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Abstract. In contrast to stiff deterministic systems of ordinary differential equations, in general, the
implicit Euler method for stiff stochastic differential equations is not effective. This paper introduces a
new numerical method for stiff differential equations which consists of interlacing large implicit Euler time
steps with a sequence of small explicit Euler time steps. We emphasize that uniform convergence with respect
to the time scale separation parameter ¢ is a desirable property of a stiff solver. We prove that the means and
variances of this interlaced method converge uniformly in ¢ for a suitably chosen test problem. We also illus-
trate the effectiveness of this method via some numerical examples.
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1. Introduction. In deterministic as well as stochastic dynamic models, stiff
systems, i.e., systems with vastly different time scales where the fast scales are stable,
are very common. It is well known that the implicit Euler method is well suited for stiff
deterministic equations (modeled by ODEs) while the explicit Euler method is not. In
particular, once the fast transients are over, the implicit Euler allows for the choice of
time steps comparable to the slowest time scale of the system. In stochastic systems
modeled by stochastic differential equations (SDEs), the picture is more complex. While
the implicit Euler has better stability properties over the explicit Euler, it underesti-
mates the stationary variance. See, for instance, [2], [3], [9], [10]. In general, one may
not expect any method to work successfully by taking time steps of the order of the
slowest time scale.

Let us first consider the following system of ODEs:

ax(t) 1
— = —a(X(1). Y(1).
dY (t)

S = x(, Y(),

where ¢ represents the ratio between the time scales of the system and we assume that a
is such that X(¢) is stable. It is well known that when ¢ < 1, the implicit Euler method is
more effective than the explicit Euler method. Note that € is a measure of stiffness. It is
worth noting that the implicit Euler works well regardless of ¢. When ¢ is not so small,
the explicit Euler method may be more efficient because of the computational savings,
however, the implicit Euler method with the same step size is expected to be equally
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accurate. Thus, one may expect an effective stiff solver, such as the implicit Euler, to
converge uniformly in e as the step size approaches zero. For the deterministic part of
the test linear system considered in this paper, this uniform convergence holds. However,
this is not the case for stochastic systems and the effectiveness of the implicit Euler is
compromised. Some relevant numerical results may be found in [3], [9].

In this paper, we propose an efficient numerical method for stiff systems of SDEs
driven by Brownian motion. More exactly, we are interested in systems of the form

1 1
AX () = L alX(), Y(0)dt+—=b(X (D), Y () dBi (1),

dY(t) = f(X(¢), Y())dt + g(X(1), Y(t))dBy(t),

where B; and B, are independent Brownian motions. Our goal is to devise a numerical
scheme which works effectively for a range of & values, not necessarily very small. Thus,
in general, we only assume that 0 < & < 1 and attempt to devise a method which is
convergent uniformly in ¢. It is worth mentioning at this point that this is what differ-
entiates our approach from the averaging type methods, such as the projective integra-
tion [5], which are primarily concerned with the ¢ — 0 behavior. See also [4], [6].

We present a composite time-stepping strategy for solving stiff systems of SDEs, by
interlacing a large implicit Euler time step (O(1)) with a sequence of m small explicit
Euler time steps (O(1 /¢)). The alternation of large and small steps resembles the pro-
jective integration methods studied in [5]. However, unlike in the projective integration,
we do not compute the averages (over time or ensemble) of the fast dynamics. We merely
alternate the time steps. Furthermore, our large time steps are implicit and the small
time steps are explicit. The motivation for our method comes from the asymptotic mo-
ment analysis, where numerical methods with constant step size t are applied to a sui-
tably chosen test SDE. In this analysis, in addition to stability, we compute and compare
the asymptotic moments (usually the first two) of the method with those of the true
solution. This analysis shows that the variance computed by the explicit Euler method
is larger than the variance of the stationary distribution, while the implicit Euler method
underestimates it.

We further present the convergence analysis of this new method as applied to a test
problem. This analysis shows the existence of a range of values for the number of small
explicit time steps, m, such that the method converges uniformly in the time scale se-
paration parameter ¢. The outline of the paper is as follows. In section 2, we summarize
some results of the asymptotic moment analysis applied to the Euler methods, motivate
the interlaced method, and comment on the comparison with the trapezoidal method. In
section 3, we provide the error analysis for the first two moments of the interlaced
method when applied to a suitably chosen test system. In section 4, we present the main
result of the paper, the uniform convergence of the interlaced method. Section 5 presents
some numerical examples which demonstrate the effectiveness of the method. Finally, in
section 6, we make some concluding remarks and discuss some extensions of the method
as future work.

2. Interlaced Euler method. In this section, we introduce the interlaced Euler
method. The method consists of interlacing one large implicit time step of size k with a
sequence of m small explicit time steps of size t. For stiff stochastic systems, the implicit
Euler underestimates the stationary variance and the explicit Euler overestimates it [2],
[3], [10]. By interlacing, we seek to obtain a composite method which gives an asymptotic
numerical variance close to the exact stationary variance. This provides us the criterion
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for determining m, the number of explicit time steps. We shall choose a test problem
that enables the analysis of finding a formula for m.

2.1. Motivation. The standard test problem for absolute stability analysis in de-
terministic systems is # = —Ax. In stochastic systems, it is important to choose a test
problem which has nonzero asymptotic variance [2], [10]. This leads us to choose the
following test SDE:

(2.1) dX (1) = —AX(t)dt + Azdt + p X (£)dB(1),

and we are interested in the stationary mean and variance of X(¢), provided that the
first two moments are stable. The differential equations for the moments [3], [8] show
that in order to have finite asymptotic first two moments, the following two stability
conditions must be satisfied:

(2.2) A>0, w2 < 24
It can be shown that
BX(00)] = lim, ., BIX(8)] = 3

[/LQE'Q
Var(X(00)) = limy e Var(X(t)) = 37—5-

We consider the Euler methods with a fixed time step, applied to this SDE. The Euler
methods belong to the family of stochastic theta methods, which we briefly review here
(see, for instance, [7], [8]). Consider the general SDE

(2.3) dX(t) = a(X(¢))dt + b(X(t))dB(?).
The stochastic theta method applied to (2.3) is

A

Xn+1 = j\(n + (1 - H)G(Xn)h + ea(j(7L+1)h + b(j(n)dBm

where h is a fixed time step, X » 1s the numerical approximation at time ¢, = nh, and dB,,
are independently and identically distributed Gaussian random variables with mean 0
and variance h. Taking 6 = 0, we obtain the explicit Euler method, 8 = 1 gives the
implicit Euler method (also known as semi-implicit Euler, as referred to in [8]), and
0 =1 /2 gives the trapezoidal method.

For explicit Euler with fixed time step t, applied to our test problem, it is easy to see
[3], [7], [9] that the stability conditions for the mean and variance is

2/ — p?

(2.4) T < pEa

provided (2.2) holds. When stability holds it follows that
ElXo] = E[X(00)] = 7,

Var(X,) = 1_%Var()((oo)) > Var(X(o0)).
2)—u?

Therefore, the asymptotic mean of the numerical solution obtained by the explicit Euler
method is the same as the asymptotic mean of the exact solution but the stationary
variance is overestimated.
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For the case of the implicit Euler method with fixed time step k applied to our test
problem, the moments are unconditionally stable, provided (2.2) holds. Moreover, the
asymptotic mean and variance are

E[X,] = E[X(c0)] = &,

Var(X,) = #VW(X(OO)) < Var(X(c0)).

- 2k
1+ Gy

Here we see that the asymptotic mean of the numerical solution obtained by the implicit
Euler method is the same as the asymptotic mean of the exact solution but the station-
ary variance is underestimated. These two observations give us the basic idea for the
interlaced Euler method which consists of interlacing one implicit time step of size k with
m explicit time steps of size t satisfying the stability condition (2.4). It can be easily
shown that this method is stable for all k¥ and m and it computes the asymptotic mean
correctly. Moreover, the asymptotic variance Var()A( ) 1s a function of 7, k, and m. We
provide below the formula for the ratio VQ(m.t, k) = Var(X.,)/Var(X(c0)), which
we shall refer to as variance quotient

22— p? (A2K% 4+ A2kT)[(1 — A7) + p27)™
(25)  VQ(m.t.k) = 57— 75— /121{ TR — (L 1 2R)[(1 =) 1 pﬁz]m}‘

It is possible to choose m such that this ratio is close to 1. With such a choice, we expect
the method not only to be stable but also to compute the first two asymptotic moments
correctly.

