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CONVERGENCE OF MOMENTS OF TAU LEAPING SCHEMES FOR
UNBOUNDED MARKOV PROCESSES ON INTEGER LATTICES*

MURUHAN RATHINAMT

Abstract. Tau leap schemes were originally designed for the efficient time stepping of discrete
state and continuous in time Markov processes arising in stochastic chemical kinetics. Previous
convergence results on tau leaping schemes have been restricted to systems that remain in a bounded
subdomain (which may depend on the initial condition) or satisfy global Lipschitz conditions on
propensities. This paper extends the convergence results to fairly general tau leap schemes applied
to unbounded systems that possess certain moment growth bounds. Specifically, we prove a weak
convergence result, which shows order ¢ convergence of all moments under certain form of moment
growth bound assumptions on the stochastic chemical system and the tau leap method, as well as
polynomial bound assumption on the propensity functions. The results are stated for a general class
of Markov processes with ZV as their state space.
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1. Introduction. The well stirred model of a chemical system as a continu-
ous time Markov process with state space Zf has been known for several decades
[11, 12, 14]. Exact simulation of sample paths of such processes is very simple and
is commonly known as the stochastic simulation algorithm (SSA) or the Gillespie al-
gorithm [12]. Stochastic chemical models have become important in applications in
intracellular mechanisms and these models often possess some species in small molec-
ular copy numbers as well as a range of time scales in addition to nonlinear propensity
functions. Hence approximations of the whole system by ordinary differential equa-
tions (ODEs) or even stochastic differential equations (SDEs) driven by Brownian
motion are often not valid. On the other hand the SSA is often prohibitively expen-
sive. Tau leaping methods were proposed as efficient but approximate alternatives to
the SSA simulations.

While the exact simulation (SSA) accounts for reaction events one at a time, the
tau leap methods take a predetermined time step and then provide an approximation
of the random state at the end of the time step using some criterion. Thus tau leap
simulation of sample paths are akin to time stepping methods for ODEs and SDEs
driven by Brownian motion. The first tau leap method was proposed by Gillespie [13]
and is now known as the explicit tau leap method. This is in spirit the same as the
explicit Euler method for ODEs. The implicit tau leap method was introduced in
[20] and the trapezoidal tau leap method may be found in [5]. Several other tau leap
methods have been proposed in the literature since then; see [27], for instance, and
references therein.

1.1. Previous error analyses of tau leap methods. As tau leap methods are
analogous to the time stepping methods for SDEs (driven by Brownian motion) and
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ODEs, the question of convergence is a natural one, where convergence is studied for
a fixed time interval [0,T] with mesh size max (t;4+1 —t;) — 0, where 0 = ¢y < t1 <
-+ < t, =T is the mesh used by the time stepping method. However, unlike the case
of ODEs and SDEs, exact simulation is possible in the case of discrete state (contin-
uous in time) Markov processes because the state of the process changes via discrete
events happening in continuous time. This means that if the step size of the tau leap
method is very small one may expect on average no more than one event to occur
during a time step, and hence the tau leap will no longer be more efficient than the
exact simulation method! This fact has lead to interesting discussions and analyses.

It was first shown in [18] that both the explicit and the implicit tau methods are
first order convergent in all moments for systems that remain in a bounded region
(which may depend on the initial condition) of the state space under the assumption
of linear propensity functions. It was later proven in [23] that under the same bounded
domain assumption but for general (nonlinear) propensity functions that the explicit
tau method is first order convergent in moments as well as order 1/2 convergent in a
strong sense. Weak error analysis of explicit tau leap method with a “Poisson bridge”
interpolation was provided in [2].

It must be noted that in the literature on numerical methods for stochastic dy-
namical systems the terms strong error and weak error are used in a slightly different
sense from that of functional analysis. Strong error refers to the error X (t) — X (t)
between the numerical approximation X of the process X usually measured in the
L,(Q, F,Prob)) or La(Q, F,Prob) sense where (2, F, Prob) is the common probabil-
ity space which carries both the process X as well as its approximation X. In the
context of continuous time Markov processes on Z" it is not always easy to find a
good coupling of X and X (unless one derives the method X starting from a stochas-
tic equation, for instance, with the aid of the random time change representation [10]
or with the aid of Poisson random measures [23]) and there may be different ways to
couple X and X leading to potentially different strong errors. Often one is interested
in the error between the distribution of X (¢) and X (t). In particular for a function
f:ZN — R one considers the error E(f(X(t))) — E(f(X(t))). This form of error
analysis is termed weak error analysis. Usually f is taken to be a bounded function
on ZY following the standard notion of weak convergence of probability measures [10].
When the process X as well as the numerical scheme X remain in a bounded sub-
set of ZN no assumption on f is needed. However, it must be noted that when the
process X is not bounded and f is taken to be a polynomial of degree higher than 2,
strong Lo convergence will require additional regularity conditions in order to imply

the convergence of E(f(X(¢))) to E(f(X(t))).

When the molecular copy numbers are large, the stochastic chemical model may
be well approximated by the reaction rate ODEs [13]. This behavior is known as the
thermodynamic limit in the applied sciences literature where one considers starting
with the initial number of molecular copy numbers and the corresponding system
volume and then envisages a sequence of systems obtained by multiplying the initial
copy numbers as well as the system volume by an integer N and considering the
behavior as N — oco. In order to obtain a limit, one must rescale the process by N
and additionally a specific form of dependence of the propensities (probabilistic form
of reaction rates) on the system volume is critical for this limiting behavior to occur.
This specific form of volume dependence or more abstractly “system size” dependence
occurs commonly in many real world systems including stochastic chemical kinetics
and is referred to as density dependence in the works of Kurtz, where a rigorous proof
of the limit is also provided; see [10], for instance.
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A natural question is how does a tau leap method behave when the system size
becomes large. Some tau leap methods resemble higher order numerical schemes
for ODEs, while other tau leap methods resemble lower order schemes. This has
motivated researchers to incorporate system size into the error analysis of tau leap
methods. The first such analysis appeared in [7], where the analysis investigates the
explicit tau method as well as the midpoint tau method. In particular the error
analysis is carried out under the setting where the step size 7 is related to system
size V in the form of 7 = V=P, This analysis is able to explain why when system
size is sufficiently large the midpoint tau method performs better than the explicit
tau method. This analysis is also able to explain why tau leap methods are effective
while still leaping over several reaction events, when system size is sufficiently large.
A system size dependent weak error analysis also appears in [24], where a rooted
directed graph representation is developed for weak Taylor expansions. A weak error
analysis under a more general form of scaling with system size for general tau leap
methods is presented in [8]. A related result shows that a large class of split step
implicit tau leap methods limit to the implicit Euler scheme in the large volume limit
while step size 7 is fixed [26].

All convergence results for tau leap methods mentioned above [18, 23, 2, 7, 8, 24]
effectively apply only to systems that remain in a bounded domain. In particular the
Lipschitz or bounded derivative assumptions on propensity functions are valid only for
either systems with linear propensity functions or systems that remain in a bounded
domain. While closed chemical systems satisfy the boundedness assumption due to
conservation of atoms, in practice the assumption of a closed system is restrictive.
Several models of biochemical systems have production of chemical species captured
by reactions that may be described abstractly in the form S — S + A.

