ EðVarðY jXÞÞ þVarðEðY jXÞÞ:ðA:2Þ

Given the test equation

dXðtÞ ¼ −λXðtÞdtþ λx̄dtþ μXðtÞdBðtÞ;

let us consider the application of one step of implicit Euler with step size k starting at
state X̂n to obtain an intermediate state X̂1 ∕ 2;0

n . This is given by

X̂1 ∕ 2;0
n ¼ ð1 ∕ ð1þ λkÞÞX̂n þ ðμ ∕ ð1þ λkÞÞX̂nðBðtn þ kÞ− BðtnÞÞ þ λx̄ðk ∕ ð1þ λkÞÞ:

Since X̂n and Bðtn þ kÞ− BðtnÞ are independent it follows that

EðX̂1 ∕ 2;0
n jX̂nÞ ¼ ð1 ∕ ð1þ λkÞÞX̂n þ λx̄ðk ∕ ð1þ λkÞÞ;

and that

VarðX̂1 ∕ 2;0
n jX̂nÞ ¼ ðμ2k ∕ ð1þ λkÞ2ÞðX̂nÞ2:

By using (A.1) and (A.2) we obtain that

EðX̂1 ∕ 2;0
n Þ ¼ ð1 ∕ ð1þ λkÞÞEðX̂nÞ þ λx̄ðk ∕ ð1þ λkÞÞ;

and that

VarðX̂1∕ 2;0
n Þ ¼ ðð1þ μ2kÞ ∕ ð1þ λkÞ2ÞVarðX̂nÞ þ ðμ2k ∕ ð1þ λkÞ2ÞðEðX̂nÞÞ2:
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Now consider the application ofm steps of explicit Euler with step size τ starting at
state X̂1∕ 2;0

n . One obtains intermediate states X̂1 ∕ 2;l
n for l ¼ 1; : : : ;m with

X̂1 ∕ 2;m
n ¼ X̂nþ1. Following similar calculations, we may obtain the recurrences

EðX̂1∕ 2;lþ1
n Þ ¼ ð1− λτÞEðX̂1 ∕ 2;l

n Þ þ λτx̄

and

VarðX̂1 ∕ 2;lþ1
n Þ ¼ ½ð1− λτÞ2 þ μ2τ�VarðX̂1∕ 2;l

n Þ þμ2τðEðX̂1 ∕ 2;l
n ÞÞ2:

Combining the above, we may obtain the recurrences for EðX̂nÞ and VarðX̂nÞ for
the interlaced method. The recurrence for the mean is given by

EðX̂nþ1Þ ¼ MAmEðX̂nÞ þ NAm þ B
1− Am

1− A
;

where

M ¼ 1

1þ λk
; N ¼ x̄

λk

1þ λk
; A ¼ 1− λτ; B ¼ λτx̄:

By our condition on τ, jAj < 1 and jM j < 1 by assumption λ > 0. Thus, this recurrence is
stable and the asymptotic value EðX̂∞Þ ¼ x̄ is the exact asymptotic mean. The recur-
rence formula for VarðX̂nÞ is considerably messy and was computed with the aid of
Maple. We only show its form in partial detail:

VarðX̂nþ1Þ ¼ I 2E
m
2 VarðX̂nÞ þ ~AðEðX̂nÞÞ2 þ ~BEðX̂nÞ þ ~C;

where

I 2 ¼
1þ μ2k

ð1þ λkÞ2

and

E2 ¼ ð1− λτÞ2 þμ2τ;

and ~A, ~B, and ~C depend only on λ, μ, x̄, τ, k. From the assumptions on the problem and
on τ, it follows that jE2j < 1 and jI 2j < 1 and hence stability of the recurrence is guar-
anteed. Additionally, the asymptotic variance of the method VarðX̂∞Þ must satisfy

VarðX̂∞Þ ¼ I 2E
m
2 VarðX̂∞Þ þ ~Ax̄2 þ ~B x̄þ ~C:

Finally, using the exact asymptotic variance of the problem VarðXð∞ÞÞ ¼ μ2x̄2

2λ−μ2, the

variance quotient (2.5) may be obtained with the aid of Maple.
Finally, we observe that as ðτ; kÞ → ð0; 0Þ, it can be shown (again with some careful

manipulations) from (2.5) that the variance quotient approaches 1. This is consistent
with the fact that the Euler methods are convergent.
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Appendix B. Some relevant lemmas. In this appendix, we collect some lem-
mas relevant for the analysis of uniform convergence. We are omitting the proof since
they can be easily verified.

LEMMA B.1. The solution of the linear difference equation

xnþ1 ¼ Axn þ Byn þ Czn is xn ¼ Anx0 þ B
Xn−1

i¼0

An−1−iyi þ C
Xn−1

i¼0

An−1−izi:

LEMMA B.2. For any real α which satisfies Fα < 1− η, the following inequality
holds:

1

− ln ð1− Fα½2ð1− ηÞ− Fα�Þ <
1

Fð1− ηÞα :

LEMMA B.3. For any real x > 0, we have ð1− e−x − xe−xÞ∕ ð1− e−xÞ ≤ x.
LEMMA B.4. For any real k > 0, we have ðk− xþ xe−k ∕ xÞ ∕ ð1− e−k ∕ xÞ ≤ k ∀x > 0.
LEMMA B.5. For any α > 0 satisfying Fα < 2ð1− ηÞ, the function

f ðxÞ ¼ −α ln ð1− Fα½2ð1− ηÞ− Fα�Þ
ðαþ xÞðF2ðαþ xÞ2 þ Fα½2ð1− ηÞ− Fα�Þ ln

�
1þ Fα½2ð1−ηÞ−Fα�

F2ðαþxÞ2

�

is a decreasing function of x, for x ≥ 0.
LEMMA B.6. The first two moments of the fast and slow component satisfy the fol-

lowing inequalities:

jgðtÞj < C 1; jhðtÞj < C 2; juðtÞj < C 3; jvðtÞj < C 4 ∀ t ≥ 0

ju 0ðtÞj < C 5

ε
e−

C0
ε
t; ju 0 0ðtÞj < C6

ε2
e−

C0
ϵ t ∀ t ≥ 0

jg 0  0ðtÞj < C 7

ε2
e−

λ0
ε
t; jh 0 0ðtÞj ≤ C 8 ∀ t ≥ 0

jv 0  0ðtÞj < C9 þ
C 10

ε
e−

C0
ε
t ∀ t ≥ 0;

where the constants C 0, C1, C2, C 3, C 4, C 5, C 6, C 7, C 8, C9, C10 are independent of ε.
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