2.2. Test problem. So far we have discussed the absolute stability and the asymp-
totic moments for a scalar test problem. Our ultimate goal is to obtain a method which
applies to a stiff system of SDEs. We choose the following system of stochastic differ-
ential equations with two different time scales:

Ao

dX(t) = ~2X()dt + i—“i:dt + %X(t) dB, (1),

(2.6) dY(t) = =4 Y (t)dt + BX(t)dBy(1).

where the fast equation resembles our previous scalar test SDE and B;, B, are two in-
dependent Brownian motions. Here & > 0 represents the time scale separation para-
meter. When ¢ < 1, the system is stiff. It is instructive to consider the ¢ — 0 limit
behavior obtained via the singular perturbation theory for SDEs, which gives the fol-
lowing reduced equation for Y [5], [6]:

dY(t) = =2 Y(t)dt + B/ E[(X*)2]dB(t),

where Bis another Brownian motion. In the above equation, X* denotes the random vari-
able with the same asymptotic distribution as X (). It is clear that the slow variable Y(t)
evolves depending on the second moment of the fast variable. Thus, one would expect the
implicit Euler method applied to this system with step size of the order of 1 /4 > ¢ /A
(the time scale of the slow dynamics) to underestimate the second moment of the fast
variable and hence lead to inaccurate computation of the variance of the slow variable.
It is relevant at this point to discuss certain parameters of importance.

e T, represents the relaxation time of the fast dynamics. In (2.6), Ty = ¢ /4.

e T, represents the time to resolve the slow dynamics. In (2.6), T, =1 /4.

e T represents the time interval of simulation.
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It is convenient to introduce the following nondimensional parameters:
e ¢ represents the time scale separation, e = T /T;. We assume that ¢ < 1 but
not necessarily ¢ < 1.
e 1 = u? /2 represents the ratio between drift and diffusion. Note that n < 1 is
required from (2.2).
e (; represents the accuracy parameter for the implicit time step. Thus, k=
a1 Ty = oy /A
e «, represents the accuracy parameter for the explicit time step. Thus,
T =ay T = ase /. Note that oy < 2(1 —n) is required from (2.4).
e p represents the interval of simulation in terms of the slow time scale.
Thus, T=pT,.
The absolute stability and asymptotic moment analysis of the previous subsection
corresponds to the ¢ — 0 limit behavior of the fast subsystem. Indeed, making the
change of variables ¢ =t /e, T' = T /¢, we obtain the system

AX(t) = =20 X (1) dt + gZdt + o X (t)dB, (),
dY (1) = —Aoe Y (t)dt + B/e X (t)dBs(t).

(where B, and B, are two different independent Brownian motions) and taking the limit
& — 0, we obtain 7" — oo and Y = constant. If we consider a fixed time step b’ = h /e
with h — 0, we see that the analysis of the dynamics of the initial system reduces to the
asymptotic analysis of the fast variable. Thus, it was instructive to study the asymptotic
behavior of the fast component.

However, we are also interested in the situations when ¢ might not be much smaller
than 1. Let us consider the deterministic situation corresponding to ;o = 0, = 0 which
is given by

Ao

X'(t) = ,’loX(t) + 27,

(2.7) Y'(t) = =2 Y (¢).
Then the implicit Euler solution with time step k = o, /4, is
X, = (X(0)—Z)M" + 1,
v, = Y()P",
where n = T /k = 4yT /o, and
1 )

M:ij’ :—7

1+2k oj+e
1 1

_1+/1()k_1+a1

The exact solution of (2.7) is given by
X(T) = (X(0) — 5)e 27 + 7,
Y(T) = Y(0)ebT.

It can be shown that as a; — 0, M" converges uniformly in & to e~%/8)T Tt is therefore
clear that the implicit Euler for ODEs converges uniformly in ¢. Thus, the implicit
Euler method applied to the system (2.7) performs effectively, regardless of the size
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of €. On the other hand, it may be shown that explicit Euler method as well as the
trapezoidal method applied to this system, with step size k = «; /4, do not converge
uniformly in . The lack of uniform convergence manifests in a subtle way in the
trapezoidal case, which we discuss in section 2.3.

The investigation of the deterministic case (2.7) leads us to look for a method that is
uniformly convergent with respect to ¢, at least in the first two moments for the sto-
chastic case. If such a method is available, one would expect it to work for very stiff
systems as well as moderately stiff systems. The asymptotic moment analysis in
section 2.1 suggests that the implicit Euler method with step size k= «a; /Ay does
not converge uniformly for the second moment. Our conjecture is that no method with
step size k = oy /4y can converge uniformly for the second moment. Revisiting the in-
terlaced method introduced in the previous subsection, we ask the following question: “Is
there a range of values for m (possibly depending on @y, a9, &, and ) such that the
method is uniformly convergent (in ¢) for the first two moments?”

The choice of (the optimal) m for which the variance quotient V Q(m) = 1 given by
the asymptotic moment analysis is shown below in terms of the nondimensional
parameters

al=001,a2=01,4 =1.n=05
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Fic. 2.1. VQ(m) plotted against m. The left figure shows the dependence on €, and the right figure shows
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I (€* + 201e + o)y
ay€® + 20 09€ + 203 (1 — 1)
n (1 + a3 — 2as(1— 1)

(2.8) m=

We show the dependence of the optimal m on the problem parameters 1 and ¢, as well as
the numerical method parameters, «; and a5, in Figures 2.1 and 2.2. Here we plot V Q) as
a function of m and the constant function 1. The intersection of the graphs gives the
optimal value of m. We observe that the optimal m is a decreasing function of € and «,
and an increasing function of n and o;.

The asymptotic moment analysis also suggests that the interlaced method with the
choice of m given by(2.8) might be uniformly convergent. Indeed, in this paper, we prove
the existence of a range of values for m, which includes the one given by (2.8), such that
uniform convergence of the first two moments holds.

2.3. Comparison with the trapezoidal method. It must be noted that the
asymptotic moment analysis shows that the trapezoidal method captures the first
two moments exactly. However, the trapezoidal method is not uniformly convergent,
even for the first moment. Note that the differential equations for the first moments
are the same as the ODE system (2.7). For the trapezoidal method applied with time
step k = a; Ty, the numerical amplification factor for mean of the fast variable is

9 _
2+

m‘f

Mﬁ:

ml_Q

It is not difficult to see that M" = M?/® does not converge uniformly to e 47/¢ =

e P/ as ay — 0. The lack of uniform convergence specifically presents a problem when
p and & are both small. In this case, since ¢ is very small, the trapezoidal method reaches
the steady state much later than the true solution, and if p is small, the time interval
does not allow the trapezoidal method to catch up with the true solution. In addition,
this phenomenon becomes more pronounced when the eigenvalues are complex with
large imaginary parts [3]. The work in [3] shows numerical examples where the interlaced
method is superior to the trapezoidal method. In section 5, we also present some com-
parisons of the interlaced method with the trapezoidal method.

3. Error analysis. In this section, we derive linear inequalities for the global errors
of the first two (nonmixed) moments for the test problem (2.6). In our derivation, we use
the ordinary differential equations for the first two moments of the exact solution and
the difference equations for the corresponding moments of the numerical solution. Thus,
our error analysis is similar to the ODE case (see [1], for instance).

In section 2.2, the interlaced time step h is given by h = k + mt with the implicit
time step k = «, /4, and the explicit time step 7 = ey /4y. For simplicity, we choose
o) =« and oy = Fa, where F' is a constant. The stability condition (2.4) becomes
Fa < 2(1 —n), and the composite time step is

o + Fmae

h=k+4+ mt=
Ao

Note that in this setup, m is given by the following formula:
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| Fe? 4+ 2Fae +2(1 — n)a
Fe? 4+ 2Fag + Fa?

(3.1) m= —In(1-2F1 —n)a + F?a?) "

Therefore, the convergence analysis will be done with respect to a. More specifically, we
will prove the uniform convergence with respect to ¢ as ¢ — 0.

We apply the interlaced method to system (2. 6) The time interval of simulation is
[0, T, and it is discretized as follows: 0 = t;, < #; <---< ty = T, with ¢, = nh. We de-
note by X and Y the numerical approximations of the fast and slow variables, respec-
tively, at time ¢,. Throughout this paper, we will use the following notations:

A

EX(0). g =E[X,], h(t)=E[Y(®)], h,=B[V,]
u(t) = B[X?(t)]. = E[X7], o(t) = Var(Y(1)), &, = Var(Y,).

<

—~
~

~—
I

The numerical solution inside the composite time step plays an important role in the
analysis. We denote by X :1,/ 2! the numerical solution corresponding to the fast compo-
nent at time ¢, + k + It, that is, inside the (n + 1)st composite time step. Then for any
[=0,....,m—1let

gh/?,l _ E[j(}]/2l], ail/Q.l _ E[(j(}]/?l)?}

Note that throughout this paper we will also use the notations 4 =4, /e and u =
o/ Ve

The differential equations for the first two moments of a general vector linear SDE
system are derived in [8]. Here we present the corresponding equations for our test
problem.

Lemva 3.1. The ordinary differential equations for the first two moments of the ex-
act solution of system (2.6) are

g1 =2+ 23
u’(t):—Mu(t)Jr?—x ()

W (t) = —Agh(t),
v (t) = —2Agv(t) + b2u(t).

The difference equations for the first two moments of the numerical solution ob-
tained by the implicit/explicit Euler with constant time step can be easily derived using
the properties of the Brownian increments. In this section, we will only state the corre-
sponding lemmas and will omit their proofs.