Related but different error analyses of time stepping methods for stochastic pro-
cesses with jumps may be found in [9, 19, 1], to mention a few. These articles are
concerned with stochastic equations driven by Brownian motion and Poisson random
measures. The first two works [9, 19] consider fairly general jump processes but as-
sume coefficient functions to be globally Lipschitz or possess bounded derivatives.
The work in [1] proves convergence of moments under the less restrictive one-sided
Lipschitz condition on the drift coefficient but nevertheless assumes a global Lipschitz
condition on the coefficients corresponding to the Brownian and Poisson processes.
Moreover the Poisson process considered has fixed intensity. None of these results
are applicable to the chemical kinetic models with nonlinear propensities when the
system is unbounded.

1.2. Error analysis in this work. The important feature of the weak con-
vergence result proved in this paper is that it does not assume boundedness of the
system and moreover in the error E(f(X(t))) — E(f(X(t))) the function f need not
be bounded but is assumed to satisfy a polynomial growth bound. A form of moment
growth bound (as a function of time) is assumed on the process X and one may find
sufficient conditions in [16, 22, 3] that ensure such bounds. The result applies to any
tau leap method provided that it yields integer valued states, satisfies similar moment
growth bound conditions as the chemical system, possesses pointwise local error of
order g+ 1, and in addition satisfies certain bounds on the time derivative of moments.
The analysis technique does not differentiate between explicit or implicit methods and
applies to both provided they satisfy the above conditions. The convergence proof
does not apply to the (unrounded) implicit tau, for instance, since it yields noninteger
states. However, it applies to split step implicit methods such as those in [27].
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The proof technique involves establishing consistency and uniform boundedness
(or zero stability) of the method in a certain family of norms and related metrics in
the space of probability measures on a finite dimensional integer lattice which possess
finite moments of all orders. Thus the proof is more in the spirit of the proof technique
for ODEs though the spaces are infinite dimensional. It must be noted that the notion
of zero stability (see [4], for instance) of a numerical scheme is an important concept.
Essentially any sensible numerical scheme closely approximates the exact process over
one time step 7 which is sufficiently small. But as 7 — 0, the number of steps over
a finite interval [0, 7] increases to oo, and zero stability requires that the numerical
scheme is well behaved (uniformly bounded) under this situation.

The analysis in this paper does not take scaling with system size into account, as
is done in [7, 8]. For the analysis in this paper, the system size V' is fixed while step
size T approaches zero. There has been some debate about which type of analysis
is better or even “correct”, in other words, whether the step size 7 should be taken
as a function of system size parameter V, typically in the form of 7 = V7, and
the limiting behavior as V' — oo be studied, or following the more conventional
analysis (where V is fixed), and the limiting behavior as 7 — 0 be studied. While the
system size analysis provides valuable insights, a serious criticism of taking step size
7 as a function 7 = V=8 of V is that the quantity V is a given and not under the
control of the user, while the step size 7 is. Thus halving the step size 7 to “check
for convergence” will not be captured by this type of analysis. A good discussion
highlighting the benefits of both types of analysis may be found in [24] and we agree
with the sentiments expressed there in that both types of analysis are relevant.

Regarding the importance of fixed V' analysis, it must be emphasized that if
a tau leap method is not zero stable or not convergent, then the user is potentially
operating on shaky ground. To put this another way, when using a zero stable method
a practitioner needs to worry about whether 7 is small enough only when it comes
to accuracy issues. Omn the other hand if the practitioner uses a method that is
not zero stable (s)he has to worry about whether 7 is large enough as well as small
enough, a very unsettling situation! Thus we believe that this form of convergence
(or at least zero stability) is necessary and that the analysis represents an important
improvement over previous results in that it accommodates unbounded systems with
nonlinear propensities.

1.3. Outline of the paper. The rest of the paper is organized as follows. Sec-
tion 2 deals with mathematical preliminaries and proves some results which are rel-
evant for the convergence proof. Section 3 presents the convergence proof. Section
4 provides some results on the verification of the assumptions that underly the con-
vergence proof. The second part of section 4 specifically considers tau leap methods
using Poisson and binomial updates which are common to most tau leap methods.
Section 5 provides some concluding remarks.

2. Mathematical setup and preliminaries.

2.1. Chemical process and tau leap approximation. We shall be concerned
with continuous time Markov chains that take values on the state space Z~ that
have certain specific structure. The origin of this structure comes from stochastic
models of chemical kinetics where IV different molecular species undergo M different
reaction channels, hence our rationale for the term chemical process. The state of
a stochastic chemical process is an N dimensional (nonnegative) integer vector such
that the ith component of the vector stands for total the number of molecules of the
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ith species. The specific structure dictates that for any given state z € Zf there are
at most M other states that the process can jump to and the possible jump sizes are
independent of the state x and time ¢. These jump sizes are stoichiometric vectors
vi,...,vyp € ZY which correspond to the M different reaction channels. Associated
with each stoichiometric vector v; there is a jump rate or propensity (in the chemical
kinetics terminology) a;(z) which in general is a function of the state z. We define
ap(x) by agp(z) = Z?il a;(xz). In our general result in section 3 we consider the
slightly more general (than the chemical kinetic systems) case where the state space
is ZV. In section 4 we mostly specialize to the case of nonnegative state space.

Given N, M € N, stoichiometric vectors v1,..., vy € ZVN, and propensity func-
tions aj : ZN — R for j = 1,...,M, we define the associated chemical process
X (t) for t € [0,00) to be a ZY valued Markov process which only admits jump
sizes v1,...,vym € ZN with corresponding intensities a;(z) for j = 1,..., M. This
means that given X (¢) = x, the waiting time for the next jump event is exponentially
distributed with rate ag(x) and the probability that the next jump is of size v; is
a;j(z)/ao(x). We shall consider the version of X (¢) that has right continuous paths
with left-hand limits (known as cadlag). We shall only be concerned with chemical
processes that are nonexplosive, i.e., do not have infinitely many jumps in any finite
time interval.

Given a chemical process X (¢) with N species and M reaction channels, we may
define the transition probabilities P : [0,00) x Z¥ x ZN — R by

(2.1) P(r,x,2") = Prob{X (t + 7) = 2/| X (t) = z}.

By the nonexplosivity assumption, it follows that for each 7 > 0, we have

Z P(r,xz,2") = 1.

' eZN

For each 7 > 0, P(r,z,2') is an infinite matrix indexed by x,z’ € ZV.