Before we proceed with the analysis, we make two important remarks.

Remark 1. Our error analysis in this section and the proof of uniform convergence in
section 4 are still valid if the two Brownian motions B; and B, in (2.6) are the same
(By = By) instead of being two independent Brownian motions. This is because our ana-
lysis is confined to the nonmixed first two moments.

Remark 2. Throughout the rest of this paper we shall derive several estimates for
errors which involve certain constants which we shall usually label C, Cy, C, ..., etc.
These constants are independent of & and €. We shall not attempt to obtain sharp es-
timates of these constants. Given this fact, we shall adopt the naming convention that a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/13 to 130.85.145.94. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

INTERLACED EULER METHOD FOR STIFF SDES 1225

constant denoted by C, C}, etc., has scope only within the statement of a theorem and/
or its proof environment. Two constants denoted by C appearing in different theorems
or lemmas are not meant to be the same.

3.1. Mean of the fast variable. Our first task is to derive the global error for the
mean of the fast variable. Using the difference equation for the numerical solution and
the differential equation for the first moment of the exact solution, we obtain the linear
inequality which characterizes the error propagation for the mean.

LemMa 3.2. The mean of the fast variable obtained by the implicit Fuler method with
time step k is given by

A

E[X,.1| = ME[X,]+ N,
where

1 £ Ak o

- N:N =7 =7
14+ a+¢’ (.6) =3 v

M=M = .
(o, 2) 1+ Ak a+e

Lemma 3.3. The mean of the fast variable obtained by the explicit Euler method with
time step T is given by

A

E[XnJrl] = AE[XTL] + B’
where
A=Ala)=1—-At=1- Fua, B = B(a) = tAt = ZFa.

The following result is immediate from the previous two lemmas.
Lemma 3.4. The mean of the fast variable obtained by the interlaced method is
given by

m—1

(3.2) Gus1 = A"Mg, + A"N + BY Al
i=0

Proof. The proof is straightforward using Lemmas 3.2, 3.3, and B.1. 0

The next step is to write the mean of the fast variable in the same format as the
mean of the numerical solution. We first write the exact mean using the implicit /explicit
Euler format by means of the Taylor expansion, and then we obtain the exact solution
written in the same format as the interlaced method solution.

Remark 3. Since the ultimate goal is to prove the uniform convergence with respect
to &, for Taylor expansion it is useful to work with the integral remainder rather than the
more common Lagrange remainder.

Lemma 3.5. The mean of the fast variable written in the explicit Fuler format is

g(t+1) = Ag(t) + B+ TruncMeanFastE(t, 1),
where TruncMeanFastE(t, t) satisfies
i

(3.3) | TruncMeanFastE(t,t)| < Ca’e =! ¥V t>0

with constant C independent of ¢.
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Proof. Using the ODE for the mean of the fast component, we obtain

g(t+ 1) = (1 —A1)g(t) + At + TruncMeanFastE(t, 1)
= Ag(t) + B+ TruncMeanFastE(t, 1)

with TruncMeanFastE(t,t) = [177¢/(s)(t +  — s)ds. From Lemma B.6, we know
that there exists a constant C, independent of &, such that |¢’(¢)| < C(42/&?)
e~ /&)t for all t > 0. Some tedious manipulations yield

t+t
| TruncMeanFastE(t, 7)| < / lg"(8)|(t+ 1 — s)ds < Ca?e ¥,
¢

which completes the proof. O
LemMa 3.6. The mean of the fast variable written in the implicit Euler format is

g(t, + k)= Mg(t,) + N+ TruncMeanFastl(t,, k),
where TruncMeanF astl(t,, k) satisfies

per —2—1
(3.4) | TruncMeanFastl(t,, k)| < C(e‘@) e

et
with constant C independent of €.

Proof. We have g(t,) = g(t, + k) — kg'(t, + k) + TruncMeanFastI(t,, k) with

t,+k
TruncMeanFastl(t,, k) = / g"(8)(t, — s)ds,
¢

and using the ODE for the mean, we get

3 Ak N 1
1+ k7 L4k 1+ 7k
= Mgy(t,)+ N+ MTruncMeanFastI(t,, k).

g(tn + k) = (tn) +

TruncMeanFastl(t,, k)

This completes the first part of the proof.

To prove (3.4), we use the bound for ¢”(¢) from Lemma B.6, and computing the
resulting integral, we obtain (3.4). O

COROLLARY 3.7. The truncation error of the fast mean in the implicit format satisfies

| TruncMeanFastl(t,, k)| < Clge’F’"’”‘ Vn<l,

n—1
Z | TruncMeanFastl(t;, k)| < g,
£

=0
n—1

v

| TruncMeanFastl(t;, k)| < 1.
=0

Further, we write the exact mean in the same format as the mean of numerical solu-
tion given by the interlaced method.
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Lemma 3.8. The mean of the fast variable satisfies

m—1

g(t, + k+ mr) = A™Mg(t,) + A"N + B Al
=0

+ A" M TruncMeanFastI(t,, k)

m—1
(3.5) + Z A" TruneMeanFastE(t, + k + It, 7).
=0

Proof. Using Lemmas B.1 and 3.5, we obtain ¢(¢ + mt), and then we use Lemma 3.6
with ¢t = t, + k to obtain (3.5). O

Remark 4. Note that TruncMeanFastE(t, + k + Iz, T) represents the truncation
error from the explicit Euler expansion at step ¢, + k + It and from (3.3) we obtain

| TruncMeanFastE (t, + k+ It,7)| < Co? e~ Rltthtln)

which gives

Agh

(3.6) | TruncMeanFastE(t, + k+ It 7)] < Ca?e (e )" (e Fo)L,

Combining the results from Lemma 3.8 with Lemma 3.4, we obtain our main result
of this subsection.

TureoreM 3.9. The error for the mean of the fast variable, e, = g, — g(t,), satisfies
the linear inequality

lepr1] < A™Mle,| + A" M| TruncMeanFastl(t,, k)|

m—1

(3.7) + Z A" TruncMeanFastE(t, + k + It,7)|.
=0

Proof. Subtracting (3.2) from (3.5) we obtain the result. O

3.2. Mean of the slow variable. The linear inequality for the global error for the
mean of the slow variable can be obtained through a similar derivation as for the fast
variable. We present here only the main result for the mean of the slow variable.

THEOREM 3.10. The error for the mean of the slow variable, s, = h, — h(t,), satisfies
the linear inequality

[$pi1] < P™Q|s,| + P™Q|TruncMeanSlowlI(t,, k)|

m—1

(3.8) + Z P U TruncMeanSlowE(t, + k + It, )|,
=0

where
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1
o+ 1]
| TruncMeanSlowlI(t,, k)| < Ca?,

| TruncMeanSlowE(t, + k+ It,7)| < Coa’e

Q=1- Fuas,

with constants Cy, Cy independent of €.

3.3. Second moment of the fast variable. In this section, we derive the propa-
gation error for the second moment of the fast variable using a technique similar to the
one in section 3.1.

Lemma 3.11. The second moment of the fast variable obtained by the implicit Euler
method with time step k is given by

E[X),)] = LE[X] + I,E[X,] + RI,

where the functions Iy, I, and RI satisfy

14+ u?k &2+ 2nae £
I :I = = N
2 = Ix(2.8) (1+2k)? (a+e)? — a+e
Ak [ 7 o

Il = Il(a,g) =2z

—9 < ,
(1 + 2k)? x(oH—s)?_ Tate

M\ 2 a?
RI = RI(a, &) = 72 =72
(,8) =2 (1 + /Ik) v (o +¢)?

with the constant C independent of €.
Lemma 3.12. The second moment of the fast variable obtained by the explicit Euler
method with time step T is given by

E(X7.1] = E;B[X) + E,E[X,) + RE,
where the functions Ey, E,, and RE satisfy

Ey=Ey(a)=(1—-21)  +pu’r=1- Fa2(1 —n) — Fal,
E| = Ey(a) = 22At(1 — A1) = 2zFa(l — Fa) < Ca,
RE = RE(a) = 722*t? = P’ F?o?

with the constant C' independent of €.
Remark 5. Note that the stability condition Fo < 2(1 — n) implies Fy < 1.
Lemva 3.13. The second moment of the fast variable obtained by the interlaced
method is given by

m—1 m—1
(39) e = By Ly, + By 119, + By By 19/ + BRI+ RE Y B,
=0 =0

Proof. The proof follows from Lemmas 3.11, 3.12, and B.1. 0

Now that we have obtained the formula for the second moment of the fast variable,
we can prove some useful properties of m, which will play an important role in our uni-
form convergence proof and which are summarized in the following corollary.
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CoroLrary 3.14. The optimal m given by formula (3.1) satisfies the following
inequalities:

(3.10) Eg(

2
< Cyx(l - ET),
) < Cati-Bp)

(3.11) VE"% < 0y/a,

o+
o

< O3y

(3.12) A™
oa+e
with constants Cy, Cy, and C5 independent of €.

Proof. Recall that m is chosen such that the asymptotic variance obtained by the
interlaced method to be equal to the true asymptotic variance. This is ., = u(c0),
and from Lemma 3.1 we have u(oo) = 22 /1 — 5. Taking the limit n — oo in (3.9)
we obtain

m=1 m—1
fo = By Lyt + B 1§ + By Y By 19> + EY'RI+ RE Y B},
=0 =0
It can be easily shown that g, = f]cl,c/Q’l =zforall /=0, ...,m—1, and using the for-

mulas for F, Ey, RI, RE and simplifying the resulting equation we get

o Fa 1—E7(a)
ate JFaRl—1y) - Fa)\ E5@)

(3.13)

We can relax this condition by replacing “=" by “<.” This implies

(% Y <c E
m < 1 _ m
2 <a +8) > 105( 2)

with Cy = F /1 — n, which proves the first inequality. Taking the square root in the
above inequality, we obtain (3.11), with Cy =./C;. Note also that for any
a <(1-2n)/F we have 1 — Fa <./1— Fa[2(1 —n)— Fa|. This gives 4 < /E,
which yields (3.12). O
The next step in our derivation is to write the exact solution in the same format.
Lemva 3.15. The second moment of the fast variable written in the implicit Euler
format is given by

u(t, + k) = Iyu(t,) + 1,9(t,) + Rest] + TruncSecondMomentFastl(t,, k),

where the functions Restl and TruncSecondMomentFastl satisfy

2
(3.14) |Restl| < 01< al ) ,
a+e
n—1 o
3.15 T S aM tFastl(t;, k)| < C
(3.15) Z| runcSecondMomentFastl(t;, k)| < 2 e

i=0

with the constants C, Cy independent of .
Proof. Using the ODE for the second moment of the fast variable we obtain

(3.16) u(t, + k) = u(t,) —2(1 — n)Aku(t, + k) + 2zAkg(t, + k) + TrU(t,. k)
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with TrU(t,, k) = Zﬁku’(t)(t— t,)dt. Using the bound |u”(t)] < C,(1/e?)e(C2/e)
for all ¢ > 0 from Lemma B.6, with constants C;, Cy independent of &, an easy manip-
ulation yields

‘otn 2k C k
| TrU(t,, k)| < Cre (1 s __26%)

Further, we obtain

—1 B L oY L

< l—e ™ —=2e o
(3.17) D NTrU(t Bl < Cr————&——< Gy .

i=0 —€ ¢

where we have used Y 7= }(e”@"/®) <1 /(1 — e~ @*/¢) and Lemma B.3.

Moreover, we have g(t,+k)=g(t,)+ TrG(t,, k) with TrG(t,. k) = (z—
Xg)e (1 — e ) satisfying

—_

n—1 n—
(3.18) S ITrG(t k) < C(1—e)> e < C
i=0

i

I
o

with C = | Xy — Z|. The solution is therefore given by

u(t, + k) = u(t,) —2(1 — n)Aku(t, + k) + 2zAk[g(t,) + TrG(t,. k)] + TrU(t,. k)
1+ 204k Ok
T 20— gk ) + 28 e ()
n 1 1+ 2nik (1)
1+2(l— )k (L+ak)2) "
1 1 (t.)
1+2(1—nak (Lt ak)2)%
Ak 1
20————— T T -
Taa kLT D sa T
= u(t,) + I19(t,) + Rest] + TruncSecondMomentF ast(t,, k),

+ 2:_3/116(

+ TTU(tn,k)

where

Post] — < 1 1+ 277%) “)

14+2(1—n)ik (1 +Ak)?
1 t
1+2(1—n)ik (1+ lk)2>g( )

+ 25&%(

Note that from Lemma B.6 we know that |u(¢)| and |g(¢)| are uniformly bounded for any
t > 0, and some easy manipulations show that the coefficients of u(t) and g(¢,) in the
above expression are also uniformly bounded. Using this in the above equation, we ob-
tain (3.14).

To prove (3.15), note that

28k TrG(t,. k) TrU(t,, k)
1+2(1—n)Ak  1+2(1—n)ik’

TruncSecondMomentFastI(t,, k) =
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Using 1/(1+2(1 — n)ik) < max{1,2(1 —n)}(1/1 + Ak) and the bounds from (3.17)
and (3.18), we obtain (3.15). O

LemMa 3.16. The second moment of the fast variable written in the explicit Euler
format is given by

u(t+ 1) = Eyu(t) + E19(t) + RestE,

where RestE satisfies |RestE| < Ca?, with constant C independent of ¢.
Proof. Using the ODE for u(t) and matching the coefficients with those given by
explicit Euler solution, we obtain

(ty+ 1) = [(1 = 40P + p2eJult,) + 25251 — 0a(t,) + S(6,)
+ 1= (24— pu?)t — (1 — A1)? — w?tu(t,) + 22271 — (1 — A7)]g(t,)

= E2u(tn) + Elg(tn) + ReStE’

where

Resth = S (,) + [1 - (24— u2)e — (1 - 22)? - p2elu,)

+ 2zA7[1 — (1 — A7)]g(t,)

2
= S () = 22ulty) + 28 1),

with &, € (¢,,t, + 7). Using the bounds for v”, ¢, and u from Lemma B.6, we obtain
|RestE| < CA*t* = CF%a?,

with the constant C' independent of ¢. |
Lemva 3.17. The second moment of the fast variable satisfies

u(t, + k+ mt) = E' Iyu(t,) + EY(a)l19(t,)
+ Ef*Rest] + EY TruncSecondMomentFastl(t,, k)

m—1
+E Y B lg(t, + k+ In)
=0

m—1

(3.19) + RestE»_ E).
=0

Proof. The proof is straightforward, first using Lemmas B.1 and 3.16 to obtain
u(t + mt) and then using Lemma 3.15 with ¢ = ¢, + k. O

Lemma 3.18. The error of the second moment of the fast variable, f, = 4, — u(t,),
satisfies the linear inequality
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|fn+1| < EgL12|fn| + Cl(l - E%”)|€n| + 0201(1 - Eén)
+ C3EY| TruncSecondMomentFastI(t,, k)|

m—1

(3.20) + Cy Z Egl—l—llell/ll"
=0

with constants Cy, Cy, Cy, and C4 independent of €.
Proof. Subtracting (3.9) from (3.19), we obtain

[frr1l < BSL|fo + B |e,| + ES'(|Rest] + |RI|)
m—1
+ E2™| TruncSecondMomentFastl(t,, k)| + E; Z By 6}1/2’1|
=0

m—1

+ (|RestE| + |RE|) Y  E.
1=0
Further, we have
ae a? 1 1
ENl = C{E)— < C1E))—— < Coa(l — ET")— = Cy(1 — ET),
2 41 1 2(ate) 1 2atela 20t ( 2)04 o )

and using the bounds for Restl, RI, RestE, RE, and the bound for EJ'(a? /(a + ¢)?) from
inequality (3.10), we obtain the result. 0

3.4. Variance of the slow variable. Finally, in this section, we derive a linear
inequality for the global error of the slow variable.

Lemma 3.19. The variance of the slow variable obtained by the implicit Euler method
s given by

Var(V,) =1,Var(Y,) + IE[X3],

where the functions I, and I, are given by

1 1
I =1 = = ,
=) = T e

2 2
I,T,:Ix(a): bk 71) o

(L+4ok)? Ao (1+a)*

Lemma 3.20. The variance of the slow variable obtained by the explicit Euler method
s given by
Var(V,,) = E,Var(Y,) + E,E[X}),
where the functions E, and E, are given by

b2F
E,=E/(a,e)=(1—27)%=(1—Fas)’, E,=E,((a.¢)=0br= To&s.

Lemva 3.21. The variance of the slow variable obtained by the interlaced method is
given by
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m—1

(3.21) Vs = B LD, + B Lk, + B, Y Bl
=0

Proof. The result is a straightforward application of Lemmas 3.19, 3.20,
and B.1. 0

Next, using the ODE for the second moment, we want to write the exact solution in
the same format.

LemMA 3.22. The variance of the slow variable written in the implicit Euler format is

v(t, + k) = Io(t,) + I,u(t,) + RestSlowl + TruncVarSlowlI(t,, k),

where the functions RestSlowl and TruncVarSlowl satisfy

(3.22) |RestSlowl| < Cia?,
n—1

(3.23) Z | TruncSlowVarl(t;, k)| < Che,
=0

with constants Cy, Cy independent of €.