Throughout this paper we shall be concerned with infinite matrices indexed by
ZN, ie., functions ¢ : ZN x ZN — R. Such a matrix ¢ may be naturally regarded
also as a linear operator v from a subspace of REZ™) into RZ™) by the prescription
that given g € RZ") we define ¢ g € RZ") by the matrix vector multiplication (in
reverse order)

W) w) = > (@ y)g(x),

zeZLN

provided the sum converges absolutely. Given two operators (matrices) 11,12 the
“product” notation 111 shall mean the composition ¥, o ¥y of operators which is
also given by the matrix multiplication in reverse order,

(V1) (@, 2') = Y i (y. 2" )a(,y),

yezZN

again when the sum above converges absolutely. Given such an operator 1) we denote
by [¢| the function (z,2') — |¢(x,2')| and likewise given a function g € RZ") we
denote by |g| the function x — |g(x)|.
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Since there are only finitely many jumps out of each state, the time evolution of
P(7) satisfies the Kolmogorov’s forward equation

(2.2) PO (7,2, 2") Z (ry2,2" — vj)aj(@ —v;) — P(r,2,2")a;(2)) .
Jj=1

Let us define Q : ZN x ZV — R by

Q(z,2") = aj(x) ifa' =+,
(2.3) Q(z,2') = —ap(z) if 2’ ==,
Q(z,2') =0 otherwise.

Thus we may write (2.2) as

PO(r,z,2') = Y Qy,«)P(r,2,y),

yezN

and this may be compactly written in operator notation as
(2.4) PW(r) =Q P(r).

When regarded as an operator on I1(Z";R), Q is known as the generator of the
semigroup P(7). It must be noted that @ is an unbounded operator and its domain is
not all of [;(Z";R). The above operator equation holds on the domain of both sides.
Since the sum on the right-hand side of (2.2) involves finitely many terms, we may
differentiate it an arbitrary number of times. In operator notation we obtain that for
qc Z+7

(2.5) P (r) = Q7 P(1).

We note that Q7 is well defined as a function on Z" x Z" or an infinite matrix since
any given row or column of @ has only finitely many nonzero entries and hence g-fold
multiplication of @ is well defined.

Given a chemical process X let R(t) € Z} denote the vector of reaction counts
during (0, t]; in other words, for j =1,..., M, R;(t) is the number of times reaction
channel j fires during (0,t]. If X (¢) = z, then X (t+7) = 2+ v(R(t +7) — R(t)). For
given x and 7, the conditional distribution (conditioned on X (¢) = x) of the random
variable R(t+7) — R(t) (which depends only on x and 7) is in general not known and
hence it is difficult to generate a sample from. A tau leap method typically provides
an approximation of the conditional distribution of R(t + 7) — R(t) given X (t) =
by an easily computable random variable K whose distribution depends on x and 7
and thus also provides an approximation for the distribution of X (¢t + 7) by that of
r+vK.

In a very general sense, given (current) state x € Z" and a time step 7 > 0 a
tau leap method assigns an (approximate) probability mass function for the state z’
after elapsed time 7. Thus we take the viewpoint that a tau leap method is uniquely
characterized by a map ¢ : [0,00) x ZN x Z¥ — R, where ¢(7, x, ') is the probability
assigned to state z’.

We shall define a mesh Il on [0,7] to be a finite length sequence II = (o, ..., ;)
that satisfies 0 =tg <t1 < -+ < tp_1 < t, =T. We shall define step sizes associated
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with II to be 7; =t; —t;_; for j = 1,...,n and we shall denote the maximum step
size max{7y,...,7,} by |I|. Given a tau leap method ¢ and a mesh II = (¢o,...,t,)
on [0,7] the tau leap solution Yri(t) for ¢ € [0,T] corresponding to initial condition
zo € ZV is defined to be the stochastic process which is constant on [t;_i,t;) for
j=1,...,n (thus jumps at t1,...,1,), satisfies Y11(0) = x¢, and also satisfies

(2.6) (1j,x,2") = Prob{¥Yu(t;) = /| Yu(tj—1) =z}, j=1,....n.

Note that the tau leap solution Y71(¢) on any given mesh II is also a Markov process,
but it is not time homogeneous since the family ¢(7) does not possess the semigroup
property with respect to the time parameter 7.

We note that elements of 1;(Z";R) may be regarded as signed finite measures
on ZY and denote by P the set of all probability measures on Z~. We finally note
that for each 7 > 0, the operators (or infinite matrices) P(7) and ¢(7) (which we call
the transition functions of the process and the tau leap method, respectively) have
induced norm equal to 1 (on I;(Z";R)) and moreover they leave P invariant, i.e.,
map probabilities to probabilities.

2.2. Total variation, moment variation, spaces M and C. In this section
we define some spaces that shall play an important role in our convergence study. We
remark up front that the spaces defined here are weighted [y spaces and their duals.
Related but different spaces (weighted lo and related discrete Sobolev spaces) were
developed in [21] for the spectral approximation of the solution of (2.2).

First we recall the total variation norm. Given two signed finite measures g; and
g2 on Z" the total variation between g; and ¢ is given by the 1-norm distance

g1 — gll1 = Z l91(x) — g2(2)|.

zEZLN

Throughout this paper we shall use |.| to denote a norm on RY. For each r € Z
we shall define the rth moment variation |.|, on I1(Z";R) by

(27) gl = 3 5 (1+1al)lg(@)] < o0

zeZN
for all g € [;(Z";R). We define the subspaces M, C I;(Z";R) for r € Z; by
(2.8) M, ={g e L(Z";R)| |gl» < o0}

and M by M =, 5, M,. It follows that |.|, is a norm on M, for each r € N
and when r = 0, |.|p is the total variation norm or equivalently the 1-norm (M, =
11(ZN;R)). We note that M, equipped with |.|,, norm is a Banach space isometrically
isomorphic to l1, the space of summable sequences. To see this let £ : N — ZV be a
bijection. Define 1 : M, — [ by

n(g)(n) = g(&(n))(1 + [£(n)[") /2.

It is straightforward to verify that 5 is an isometric isomorphism.

It must also be noted that M, includes all probability measures which have a
finite 7th moment and M includes all probability measures that have finite moments
of all orders.

Remark 2.1. Due to the equivalence of norms on RY, two different norms |.|,
arising from two different norms on RV are equivalent.
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We state the following lemma, which will be used frequently throughout this

paper.
LEMMA 2.2. For 0 < ry < ry there exists a such that

lglr, < alglr,
for all g € M.
Proof. The set of x € ZY for which || < 1 is finite. Thus there exists a such
that |z|™ < alz|™ for all x € ZV. a

COROLLARY 2.3. Forr € Z,, M,11 C M,.

The main convergence results in this paper are obtained under the assumption
that the propensity functions are at most of polynomial growth. We define classes C,
and C to make this concept precise and prove some important results concerning the
generator ) under the polynomial growth assumption on propensities. In particular
we show that under the polynomial growth assumption on propensities, () maps M
into M.

For each r € Z, the class C, of functions f : ZV — R that are said to be of
polynomial growth of degree r are defined by the condition that f € C, if and only if
there exists a > 0 such that

If(2)] < a(lz]"+1) VzeZN.

We define the class C by C = U,¢z, C,.
It is easy to see that for each r € Z, C, is a Banach space when equipped with
the norm that is given by

|11l = sup{2f(2)/(1 + |z|") | = € Z"}

for f € C,. Moreover, C, can be naturally identified with the dual M} of M, with
the pairing given by

(f,9)= > fl@)g(x),

zeZN

where f € C,. and g € M,..

LEMMA 2.4. Suppose f : ZV — R is given by a polynomial in |x| of degree r.
Then f € C,.