Proof. To write v(t+ k) in the same format as the corresponding numerical solu-
tion, we first Taylor expand v(¢ 4 k) using the explicit format and then we match the
coefficients with the coefficients of the variance of the numerical solution given by the
implicit Euler method.

v(t, + k) = v(t,) + kv'(t,) + TruncVarSlowlI(t,, k)
(1 = 220k)v(t,) + b*ku(t,) + TruncVarSlowl(t,, k)

1 b2k
=gl te o ault) + T lowI(t,. k
i ") T e vte) + TruncVarSlowl(ty. k)
1 1
1 -2k ——— ¢ b2El1 — — Lt

= I,(t,) + Lu(t,) + RestSlowl + TruncVarSlowl(t,. k),

with TruncVarSlowl(t,, k) = fﬁz”ﬂ’v’(tn)(tn + k—t)dt and

B 1 , 1
RestSlowl = (1 220k a +/10k)2> v(t,)+b k(l a +/10k)2> u(t,).

Using the fact that v(¢) and |u(t) are uniformly bounded for all ¢ > 0 and simplifying the
coefficients of u(t,), v(t,), we obtain RestSlowl < Ca?, with C independent of &. From
Lemma B.6, we have |v/(t)] < C; + Cy[(C /e)e ¢/ for all t > 0 which gives

tatk
| TruncVarSlowlI(t,, k)| < / [v"()|(t, + k— t)dt

t"

k2 ] n
< 015+%(0k7 e +ee Ch)e O,

Therefore,
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n—1 n—1

Z|TrucharSlow[ k)| < Clza +— (Ck—¢+ee @
=0 =0
Cy Ck—e+ee O
<C _—
e C 1—e %

Note that in the above inequality we have used na < nh < T and e~ Ch/e — o=Ch/e
Finally, Lemma B.4 implies

n—1
Z\TrucharSlowI( k)| < Cda—i- 20k < Cy
=0

and this completes the proof. O
Lemma 3.23. The wvariance of the slow component written in the explicit Euler
format is

v(t+ 1) = E,o(t) + Eu(t) + RestSlowE,
where the function RestSlowE satisfies

|RestSlowE| < Co’e,

with constant C independent of ¢.
Proof. Using the ODE for v(t), we get

w(t+ 1) = (1 — 2297)u(t) + bru(t) +%w(g)

= (1 — A97)20(t) + b2ru(t) + ©° <%(5) - ﬂ%u(t))

= E,u(t) + E,u(t) + RestSlowE

with RestSlowE =t ( — A2u(t)) and & € (,t+ 7). From Lemma B.6, there exists a

constant C; independent of & such that |@ — 22u(t)| < % for all t>0 and
& € (t,t+1). Hence

F2
|RestSlowE| < (/1—205282) (%) < CaZe,
0

which proves the lemma. O
Lemma 3.24. The variance of the slow component satisfies

u(t, + k4 mrt) = B 1 (a)u(t,) + B I (a)u(t,) B} RestSlowl
m—1
+ E' TruncVarSlow(t,, k) + E, Z Er—lu(t, + k+ lv)
1=0
m—1
(3.24) + RestSlowE » _ El,.
1=0

Proof. The result follows immediately from Lemmas 3.22, 3.23, and B.1. 0
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Lemma 3.25. The global error of the variance of the slow component
es, = Var(Y,) — Var(Y(t,))
satisfies the linear inequality

lesni1| < B les,| + EJ L f,| + E}'|RestSlowl| + E}'| TruncSlowlI(t,, k)|

m—1 m—1
(3.25) + B, Ep UL + RestSlowE| Y B
=0 =0

Proof. Subtracting (3.24) from (3.21), we obtain the result. O

Remark 6. As observed in the previous derivations, there exists a discrepancy be-
tween the difference equations for the second moments obtained from the numerical
solutions given by the implicit/explicit Euler methods applied to SDEs, and the differ-
ence equations obtained by applying the implicit/explicit Euler methods to the differ-
ential equations for the second moments. This explains the presence of the terms RI, RE,
Restl, RestE, RestSlowl, and RestSlowFE which we shall refer to as displacement terms.

TaBLE 3.1
Amplification factors.

Equation: fast mean M=
Type: implicit
Equation: fast mean A=1-Fa

Type: explicit

24 9
12 _ ¢ +2nae <

Equation: fast second moment wrer = C1are

Type: implicit
Term: fast second moment

Equation: fast second moment I, = Qiﬁ <Oy3%
Type: implicit
Term: fast mean
Equation: fast second moment Ey=1—-Fa2(1—-1n)— Fa)
Type: explicit
Term: fast second moment
Equation: fast second moment E; =2zFa(l — Fa) < Csa

Type: explicit
Term: fast mean

i - _ 1
Equation: s%ow \./afnancc I,= T
Type: implicit
Term: slow variance

_ P«

Equation: slow variance @ = 4 e

Type: implicit
Term: fast second moment

Equation: slow variance E,=(1— Fae)?
Type: explicit
Term: slow variance

Equation: slow variance ., =2Fae
Type: explicit
Term: fast second moment
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TABLE 3.2
Displacement terms.

Equation: fast second moment |Restl| 4 |RI| < C; ~%

. s e (lX+[~f)2
Type: implicit
Equation: fast second moment |RestE| + |RE| < Cya?
Type: explicit
Equation: slow variance |RestSlowl| < Cya?
Type: implicit
Equation: slow variance |RestSlowE| < Cya%e

Type: explicit

TaBLE 3.3
Truncation errors.

o

er —%—

| TruncMeanFastl(t,, k)| < C; —5— (e~ Fm)n(e=%)"

ee

R
-

n—1
Z\ TruncMeanFastl(t;, k)] <<
=0

n—1
Z\ TruncMeanFastl(t;, k)| <1
i=0

|TruncMeanFastE(t, + k+It,1)] < CQaQe’%(e’%h)n(e’F“)l
n—1
Z\ TruncSecondMomentFastIFastI(t;, k)| < C35%;
=0

n—1
Z| TruncVarSlow(t;, k)| < Cya
i=0

The truncation errors for the moments, the amplification factors, and the displace-
ment terms play an important role in the uniform convergence proof. Tables 3.1, 3.2,
and 3.3 summarize these properties.

4. Uniform convergence. In this section, we prove the uniform convergence with
respect to ¢ for the composite time step and for the first two moments of the fast and
slow variables. Specifically, we show that each of the errors corresponding to these four
moments satisfies

lim,_,o sup Error(a,e) = 0.
e>0

To prove this, we derive uniform bounds in & for each error.
THEOREM 4.1. The composite time step h converges uniformly in e to 0 as ¢ — 0.
Proof. We have

F 1
h=Fk+ mr:%—i—m%:E(a—i—Fmas).

Recall that (3.1) gives the following equation for m:
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In Fe? +2Fae +2(1 — n)a
o Fe? +2Fae + Fo?
 —In(1-2F(1 —n)a + F?a?)’

Assuming Fa <1 — 7, Lemma B.2 implies

1 1
—In(1 - Fa2(1 —n) — Fa)) - F(1—n)a’

Further, using In(1 4+ z) < 24/z for all z > 0, we obtain

In <1+ 2(1—77)0:—F012)<2\/a V2(1—1n) - Fa <Clg»

Fe? +2Fae + Fo? VFe? + 2Fae + Fo?

where C; = 2(1/2(1 — ) /v/F). Combining these two results, we obtain

m<017\/&.
~F(1—n)ae

Therefore, mae < Cyy/a, with Cy independent of e. This yields h = (1/4)(a+
Fmae) < (1/2)(a + FCy/) for all & > 0.

Hence there exists a constant C such that A < C/a for all ¢ > 0 (and all & small
enough) which implies that h converges uniformly to 0 as ¢ — 0. 0

Remark 7. Note that mae < Cy/a is a sufficient condition for the uniform conver-
gence of the composite time step.

Table 4.1 summarizes the properties of m that we have obtained so far which will be
used in our uniform convergence proofs.

THEOREM 4.2. The global error for the mean of the fast variable is uniformly bounded
in &, for any n > 0; that is, there exists a constant C independent of ¢ such that

le,| < Cva ¥V n>0.

Proof. From (3.7), we have |e, 1| < ale,| + ¢, + d,, where

a=A"M = (1— Fa)™

1427
¢, = A" M|TruncMeanFastl(t,, k)|,

d, = Z A" TruneMeanFastE(t, + k + Iz, 7)|.
=0

—

TaBLE 4.1
Properties of m.

By ()" < Cia(l - BY)
By e < Oyl
V" < O
A"t < O
mae < Cy/a
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Using ey = 0, we get |e,| < > "} a" 1 "le; + > "7 a"17d,. First, we will find some use-
ful bounds for a and d,,. We have

< ! < ! ,
1+¢7 1+ Fma+%~ 141

a=(1-Fa)"

where x = Agh /e = Fma + « /e. Some easy manipulations give

3

d, A" TruneMeanFastE(t, + k+ It,7)|

Il
]

—1

3

IN

(1 — Fo)™-lCa2et(e=F)" (e Fo)!
I

< Chaze (e )",

Il
o

where we have used 1— Fa < e f®. Let us denote S| => " Ja" 17/ and S, =
ian17id;. We have

n—1 n—1 n—1

S = Z a"1ie; < ¢ = A’”’MZ|TmmcMeanFastI(ti, k) <A™ ¢ ,
i=0 i=0 i=0 o+e
n—1 _ 7521 (efx)i

Sy = a" 1 id; < Claze™ Yy —t—— < Oy
g ? p (1+x)n 1—i

This implies |e,| < Cia + CoA™(a /(o +¢)) for all n > 0. Further, using A™(«a/
(a +¢)) < Cy/a, we obtain

le,| < Cva ¥V n>0,

which completes the proof. Let us note that we were able to obtain the uniform con-
vergence for any n > 0 due to the property (3.12) of m. O

The second moment of the fast variable also depends on the mean of the fast variable
inside the composite time step. Here we derive the global mean for the correspond-

ing error.