Proof. We note that if 0 < r; < 79, then there exists @ > 0 such that |z|™ <
a(|z|™2 + 1) for all 2 € ZN. This follows because the set of z € Z" such that |z| < 1
is finite regardless of the norm used. O

The following corollary is immediate.

COROLLARY 2.5. A (multivariate) polynomial f : ZN — R belongs to C.

We also note that the definitions of C,, and C are independent of the norm used
in RV,

The following lemma plays an important role in our convergence analysis.

LEMMA 2.6. Let Q as defined in (2.3) correspond to a chemical system whose
propensity functions are of class Cs for some s € Zy. Then for each r € 7., there
exists B, > 0 such that

|Qg|r = ||Qg||r < “Q' |gHT < Br|g|s+r

for each g € M. Hence QM C M and |Q| M C M. In particular the domain of the
generator Q) contains M. (See section 2.1 for a definition of absolute value |Q] .)
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Proof.
1
1Qllgll, =5 > A+l X 1Q@a)lg@)]
' €ZN zeZN
1 - r 1 rr
=3 D A+ lz+yyMay(2)|g(x)] t3 > (14 |2'[Nao(x) ()],
zezZN j=1 zeZN

where we have used (2.3). Since a; are of class Cs, there exists a independent of x
such that
aj(r) < ao(z) < of|z[* +1)

for all x. Additionally we have

L+ |z +vs]" <1+ (Jof 4 [v])" < 27(l2]" + |v5") +1 < B(l2|" +1)
for some 3 independent of z. Thus we obtain that for some constants B, and B, the
following holds for all g:

1QlIgll, < 5 32 Bollal + 1)l + Dlg()]

zEZLN
S Br |g|r+s~

Note that we have used Lemma 2.4. O
Finally we provide a lemma which shows that convergence in the moment variation
norm |.| is equivalent to convergence of E(f(X,)) to E(f(X)) for all f € C,..
LEMMA 2.7. Forn € N, let p,,p € M, be probability measures. The following
are equivalent:
2. For every function f : ZN — R that is of class C, we have

Y f@pale) = Y fla)p(a).

zeZN z€eZN

Proof. We note that the first statement is that of strong convergence of p,, to p
in M, (equipped with |.|,) and the second is that of weak convergence of p, to p in
M.,.. Since l; possesses the Schur property which states that “a weakly convergent
sequence is also strongly convergent” [6], and M, is isometrically isomorphic to Iy, the
result follows. O

3. Convergence analysis. Given the same initial condition pg € M NP (an
initial probability measure on Z~ with finite moments of all orders) and a mesh
I = (to,...,tn) on [0,T7], let the p(¢) and pri(¢) describe the probability mass functions
of the chemical process X () and its tau leap approximation Yi1(¢), both of which
satisfy p(0) = p(0) = po. We shall prove the convergence of pri(t) to p(t) for t =t;
in the rth moment variation norm under suitable assumptions. In this section P(7)
stands for the transition function of the chemical process, ¢(7) stands for the transition
function of the tau leap method as defined in section 2.1. In what follows we shall
use p(t), suppressing the subscript II for brevity.

We state a few assumptions about the chemical process X () and its tau leap ap-
proximation that may be needed in the convergence results presented in this section.
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We note that section 4 addresses the question of verification of these assumptions.
Assumption 1 holds in all stochastic chemical models we have encountered in the lit-
erature and results in [16, 3, 22] provide conditions under which Assumption 2 holds
and Theorem 4.4 restates a special case of a result proved in [16] regarding Assumption
2. Theorems 4.1, 4.3, and 4.5 provide some general conditions under which Assump-
tions 5, 3, and 6 hold, respectively, and Theorem 4.11, Corollary 4.12, and Theorem
4.15 provide more specific conditions for tau leap methods where reaction counts are
approximated by (conditioned on current state) independent Poisson and/or binomial
random variables.

Assumption 1 (polynomial growth bound on propensities). All propensity func-
tions of the chemical process are in class Cg+ for some s* > 0.

Assumption 2 (exponential moment growth bound for P). For all r € Z, there
exist A\, > 0 such that for all 7 > 0 and all z € ZN the following holds:

(3.1) Z 1+ |2'|") P(r,z,2') < (14 |z|") e,

' €N
We may state (3.1) equivalently as
(32) |P(T)glr < lglre™™ Vg€ M.
Yet another equivalent way to state Assumption 2 is
(3.3) B+ |Xt+7)|"|X(t)=2) < (1+|z]")eM.

Assumption 3 (pointwise consistency of order ¢). For each x € ZV and 2’ € Z¥,
(T, x,2’) is ¢ + 1 times continuously differentiable in 7 and the following hold:

(3.4) ¢ D(0,z,2") = PD(0,z,2"), i=1,...,q.

Note that it follows from the finite sum on the right-hand side of the Kolmogorov’s
forward equations (2.2) that P is infinitely differentiable in 7, so we do not need the
differentiability assumption for P.

Assumption 4 (derivative bound on ¢ in total variation norm). There exist
Hp > 0, so >0, 6g > 0, and ~yp > 0 such that for all 7 € [0, dp)

H
(3.5) > 18 (ra,a) < R al* + 1),
z'eZN
where ¢ is as in Assumption 3. Equation (3.5) may be equivalently stated as
(3.6) 161D ()lg|y < Holglso €™ Vg € M.

Assumption 5 (derivative bound on ¢ in moment variation norms). For each
r € Zy there exist H, > 0, s, > 0, 6, > 0 and 7, > 0 such that for all 7 € [0,4,)

(3.7) ST 1) [0 (2,2t < Hy(|af* + 1) e,

:E/EZN
where ¢ is as in Assumption 3. Equation (3.7) may be equivalently stated as

(3.8) [t (7)|g| < Hylgls, €™ Vg e M.
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Note that Assumption 5 implies Assumption 4.

Assumption 6 (exponential moment growth bound for ¢). For each r € Z there
exist A\, > 0 and d, > 0 such that for all 7 € [0,6,) and all x € Z" the following
holds:

(3.9) Y Wl d(raa’) < L+ |2f") e

z'eZN
We may state (3.9) equivalently as
(3.10) |6(T)glr < lglr €M™ Vg e M.

Note that for convenience we have chosen without loss of generality A, to be the same
as in (3.1) of Assumption 2.

Remark 3.1. We note that when these assumptions are used, it is assumed that
there exists a common norm on R¥ such that Assumptions 1 through 6 hold (in that
same norm). Assumptions 1 and 3 are independent of the norm used on R, Under
suitable sufficient conditions Assumption 2 may be shown to hold in any norm on
RY with constants A, depending on the norm [16]. It is straightforward to show
that Assumptions 4 and 5 are independent of the norm as long as norm dependent
constants H, are allowed.

Remark 3.2. If a deterministic initial condition is assumed, then convergence
results can be obtained under slightly relaxed versions of the above assumptions. For
instance, in Assumption 2 the constant A, will be required to be independent of z
only within the set of states reachable from the initial condition and not independent
of all z € Zf . We shall not pursue this line of inquiry for the sake of brevity.

An equation similar to (3.7) follows for P(7) under Assumptions 1 and 2, which
we state as a lemma.