TaeorEM 4.3. The error of the mean of the fast variable inside the composite time
step, e}/w = @}/M —g(t, +k+1t),l=0, ...,m—1, satisfies the inequality
(4.1) ler/?| < C1va + Al(e /(@ + ¢))| TruncMeanFastI(t,. k)| ¥ n > 0.

Proof. Taking m = [ in (3.5) and (3.2) and subtracting, we obtain

en'™| < A'M]e,| + A'M|TruncMeanFastI(t,. k)|
-1
+ > ASI| TruncMeanFastE(t, + k+ jt.7)]
=0
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for any [ =0, ..., m — 1. Let us denote
-1 _
S, = ZAI’1’7| TruncMeanFastE(t, + k+ jt,7)|.
=0

Using

A=1—Fa < e te, Floe e < 1,

| TruncMeanFastE(t, + k+ jt,7)| < CaQe%(e’%h)”(e’F"‘)j,
we obtain S; < C«a. Further, |e,| < Cy/« for all n > 0 implies
le/*!| < C\Ja + A'M TruncMeanFastI(t,, k).

which combined with M = ¢ /(a + ¢) yields (4.1). O
The proof of uniform convergence for the mean of the slow variable is similar to the
convergence proof for the mean of the fast variable; here we present only the main result.
THEOREM 4.4. The global error for the mean of the slow variable, s, = h, — h(t,), is

uniformly bounded in €; that is, there exists a constant C independent of & such that
|s,| < Cva ¥V n>0.

TaEOREM 4.5. The global error of the second moment of the fast component is uni-
formly bounded; that is, there exists a constant C independent of € such that

(4.2) |fn]l < CVa ¥V n>2.

Proof. Using the bounds for e, and er/ 2‘l, which are satisfied for any n > 0, and
applying Theorem 3.18, we get

ol < ERL|f,| + Cive(l — Ef) + Coa(1 — EY)
+ C3EY| TruncSecondMomentFastl(t,, k)|

m—1 m—1
+a <C4\/&Z EL+ Cs . j_ . Z A'EP!Y TruncMeanFastI(t,, k)|)
=0 =0

Recall that Ey =1— Fa[2(1 —n) — Fa] and by assuming Fo <1 —1n, we obtain
1/(1-Ey) < C(1/a), with C=1/(F(1—mn)). This implies > ";'Ey < C((1—
E7) /o). Moreover, A < \/Ey, which implies " ! A'Ep—1-! < C'm/EY, with constant
C independent of e. Using these two results and combining the like terms, we
obtain

|fos1]l < ERL|fo] + Civa(l — EF) + CoEY| TruncSecondMomentFastl(t,, k)|
+ Cgaag?m\/E;ﬂTv"uncMeanFastI(tn, k)|.

Further, f, = 0 yields
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,_.

n—

Iful < Civa(l - E3) p (EyI,)

i

I
o

n—1
+ CLEY Z (B3 1,)" 1" TruncSecondMomentFastI(t;, k)|
=0

+Cdma \/E”’Z (B3 1) 1| TruncMeanFastl(t;, k)|.

Using > "0 B3, <> " EP <1/(1— E) and (EJI2)"'~" < 1, we obtain

n—1
Ifol < C1Va + CoER Z | TruncSecondMomentFastl(t;, k)|
=0

+ CgmaT VET(EDL)" Y TruncMeanFast(ty, k)|

n—1

+ C4m \/Emz|TruncMeanFastI(tl,k)|
=1

Using the inequalities
€
EPI)"' < EPl, < CEf —— Y n>2,
(E5'15) 242 25 ¢ nz

| TruncMeanFastI(t;, k)| < e‘F"""‘i(e‘?)i Vi>1,

o?

| TruncMeanFastl(ty, k)| < ox

the properties of m listed in Table 4.1, and those of the truncation errors listed in
Table 3.3, we obtain

|fn| S 01\/&‘1' CQ(T)’LOCE%”) /EgL 5 + 03(maemea) /Em

(a +¢)

a+e
for all n>2. It can be easily shown that maE} < C, and mae F™ < C,, with
constants Cy, Cy independent of &, which combined with /E5 (a /(a4 ¢)) < Csv/a
yields (4.2). O

Remark8. Note that the term \/E} (« /(a 4 ¢)) plays an important role in the uni-
form convergence. Specifically, « /(o + ¢) does not converge uniformly to 0, but when
multiplied by v/E5™ we obtain the uniform convergence. This also explains why implicit
Euler method (which corresponds to m = 0) does not converge uniformly in € as @ — 0.

The variance of the numerical solution for the slow component depends on the nu-
merical solution for the fast component inside the composite time step. The following
theorem characterizes the second moment of the fast component inside the composite
time step.

TaEOREM 4.6. The error of the second moment of the fast component inside the com-
posite time step satisfies
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|f}/2'l| < Ca+ Cy\/E(a /(o + €)) + C3EL| TruncSecondMomentFastI(t,, k)|
(4.3)
foralll=0,....,m—1 and n > 2.

Proof. Taking m = [in (3.19) and (3.9) and using the bounds for F; and RestE,
RE, we obtain

2
Y2 < BLLIf | + By Jen] + EL (a S+ e))

+ EY(a)| TruncSecondMomentFastl(t,, k)|

-1 -1
+ 0y B e/ 4 0yt S B
=0 =0

Let us denote S; = Ef/;%E]{l*q ex’*?|. Using the bound for ey/*" from Theorem 4.3 and
A < /FE,, we obtain

SlgclﬂJrCQ £ |TruncMeanFa5tI(tn,k)(l Eé)
o o+ e

Next, using |e,| < Civ/« and |f,| < Cyv/o and combining the like terms, we obtain

2
1) < G+ Gt (a/(a+e))
+ C3EY| TruncSecondMomentFastl(t,, k)|

+ 0401

¢ |TruncMeanFastI(tn,k)|<l Eé)
o+e

for all n > 2.
From Corollary 3.7, we have

| TruncMeanFastI(t,, k)| < 0L e Fra g > 1.
e

Using lae ™ < 1 /F, we obtain

e . ;o
o——|TruncMeanFastl(t,, k)|l\/ E5 < 1/ E} ,
o+e oa+e

and (4.3) follows. O
TuEOREM 4.7. The global error for the variance of the slow component is uniformly
bounded; that is, there exists a constant C independent of &€ such that

1
(4.4) les,| < C—F——~ VYV n2>2.

2(1—n) o
In (—Fa" )

Proof. Using the bounds for F,, RestSlowl, RestSlowFE, and I, in Theorem 3.25,
we get
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les, 1| < BT, les,| + CLEPalf,| + Coa® EF + ET| TruncVarSlowl(t,, k)|

m—1 m—1
+ Csae Z E$*1*Z|f}/2‘l| + Oy’ Z E..
1=0 1=0

Using esy = 0, we obtain

n—1 n—1
lesa| < CLEya Y (ByI,)" | fi| + Coa® By > (Ep,)
=0 =0
n—1
+Ep Y (BpL)" T TruncVarSlowl(t, k)|
=0

n—1 m—1
4 030(5 Z < E;/NIJ n—l—?ﬁ Z EZL—I—lf}/Zq)
=0 =0

(4.5) + Cya’e((1—Ey) /(1 — E,)) \ (Ep,)".

7

—

I
o

Let us denote § = Y /" L Ep—1- I|£1/%!|. Using the bound for f/*! from Theorem 4.6, we
obtain

m—1 m—1
o
S < Cl\/&z E; =+ CQEZ E‘Z’L*lflEé
=0 =0
m—1
+ C3|TruncSecondMomentFastl(t;, k)| Z Ez%l—lEé
1=0

for all 1 > 2.
Further, let us denote S, = Y7 Ey~1~'E}. The sequence {Ejy~~'},_ is an in-

creasing sequence, and the sequence {E}} 150 18 a decreasing sequence. Chebyshev’s
inequality implies

—1

3

Em 1- lEl

m—1
11-E7"1—-E?
1-1 l _ Y 2
(ZEW ><;E2>_E1_Elj1—}32'

Sm:

EM

SIH

Recall that E, = (1 — Fae)?. An easy calculation shows that there exists a constant C
independent of & such that 1/(1 — E,) < C(1 /ae). This implies

@« 11-Er1— gy
at+em ae 1—F,
+ Cym|TruncSecondMomentFastl(t;, k)|.