LemMMA 3.3. For each v € Z4 there exist H, > 0, s, > 0, and v, > 0 such that
for all T >0,

(3.11) S (1 [2]7) [P ()] < H(Jof* + 1) e,

z'eZN
which may be equivalently stated as
(3.12) [Pl (r)lg] < Hylgls, e Vg€ M.

Note that without loss of generality we may take .., s,, and H, to be the same
in (3.5), (3.7), and (3.11).
Proof.
P g| < [IPC @)l = |IQ7 P@llgl| < [1QI P lgl|

S BTBT+5*BT+25* e Br+qs*

Pl
< BrBr—i-s* - Br+qs* |g|(q+1)s*+re)\(q+1)s*+r7'

< Hylgls, €™,

where H,, s,, and +, are suitably large, and we have used Lemma 2.6 repeatedly and
Assumptions 1 and 2. O
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The following consistency result follows from Assumptions 1 through 5 and
Lemma 3.3.

LEMMA 3.4 (order ¢ consistency in moment variation). Suppose for a common
norm on RY that Assumptions 1 through5 hold. (For ther = 0 case only Assumptions
1 through 4 are needed.) For each r € Z4 let sy, 0r, and 7, be as in (3.7) and (3.11).
Then for each r € Zy there exist C. > 0 such that for all T € [0,6,) and g € M,

(3.13) (@(7) = P(1))glr < Cp |gls,+r 77 €77

Proof. From (3.7) and (3.11) we obtain using the triangle inequality that
> ([ [0 (rw,a!) = PO (rw,a!)| < 2H, (L4 [o]) 7
z’' €N

for all 7 > 0. From Taylor’s theorem we have that for each z,z’ € Z", and for each
7> 0,

1
o(r,2,2") — P(1,2,2") :/ — (¢(q+1)(8 z, ') — P(“l)(s,x,x’)) (7 — 8)7ds.
o 94
Hence
Z (14 |2')" |¢(r, 2, 2") — P(r,z,2")]
' eZN
1 T
T iegn 10
< 3 [ g e - P - i
- a ' €ZN
1 T
d ( > (L[] |6 (s,2,20) = PO (s ') ) (r — s)ids
4 Jo x’'€ZN
! —s)? a+1
= /0 2(T q!S) Hy (j|* +1) - Tq! H, (Jz* +1)e7
<

2H
< S al 4

q:
where we have used the dominated convergence theorem to swap the sum and the
integral. Thus, given g € M we obtain

(¢(7) = P())glr < Z 1+|9€| |6(r,2,2") = P(7,2,2")| |g(x)|

z€ZN x EZN

C
<3 Lt ot
zeZN
=Cy |g|sr+r Tatt e,

where C). is a suitably large constant. d
The following theorem establishes the order ¢ convergence in total variation of a
tau leap method that is pointwise order ¢ consistent under Assumptions 1 through 4.
THEOREM 3.5 (order ¢ convergence in total variation). Let II = (to,...,t,) be
a mesh on [0,T]. Let p(t) and pu(t) for t € [0,T] be the probability mass functions
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corresponding to the stochastic chemical process and its tau leap approrimation on
mesh 11 both started with initial distribution po € MNP. Let T = |II] be the mazimum
step size. Suppose for a common norm on RN that Assumptions 1 through 4 hold and
50, 0o, and o are as in (3.7) and (3.11) and let Cy be as in Lemma 3.4 for the case
r =0 and let p19 = max{As,,Y0}. Then for each i =0,1,....n and for T € (0,6,) the
following holds:

(3.14) lpri(t:) — p(t:)lo < Co Ipols, ti €% 78 < Co |pols, T €0 7.
Proof. For i =1,...,n we may write the error p(t;) — p(t;) as
p(ti) —pti) = ¢(7:) (B(ti—1) — p(ti-1)) + (¢(7:) — P(7i)) p(ti-1)-

Repeated application of the above leads to the telescoping sum
(3.15) p(ti) —p(ti) = Z¢(Ti)¢(ﬁel) o d(Ti41) (@(75) — P(75)) p(tj—1),
j=1

where we have used the fact that p(0) = p(0) = pp. From (3.13)
|(&(75) = P(m3)) p(t;-1)lo < Colp(tj—1)lse 7§ €77,
since |p(tj—1)|o = 1. From (3.2) we obtain
[P(tj—1)lse = [P(tj—1)Polss < [polsy €01
Hence with 19 = max{\s,,70} we obtain
(3.16) (8(75) = P(7)) p(tj-1)lo < Co |pols, T et

Equation (3.16) is a statement of order ¢ uniform consistency in total variation norm
on the interval [0, T]. Using the fact that |¢(7;)|o = 1 for all i, we obtain from (3.15)
the estimate
i
[P (ts) — p(ti)|o < Z Co |pols, 7775 €% < Co pols, ti e 79
j=1

This completes the proof. a

Now we have the following zero stability or uniform boundedness result for the
tau leap method which follows directly from Assumption 6.

LEMMA 3.6 (uniform boundedness or zero stability of tau leap method in rth
moment variation). For each v € Zi, T > 0 g € M, and for all meshes 11 =
(toy ... tn) on [0,T] satisfying |II| < 0, and for any indices 1,7 with 0 < j < i <n
the following holds:

(3.17) |6(T)d(Tim1) - B(Tj1)9lr < |glreTHHFT) < gl M T

The following theorem establishes the order g convergence in rth moment varia-
tion of a tau leap method that is order ¢ consistent under Assumptions 1
through 6.

THEOREM 3.7 (order g convergence in moment variation). Let II = (to,...,
tn) be a mesh on [0,T]. Let p(t) and pu(t) fort € [0,T] be the probability mass func-
tions corresponding to the stochastic chemical process and its tau leap approrimation
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on mesh I both started with initial distribution pg € M NP. Let 7 = |II| be the max-
imum step size. Suppose for some common norm on RN that Assumptions 1 through
6 hold. Given any r € Zy let s, and vy, be as in (3.7) and (3.11), let C, be as in
Lemma 3.4, and let p, = max{ s, yr, Vr}-

Then for each v > 0 and for each i = 0,1,...,n and 7 € (0,6,) the following
holds:

(318) |ﬁH(tl) _p(tz)|f’ < Cr|p0|sr+r t; ekrti 4 < Cr|p0|sr+r Te“*T 79,

Proof. From (3.13)

(6(7) = P73)) pltj-1)lr < Crlp(t-)ls, e 7 €77

From (3.2) we obtain

|p(tj—1)|sr+r = |P(tj—1)p0|sr+r < |p0|sr+r erortrti—1

With g, = max{\s,+,,7-} we obtain

(3.19) (6(75) = P(7)) p(t=1)lr < Crlpols,r 7{ " €M7,

which is a statement of uniform consistency. In Lemma 3.6 for i > j taking g =
(¢(m5) — P(1j)) p(tj—1) and using (3.19) we obtain the estimate

|6(T)P(Ti-1) - O(Ti41)(0(75) — P(75)) plti-1)l

+1_prty A (7 T 1t
< Cplpols,r i ettt (vt ) < O g,y i T bt

Thus we obtain from (3.15) the estimate

1
|ﬁH (t’L) - p(t1)|r S Z Cr |p0|sr+r 74 Tj e'urti
j=1

S C’r |p0|sr+r ti e‘urti T4 S C’r |p0|sr+r T eHTT T4

This completes the proof. d
The following corollary affirming the order ¢ convergence of moments is immediate.
COROLLARY 3.8 (order ¢ convergence of moments). Let the assumptions of The-
orem 3.7 hold. Then the error in the rth moment satisfies

(3.20) [E([Yu(T)[") = E(IX(T)|")| <2CE(|X(0)]*") T e 74,
Proof.
[E(Ya(T)") = B(X @) = | Y el pn(T,2) = Y |« p(T, )|
zeZN zeZN
< > (U [a]") [pu(T, @) = p(T, 2)| = 2 [pu(T) = p(T)|

<2C,|pols,+r Te* 7. O

Remark 3.9. For convenience of exposition our convergence analysis and the
Assumptions 2, 4, and 6 dealt with the situation where moments of all orders exist.
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However, it is clear from our analysis that our Assumptions 2, 4, and 6 along with
the assumption pg € P N M can be weakened to the case where moments exist only
up to some order 7.

Remark 3.10. We note that using Assumption 2 it is straightforward to extend
the convergence results to obtain a first order supremum error bound of the form

(3.21) S[upT] |E([Yu()]") — E(IX()[")] < Crlpols,++Te T,
telo,

where per our convention the tau leap approximation Yir(t) is constant on [t;_1,t;).

4. Verification of the conditions of the convergence theorem. In this
section we provide some results on the verification of Assumptions 1 through 6. All
forms for propensity functions proposed in the literature that we have encountered
satisfy the polynomial growth bound of Assumption 1 and thus it is not restrictive.
It is also straightforward to verify.

4.1. General results on verification of Assumptions 2 through 6. First it
must be noted that from (2.5) we have P()(0) = Q° for i = 1,2, ... since P(0) is the
identity. This gives explicit expressions for P(*)(0,z,2’). The pointwise consistency
(Assumption 3) requires ¢ (0, z,z’) to agree with P (0,z,2’) fori = 1,...,q. So
checking Assumption 3 relies on evaluating ¢(*) (0,z,2"). If direct expressions are
available for ¢(7,x,2’) this is easy to do. However, in practice the expressions for
¢(7, x,2’) may involve infinite sums. To see this, recall that one may write the change
in the chemical process X (t) as

M
(4.1) X(t+7)=a+ Y v[Ri(t+7)— R;(t)],
j=1
where X (t) = « and R;(t) are processes that count the number of reactions that

occurred during (0,¢]. Most tau leap methods are of the form

M
(4.2) Y(t+71)=2+> 1K,

J=1

where Y (t) = z and K; are random variables whose distribution depends on « and 7
and are approximations of R;(t+7)—R;(t). Let us define the conditional probabilities

o(r, k) = Prob(K = k| Y (t) = x),

(4.3) _
p(r,z;k) = Prob(R(t + 1) — R(t) = k| X (t) = x).

In order to see the relationship between P and p as well as ¢ and ¢, given a pair
of states , 2’ € ZN, we define the associated set S(x,z’) C Zf\f to be the set of all
reaction counts k € Zf\f that would take the system from state x to state z':

(4.4) S(z,2')={k e ZY' |2’ —x = vk}.
Then we have that for z, 2’ € ZV,
P(r,z,2') = Z T,z k),
(4.5) -
P(ra,a)= Y dlr,xk).

keS(z,x’)
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Since expressions for ¢ are more readily available than for ¢, we shall seek pointwise
consistency of ¢ with p. In order to go from pointwise consistency of ¢ with p to
that of ¢ with P, term by term differentiation needs to be justified as S(z,z’) may
be infinite.

In order to derive pointwise consistency conditions for é(T,x; k) in comparison
with p(7, z; k) we first note that given X (¢) = x, the reaction count process R(t+7) —
R(t) is a Markov process and hence we obtain the following Kolmogorov’s forward
equation:

Ma

M
(4.6) ﬁ(l)(T,x;k):Z 1,2k —ej)a;(z + vk —ej)) p(T, z; k)aj(z + vk)
=1

7j=1

with initial probability 5(0, z;0) = 1 and p(0, z; k) = 0 for k # 0. Here e; is the vector
with all zeros except a one on the jth entry. Defining the infinite matrix Q(z) that
depends on state x by

Qx; k' k) = aj(z +vk'), k=Fk +v,,
(4.7) = —ao(z +vk'), k=F,

=0 else,
we note that
(4.8) 590,25 k) = Q'(x;0,k) Vk € ZY

where Q' is the ith power of Q. Thus pointwise consistency of order ¢ for ¢Z(T, x; k)
is given by

(4.9) 6900, 2;k) = Q'(x;0,k) VE € ZY i =1,...,q.

We note that for ¢ = 1, (4.9) yields that ¢(V (0, z; k) = a;(x) if k = e, ¢V (0,2;0) =
—ao(z) and ¢ (0, z; k) = 0 for all other k.

The following theorem provides a set of sufficient conditions that guarantee the
validity of the term by term differentiation for the sums involving q~5 and also guarantee
that Assumption 5 (on the derivative bounds) holds. ~

THEOREM 4.1. Suppose there exists § > 0 such that ¢(r,x; k) are continuously
differentiable (in 7) q + 1 times for 7 € [0,9] and for each x,k, and suppose that for
each k and i =0,1,...,q+ 1 there exist py ;(x) such that

16D (1,2, )| < i)

and that for each r € Z there exist n,; and o, ; such that

3kl (@) < a1+ [2]7),

kez!

Then Assumption 5 holds with §, =6, v = 0, and some s, for all r € Z.
Proof. First we note that using the Weierstrass test, for : = 0,1,...,¢+ 1 and all
r € Z4, the series

> kS (r s k)

M
keZy
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converges uniformly for 7 € [0, 0] and that the commutation
(1)
Z k" g(r,ask) | = D k"¢ (a5 k)

M M
ke kez}

holds. It is also then clear that (4.5) may be differentiated term by term ¢ + 1 times:
oD(rza)= 3 39D (rashk).
keS(z,x’)

This leads to the estimate
S (rm ) <Y fa o+ vk (7, 23 k)|

x’' €N kezl!
- 7! . ~

<> mm Yl { D kIS (7,25 k)
=0 ’

kez!
< ae(1+ [2]*r),

where 7, is a suitably large constant and s, is the maximum of r» — [ + 0y 441 over
1=0,1,...,r. Assumption 5 follows with a suitably large H, and -, = 0. d

COROLLARY 4.2. Suppose the conditions of Theorem 4.1 and Assumption 1 hold.
Then (4.5) may be term by term differentiated q + 1 times.

Proof. The result for ¢ follows from the proof of Theorem 4.1. Under Assumption
1, because of (4.6) it can be shown that p satisfies conditions similar to those required
on ¢ by Theorem 4.1. So the term by term differentiation for P also follows. |

The following theorem is immediate.