1—-E}
SSCI\/a a€y+02

We use the above bound in (4.5), as well as the following inequalities:
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(Em1,) 2 21(1/1+a>i§2/a,
i=0 =0

|T7“unc VarSlowl(t;, k)| < Ca,

3
H

@ .
I I
S H S

S -
|
—-

| TruncSecondMomentFastl(t;, k)| < Ca /(o + &),
=0

mae < OVa. [ <1, |l < Cva Vize.
|f1/21‘ < 1 ‘fl/Q,ll < 1
|f1/21\<01\/_+02 El(a /(o +¢€))+CsEy| TruncSecondMomentFastl(t;, k)| ¥V i>2

to prove that

a 1-FEF
<C Cy—
|es] e+ Gy matel—By
1 -
Let us denote T'(«,e) = oz‘-)&[-e — (3.13) yield
1- By 1

1-E, Fa+e)+ Fa[2(1—1)— Fa)

which combined with (3.1) gives

T(a.e) = o —In(l1- Fa2(1 —n) — Fa]) 1 .
' oa+e 1 F?(a+e)?+Fa[2(1—n)—Fa] FQ(O[ + 8)2 + F(X[2(1 - n) - FO[]
n F?(a+e)?

From Lemma B.5, we have that the function T'(«, ¢) is a decreasing function of ¢, thus
—In(1 - Fa2(1 —n) — Fa)) 1

In (1 + A Fa) 2 mre
<—ln(1—2(1—n)Fa) 1
- 2(1 —n)Fa ln(?(}—anv '

Assuming Fa < 1/2, we have 2(1 — n)Fa <1 — n which implies

T(a,e) < T(x,0) =

—In(1-2(1—-n)Fa) < —lnnp
2(1 —n)Fa “1-n

Hence T(a,e) < C(1/In(2(1—n)/Fa)) with C=—1Inn/(1—n). Note also that
Va<1/In(1/a) <1/In(2(1 —n)/Fa) provided F > 2(1 — ), and combining these
two results, we obtain (4.4). d

Remark 9. Our convergence analysis shows that in order for the uniform condition
to hold, we can relax the condition on m, by allowing a range of values as opposed to a
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single value. In fact, examining the proofs of uniform convergence, we observe that it is
adequate that m satisfies the following three conditions:

(4.6) mae < Ci/o,
o2
(4.7) Eé"(“)m < Cha(l - EY),
(4.8) 1 « 1_E2(a)§03 1 ’
mo—+e 1— EQ In <2(1n)>

where C, Cy, C3 are some arbitrary constants independent of & and e.

The first two inequalities are monotone in m and provide upper and lower bounds.
The proofs provided so far demonstrate that there exist constants C;, Cy, Cy such that
the optimal m given by formula (3.1) satisfies these three inequalities. On the other
hand, enlarging these constants if necessary, one may obtain a nonempty interval of
values (dependent on « and ¢) for m that satisfies these three inequalities.

Since we do not have sharp estimates of these constants, the existence of this inter-
val of values does not provide practical algorithms as such but rather provides some
comfort that an approximate choice of m might be reasonable. This will be useful in
circumstances when there are more than one scale separation; for instance, if the (multi-
dimensional) fast subsystem has a scale separation by a factor of 10 or so within itself.

5. Numerical examples. In this section, we consider several examples and illus-
trate via numerical experiments the efficiency of the interlaced method. We first apply
the interlaced method to our test system (2.6). Further, we consider three other exam-
ples: a fully coupled 2D linear system, a linear system with a 3D fast subsystem, and a
nonlinear system. The question we want to address is how to choose the optimal m in
these situations. Our numerical examples suggest that we can use the choice of m
given by (3.1).

5.1. Test problem. First we apply the interlaced method to our test system (2.6)
and we compare the results with the implicit Euler method. The setup of the problem is
do=1,u9=1,e=107° 7 =100, B = 2, and the time interval for simulations is [0,1].
The initial conditions are X(0) = 300, Y(0) = 500. The exact values of the variances are
Var(X(1)) = 10000 and Var(Y(1)) = 34594.

For the numerical methods, we use « = 0.01. This gives the implicit time
step k = 1072. For the interlaced method, we take F' = 10 which gives m = 24. There-
fore, the interlaced time step is h=10"2+24-105. The results are shown in
Figures 5.1, 5.2, and 5.3, and Tables 5.1 and 5.2.

Figure 5.1 shows two sample paths for each variable along with the corresponding
expected values. One sample path is obtained with benchmark explicit Euler with time
step T = 107% and the other one corresponds to the interlaced solution. The histograms
of fast and slow variables at time T = 1 are shown in Figure 5.2. We compare the results
obtained by the interlaced method and the implicit method, with the benchmark explicit
Euler. We see that the implicit solver produces a distribution which is too narrow.

Figure 5.3 shows the time evolution of the fast and slow variances. The implicit
method underestimates the variance of both components while the interlaced method
gives the correct variances.
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Fic. 5.1. Sample paths for X(t) and Y (t) and the corresponding mean. The left figure shows a sample path
for X(t) obtained by benchmark explicit Euler, the interlaced method, and E[X(t)]. The right figure shows the
corresponding sample paths for Y(t) and E[Y (t)].
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Fic. 5.2. Histograms (100,000 samples) of X(1) and Y (1). The left figure shows the histogram of the fast
variable obtained by benchmark explicit Fuler, the interlaced method, and the implicit Euler. The right figure
shows the histogram of the slow variable.

Tables 5.1 and 5.2 show the values of the stationary variances of the fast and slow
variables obtained with the interlaced method and implicit method with fixed time steps
k=1072,107°, and 107%. The interlaced method with composite time step h = 1072 4
24 - 107° gives the variance close to the true variance for both variables. The implicit
method requires a much smaller time step, k = 1075, to compute the variances correctly.
This makes the interlaced method almost 400 times faster than the implicit method for
this example.

5.2. Fully coupled 2D system. Now we consider a fully coupled 2D system. The
goal is to show that the optimal m given by (3.1) works in this case too. This is because
for small &, Y (¢) behaves like a constant in the equation of X(¢) and hence can be as-
similated with z. Since m does not depend on z, we expect that for small values of ¢ the
optimal m is independent of the slow variable.
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Fic. 5.3. Variance of the exact solution and numerical solutions of system (2.6). The top figure shows the
time evolution of the variance of the fast variable and the bottom figure shows the variance for the slow variable.

TABLE 5.1
Variance of the fast variable of system (2.6).

Fast variable Interlaced Implicit Implicit Implicit
Time step 1072424 -1076 1072 107° 1076
Var(j((l)) 9958 10 5000 9091

TABLE 5.2

Variance of the slow variable of system (2.6).

Slow variable Interlaced Implicit Implicit Implicit
Time step 1072424 -107¢ 102 109 1076
Var(Y(1)) 34196 17148 25940 33014

We consider the following system:

1 0.1 500 1 0.01
dX(t) = <_EX<t> +— Y(t) +T) dt + <%X(t) +7 Y(t)) dB(t),

(5.1)  dY(t) = (X(t) — Y(£) +900)dt + (0.1X(t) + 0.001 Y ())dB(t).

We take ¢ = 1071° and the time simulation interval [0,0.1]. The initial conditions are
X(0) =300, Y(0) =500, and the values for the exact variances are Var(X(0.1))
319231 and Var(Y(0.1)) = 627. We further apply the interlaced method with o =
0.0025 and we compare the results with the trapezoidal method with different time
steps. The results are shown in Tables 5.3 and 5.4. We can see that for this example,
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TABLE 5.3
Interlaced method applied to system (5.1).

o m Var(X(0.1)) Var(Y(0.1)) CPU time
0.0025 149 319120 614 0.275s
TABLE 5.4

Trapezoidal method applied to system (5.1).

k Var(X(0.1)) Var(Y(0.1)) CPU time
0.0025 2596 398 0.012s
0.000016 56681 416 0.532s
0.000008 166595 460 1.058s
0.000004 296996 548 2.117s
0.000002 318214 607 4.245s

the interlaced method is more efficient than the trapezoidal, which requires a much
smaller time step in order to get the variances correct. This makes the interlaced method
almost 20 times faster than the trapezoidal method.

5.3. Fast subsystem. Further, we investigate a linear system with a fast subsys-
tem. When the fast subsystem is diagonal, we choose the optimal m corresponding to the
fastest reaction. Here we consider the following system:

dX, (1) = (1X1(t) + 120> dt+%X1(t)dB(t),

04X, (1) = (—%X?(t) +£€0> dt+%x2(t)d3(t),
X, (1) = (—ng(t) + 300) dt—s—%X;;(t)dB(t),

(5.2) dX,(t) = —2X,(t)dt — (2X(t) + 5X5(t) + 7X5(t))dB(t).