THEOREM 4.3. Suppose the conditions of Theorem 4.1 hold and additionally that
Assumption 1 and (4.9) hold. Then Assumption 3 holds.

The Assumption 2 involves the moment growth bound condition on the chemical
process. Verifying these conditions may not be trivial. Some sufficient conditions for
Assumption 2 may be found in [16, 22, 3]. We provide one result which follows from
Theorem 3.6 of [16].

We shall say that a reaction channel j is linearly bounded if there exists a constant
H such that

aj(z) <H(+|z|) VzeZl.

If a reaction channel is not linearly bounded we refer to it as superlinear. Let us denote
by M, the number of superlinear reactions. In what follows we assume without loss
of generality that the reactions are ordered such that the first M are superlinear.

While our convergence analysis of section 3 did not assume that the nonnegative
lattice Zf was invariant for the process, the sufficient condition we provide here for
Assumption 2 will only apply to systems that remain in Zf when started in Zf .
Such a process is said to be conservative with respect to Zf . Any realistic model of
chemical kinetics as well as other population processes must have this property. It is
easy to see that the process X is conservative with respect to Zf if and only if for
every x € Z¥ if x +v; ¢ Z¥, then a;(z) = 0.

THEOREM 4.4. Suppose that X is conservative with respect to Zf, Assumption 1
is satisfied, and there exists a € Zf such that o > 0 and aTVj <0 forj=1,...,Ms.
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Assume X (0) € Zf with probability 1. Then for each r € N there exists A\, such that
the following holds for all t > 0 and in any norm |.| on RV :

E(IX(®)]") < E(X(0)[")er" 4 et — 1.

Proof. This is implied by the proof of Theorem 3.6 of [16]. d

For € Z¥, 1 € Z;, and 7 > 0 let us define m;(z,7) to be the Ith moment of
the vector copy number of the linearly bounded reactions over a time step 7 starting
with state x according to the tau leap method:

(4.10) my(z, ) = Z k@ (T, z; k).
k

Here the vector copy number of reaction counts k is written as k = (k) k(?)) ¢
zX x 2™ where k(1) is the vector copy number of superlinear reactions and k%
is that of linearly bounded ones. We note that mg = 1.
The following theorem provides sufficient conditions that guarantee Assumption 6.
THEOREM 4.5. Suppose that there exists a satisfying the hypotheses of Theorem
4.4. Suppose further that for each | € N there exist 3 > 0,6, > 0 such that for all
z € ZY and T €10,0],

(4.11) my < Bi(1+ |z,

and for x ¢ ZY suppose that (;5(7',$;0) =1 (i.e., K = 0 with probability 1), which
means that if the tau leap scheme leaves Zf it is stopped. Furthermore suppose that if
z € ZY and for k= (kW k@) if 2 + v kD ¢ ZN | then o(7, 2 k) = 0. (This means
if v € Zf, then the tau update of the superlinear reactions alone will still result in a
state in Zf with probability 1.) Then Assumption 6 holds in a particular norm. If in
addition the conditions of Theorem 4.1 hold, then Assumption 6 holds in any norm.
Proof. Define the norm on R by |z| = Zfil a;|z|;. Then |z+v;| < |z| if 2 € Z¥
and z+v; € Zf forj =1,..., M,. We denote by v(!) the N x M, submatrix consisting

of superlinear reactions and by v(*) the N x (M — M) submatrix consisting of linearly
bounded reactions. Then we have that for ¢(7,x; k) # 0 with k = (k) k(2),

|+ vk| = |z + y WM 4 y(2)/€(2)| < |z + V(l)k(1)| + |,/(2)/€(2)| < |z| + HV(2)|||/€(2)|7

where ||| is the induced norm of »(?). Using this we get

Dol d(r,mal) = o+ vk G(r, i k)
x’ k

T~ - 7! —_
< 3 (lel + IWPNED) 93 k) < 37 eyl I o, 7).
k =0 " '

Using the bounds on m; we obtain that for suitably large A, and suitably small §,, > 0
we have

DA+ N(r,z,2") < (L4 [af ) (L+ A7) < (14 |2]")eT

x/

for all 7 € [0, 6,]. This shows that Assumption 6 holds in the particular norm defined
above.
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If in addition the conditions of Theorem 4.1 hold, then

Y@+l [)g(rw.a)

x/

is differentiable in 7 and by Lemma 3.5 of [16] the Assumption 6 holds in any
norm. d

Remark 4.6. We note that the proof of Theorem 4.5 uses an approach similar
to that of Theorem 4.4 (see [16]) in that it is required that the reactions that have
superlinear propensities are expected to decrease the norm of the state (in some
norm). Since the original process remains nonnegative the existence of « € Zf such
that @ > 0 and O[Tl/j <O0for j =1,...,M; is adequate to ensure this. However, in
the case of a tau leap method we directly require that the superlinear reactions alone
shall not result in a nonnegative state in order to accomplish this. Thus it will be
advisable to use bounded random variables such as binomials for superlinear reactions
to ensure nonnegativity.

4.2. Tau leap methods with Poisson and binomial updates. Most tau
leap methods use Poisson or binomial random variables for the K;. In this subsection
we present further results that apply specifically to tau leap methods that use Poisson
and binomial random variables.

We first state some lemmas related to Poisson and binomial random variables.

LEMMA 4.7. Let K be Poisson distributed with parameter X\, Then for eachr € 7.
the moment E(K") is a polynomial in X of degree r.

Proof. This follows via induction using the easy to establish recursion

E(K™) = AE((K +1)"1). O

LEMMA 4.8. Let K be binomially distributed with parameters N and p. Then for
each v € Zy the moment E(K") is a polynomial of degree r separately in N and p.
Proof. This follows via induction using the easy to establish recursive relation

E(Ky)=NpE((1+ Kx_1)" 1),

where K denotes a binomial random variable with parameters IV and p. d

LEMMA 4.9. Let K be Poisson distributed with parameter X, where X = \(x, T)
is a function of state x € Zf and step size T > 0. Denote (A, k) the probability that
K = k. Suppose that there exists 6 > 0 such that for all x € Zf and 7 € [0,9], A is
q+1 times continuously differentiable in 7, and the supremum of A, AV, ... |A@+D)]
over T € [0,9] is bounded above by a polynomial in |x|. Then for each r € Zy and
1=0,1,...,q+ 1, the supremum of

DKW R
2
over T € [0,0] is bounded above by a polynomial in |x|.
Proof. Tt is straightforward to verify the relation
WK =AY (k= 1) =9\ k), k€ Zy,

where the convention that (A k) = 0 for k& < 0 is used. By repeated application
one can relate (") for i = 2,...,q+ 1 also to ¥. This provides an upper bound
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for the quantities of interest in terms of the moments. Then the result follows by
Lemma 4.7. O

LEMMA 4.10. Let K be binomially distributed with parameters Ny and p, where
No = No(z) is a function of state x € ZY and p = p(x, ) is a function of state = and
step size T > 0. Denote ¥(No,p, k) the probability that K = k. Suppose that there
exists 0 > 0 such that for all © € Zf and 7 € [0,9], p is ¢ + 1 times continuously
differentiable in T, and No(z) as well as the supremum of p,|p™M|,...,[pl* Y| over
T € [0,9] are bounded above by a polynomial in |x|. Then for each r € Zy and
1=0,1,...,q+ 1, the supremum of

Z kr|w(1) (N07pa k)|
k

over T € [0,0] is bounded above by a polynomial in |x|.
Proof. 1t is straightforward to verify the relation

dl(l)(No,p,k') = Nop(l) (¢(NO - 1ap7'l€_ 1) _¢(NO - 17p7k))7 ke {Oa "aNO}v

where the convention that ¢ (No,p, k) =0 for k ¢ {0,1,..., No} is used. By repeated
application one can relate () for i = 2,..., ¢+ 1 also to 1. Then the result follows
from Lemma 4.8. |

THEOREM 4.11. Suppose the tau leap method generates K; for j = 1,..., M
to be independent conditioned on current state x and each Kj is either binomially
or Poisson distributed with their distributions satisfying the assumptions of Lemmas
4.10 and 4.9. Then the hypotheses of Theorem 4.1 are satisfied and thus Assumption
5 holds.