€

We take ¢ = 1071% and the time interval for simulations [0,0.1]. The initial conditions are
X,(0) = 300, X,(0) =500, X3(0) = 100, and X,(0) = 200. The values for the exact var-
iances at time t=0.1 are Var(X;(0.1))=400, Var(X,(0.1))=3086, Var(X3(0.1)) =
735, and Var(X,(0.1)) = 49603.

We apply the interlaced method with o = 0.0025. This gives m = 249, and the
results are shown in Table 5.5.

Next, we apply the trapezoidal method with the same time step as the interlaced
method, £ = o = 0.00025. In this case, the trapezoidal method gives the incorrect var-
iances as shown in Table 5.6. Our simulations show that a much smaller time step is
needed for the trapezoidal method. For example, k = « /1000 = 2.5 x 107 gives results
similar to those obtained by the interlaced method, but only for the fast variables; the
variance of the slow variable is still overestimated. Even for this choice of time step,
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TABLE 5.5
Interlaced method applied to system (5.2).

o m Var(X,(0.1)) Var(X5(0.1)) Var(X3(0.1)) Var(X,(0.1))
0.00025 249 400 3153 743 51105
TABLE 5.6

Trapezoidal method applied to system (5.2).

o Var(X,(0.1)) Var(X5(0.1)) Var(X5(0.1)) Var(X,(0.1))
0.00025 100 192 6 874283
0.000000025 539 3086 735 92592
TABLE 5.7

Variance of the fast/slow variables of system (5.3).

Benchmark Interlaced Implicit
Variance fast variable: X(0.1) 10514 10360 42.27
Variance slow variable: Y(0.1) 84312 89473 49812

the interlaced method is three times faster than the trapezoidal, but as the results
show, the trapezoidal methods need an even smaller time step.

5.4. Nonlinear system. Finally, we investigate nonlinear systems. We study sys-
tems which are nonlinear only in the slow variable. In this case, we can choose the
optimal m to be determined by the fast variable only, that is, m given by(3.1). We con-
sider the system

A

_ dosy o
dX(t) = 8X(t)dt+?0xdt+7%X(t)dB(t),

(5.3) dY () = —Ay sin(Y(£))dt + (bX(£) + ¢ cos(X(£)))dB(t).

and we compare the interlaced method with the benchmark explicit Euler. The setup
for this problem is 4y = 1, uy =1, =100, b =2, ¢ = 0.5, and & = 107°. The initial
conditions are X(0) =500, Y(0) =300. For the interlaced method, we choose
o = 0.01 which gives m = 24. For the benchmark Euler, the time step is v = 1076.
We run 100,000 Monte Carlo simulations, and the results are presented in Table 5.7.
We can see that for this problem the interlaced method performs very well. Once again,
we see that the variance obtained by the implicit Euler is underestimated for both fast
and slow variables.

6. Concluding remarks. We have proposed a strategy called the “interlaced
Euler method” for computing numerical solutions of stiff systems of SDEs by interlacing
one large implicit time step with m small explicit time steps. We have proven the uni-
form convergence (of the mean and variance) of the interlaced method with respect
to the time scale separation parameter ¢ for a singularly perturbed family of 2D linear
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systems. We have also shown via numerical experiments the efficiency of the interlaced
Euler method for linear/nonlinear systems.

More importantly, the interlaced Euler method serves as a template and a proof of
concept, rather than as a final product. We regard the key message to be the feasibility of
the development of time-stepping methods for stiff SDEs whose performance is uniform
in the time scale separation parameter €. We have shown that such methods are possible
when explicit time steps of the order of the fast time scale are interlaced with implicit
time steps of the order of the slow time scale.

We have limited the convergence analysis to the mean and the variance to manage
the complexity. Our proof of uniform convergence was “hand crafted” rather than ob-
tained via a more general overarching approach. In the future, we hope that such an
approach will be possible. We also anticipate the development of more sophisticated
time-stepping methods that can deal with multiple time scales as well as adaptivity
of the step sizes.

Appendix A. Derivation of the formula for the variance quotient. Equa-
tion (2.5) for the variance quotient is somewhat tedious to derive and was accomplished
with the aid of Maple. We show some steps here. We first recall two basic facts from
probability theory. If X and Y are two random variables, and if E(Y|X) and Var(Y|X),
respectively, denote the conditional expectation and conditional variance of Y given X,
then E(Y) and Var(Y) are given by

(A.1) E(Y) = E(E(Y]X))
and
(A.2) Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

Given the test equation
dX(t) = —AX(t)dt + Azdt + n X (t)dB(t),

let us consider the application of one step of implicit Euler with step size k starting at
state X, » to obtain an intermediate state X L/20 This is given by

X020 = (1 /(04 2k) X, + (0 /(1 + 2R) X (B(t, + k) — B(t,)) + A2(k /(1 + Ak)).

Since X, and B(t, + k) — B(t,) are independent it follows that

E(X)/*0\1X,) = (1/(1+ k)X, + A2(k /(1 + 4k)),
and that

Var(X,/2°1X,) = (2k/(1 + 4k)?)(X,)".

By using (A.1) and (A.2) we obtain that

E(X)%) = (1 /(1 4 k) E(X,) + 22(k /(1 + k),
and that

Var(X)/*%) = (1 + p2k) /(1 + 4k)?) Var(X,) + (02 /(1 + k)% (B(X,,))’.
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Now consider the application of m steps of explicit Euler with step size t starting at

state 5(}/2‘0. One obtains intermediate states )A(L/Q’Z for I=1,...,m with

X }/ X ns1- Following similar calculations, we may obtain the recurrences
BE(XY*Y = (1 = i) B(XY*Y) + 1z
and

Var(X,/2) = (1= 20 + 2 Var(Xy/) + w?e(B(RY )

A ~

Combining the above, we may obtain the recurrences for E(X,) and Var(X,) for
the interlaced method. The recurrence for the mean is given by

A N 1—A™
E(X,,)=MA"E(X,)+ NA"+ B i
where
1 Ak
M=— N=1 A=1-21 B = Atx.
141k’ x1+,1k’ v w

By our condition on 7, |A| < 1 and |[M| < 1 by assumption 4 > 0. Thus, this recurrence is
stable and the asymptotic value E(f( ) = Z is the exact asymptotic mean. The recur-
rence formula for Var(j( n) 18 considerably messy and was computed with the aid of
Maple. We only show its form in partial detail:

Va"r(j\(nﬂ) = L, Ey Var(Xn) + A(E(Xn))Z + BE(XTL) + C,
where

1+ pu’k

Jo=—" "
2T (1 +Ak)?

and
Ey = (1—21)% + 1,

and A7 B, and C depend only on 4, i, z, 7, k. From the assumptions on the problem and
on 1, it follows that |Fy| < 1 and |I,| < 1 and hence stability of the recurrence is guar-

anteed. Additionally, the asymptotic variance of the method Var()A(OO) must satisfy
Var(X.) = LE" Var(X.) + Az + Bz +C.

Finally, using the exact asymptotic variance of the problem Var(X(oo)) = %, the

variance quotient (2.5) may be obtained with the aid of Maple.

Finally, we observe that as (z, k) — (0, 0), it can be shown (again with some careful
manipulations) from (2.5) that the variance quotient approaches 1. This is consistent
with the fact that the Euler methods are convergent.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/13 to 130.85.145.94. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

INTERLACED EULER METHOD FOR STIFF SDES 1251

Appendix B. Some relevant lemmas. In this appendix, we collect some lem-
mas relevant for the analysis of uniform convergence. We are omitting the proof since
they can be easily verified.

Lemma B.1. The solution of the linear difference equation

n—1 n—1
Tpy1 = Az, + By, + Cz, is 1z, = A"zy+ BZ Arl=ig 1 C’Z Arl=ig.,
=0 =0

Lemma B.2. For any real o which satisfies Foo <1 —n, the following inequality
holds:

1 1
“n(l- FaP2(l—n) - Fa])  FIL—na

Lemma B.3. For any real z > 0, we have (1 — e * —ze ™) /(1 —e ) < z.
Lemmva B.4. For any real k > 0, we have (k — z + ze™*/%) /(1 — e7#/7) < k V2 > 0.
Lemmva B.5. For any o > 0 satisfying Fa < 2(1 —n), the function

—aln(l— Fa[2(1 —n) — Fa))

flz) =
(@ + 2)(F2(a + 2)° + Fa[2(1 — n) — Fa])In (1 + F“Eé}aﬁlf‘”>

is a decreasing function of x, for x > 0.
Lemva B.6. The first two moments of the fast and slow component satisfy the fol-
lowing inequalities:

lg(O) < Cr (WD) < Cy, Ju(®)] < Cs o) < Cy V120

05 (&) OG %
/ O =t " 6 %
|u(t)|<ge , |u(t)\<826 Vt>0
C
/(O] < e, WD < Cs V20
&
O ¢
[ (4)] < Cy+ L et v t>0,

e
where the constants Cy, C;, Cy, C5, Cy, Cs, Cq, Cr, Cg, Cy, Cyy are independent of €.
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