Proof. By the assumed independence of K it follows that 6 has a product form

QE(T,ZIZ,I{J) = Q~51(T,$;l€1) s QEM(T,Q?; kM)

Then for i = 0,1,...,q + 1 the ith derivative ¢( (1,x; k) is a linear combination of
terms of the form

(;Egil)(r, xiky) ... J)g\ZM)(T,$; k),

where i; € {0,1,...,¢+ 1} for j =1,..., M. Noting that
SOIRED = (ka4 -+ kar) 10D
k k
SMTY N SR A+ RaIAE ] 165

ki k2 kar

the result follows from using Lemmas 4.10 and 4.9. O

COROLLARY 4.12. Suppose that the conditions of Theorem 4.11 and the extra
conditions of Theorem 4.3 hold. Then Assumption 3 holds.

Proof. The conditions of Theorem 4.1 are implied by conditions of Theorem
4.11. Given the extra conditions of Theorem 4.3 the conclusions of Theorem 4.3
follow. g

LEMMA 4.13. Let K be Poisson distributed with parameter \, where A = \(x, T)
is a function of state x € Zf and step size T > 0. Suppose that there exists § > 0
such that for all © € Zf and T € [0,0], X is continuously differentiable in T, and
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the supremum of \,|A1V| over 7 € [0,6] is bounded above by a polynomial of degree
s in |xz|. Then for T € [0,6] and for each r € N the supremum of |dE(K")/dr| over
T € [0,0] is bounded by a polynomial of degree rs in |x|.

Proof. For a fixed z € Z¥, the random variable K (z, 7) is a time nonhomogeneous
Poisson process in 7 with rate (intensity) A" (z, 7). It follows that

dE(K™)/dr = \WE{(K +1)" — K"}.

This together with Lemma 4.7 implies the desired result. d

LEMMA 4.14. Let K be binomially distributed with parameters Ny and p, where
No = No(z) is a function of state v € ZY and p = p(z,7) is a function of state x
and step size T > 0. Suppose that there exists & > 0 such that for all x € Zf and
7 € 10,6, p is continuously differentiable in 7, and the suprema of |p™M| over 7 € [0, ]
and No(x) are bounded above by polynomials of degree s and sq, respectively, in |x|.
Then for T € [0,9] and for each r € N the supremum of |dE(K")/dr| over T € [0, 0]
is bounded by a polynomial of degree s1 + rsa in |z|.

Proof. We write K = Kpy,. Using the relationship mentioned in the proof of
Lemma 4.10 we obtain that

dE(Ky,)/dr = NopME (Kny—1 +1)" — Kj, ) -

This together with Lemma 4.8 implies the result. We note that since p lies in [0, 1]
we only need to focus on dependence on Ny and p(!). O

THEOREM 4.15. Suppose that there exists a > 0 satisfying the hypothesis of The-
orem 4.4 and that the K; for j = M +1,..., M corresponding to the linearly bounded
reactions are (conditioned on current state x) each either binomially or Poisson dis-
tributed with their distributions satisfying the assumptions of Lemmas 4.14 with s1 = 0
and so =1 or 4.13 with s = 1, respectively.

Additionally suppose for x € Zf and for j=1,...,M that x + vK1) ¢ Zf with
probability 1, where KU is the M vector of the superlinear reaction counts per tau
leap. Also suppose that for x ¢ Zf we have that K; = 0 with probability 1 for all j.
Then the hypotheses of Theorem 4.5 are satisfied and thus Assumption 6 holds.

Proof. These assumptions guarantee that with K? = (K 4 1,..., Kp),

[dE(K®|")/dr| < B.(1 +|a|")

for some S, independent of 7 € [0,d] and x. Since for 7 = 0 we have E(|K|") = 0,
using the mean value theorem we obtain the bounds

E(KP[") =m, < B.(1+|z|")r, 7€]0,d].

Thus all the assumptions of Theorem 4.5 are satisfied and thus Assumption 6
holds. d

4.3. Example. We consider the example of the unbounded reaction system
(4.12) S1+ 53— 53, S3—= 81+ 5 Sy— 25, Sy—0,
where the propensities are assumed to be of the stochastic mass action form:
(4.13) a1 (x) = c1x129, az(x) = coxs, as(x) = csx1, ag(x) = caxo.

We note that Assumption 1 is clearly satisfied.
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The stoichiometric vectors are vy = (=1, —1,1)T, 1o = (0,1, -1)T, v3 = (0,1,0)7,
and vy = (0,—1,0)T. Tt is easy to see that S; and S3 are bounded (if initial conditions
are bounded) as (1,0, 1)7v; <0 for all j, implying that X (t)+X3(t) < X1(0)+X3(0).
However, S5 is not bounded because of reaction 3 and thus the system is unbounded.
However, since a@ = (1,1, 1)T satisfies the hypothesis of Theorem 4.4 we see that
Assumption 2 is satisfied.

Suppose we use a tau leap update following the REMM-7 method [17]:

M
X(t+7)=X(t)+ Y vK;,
j=1

where K7 ~ Binomial(Ny,p1), Ko ~ Binomial(Na, p2), K3 ~ Poisson(A3), and K4 ~
Binomial(Ny, ps), where K; are all independent conditioned on X (t) = = € Z¥ and

. C1 (&
N1 = min{zy, zo}, = - 1 — e (@tea)Ty
1 {z1,22}, p1 01+02( )
2 —(G1+ea)T
Ny = x3, = — 1 —e 2727,
2 3, P2 &+ o )
3T
)\3 = —3 2 (]_ — 67647—),
C4

Ny=xg, pa=(1-e7)

?
where

61 = (max{xla IEQ} + 1)01 if min{xl,xg} = 07

¢ = max{xy, 22 }ey else.

If X(t) = x ¢ ZY, then we set K; = 0 for all j and the update is X (t + 7) = z.
We note that this particular step differs from the way negativity was handled in [17],
but freezing the tau leap process once it leaves Zf allows for easier verification of
Assumption 6 as stated in Theorem 4.5.

It is clear that Ny, N2, and Ny are bounded by a polynomial in |z|. It is also
clear that pi,ps2,p4, and A3 are infinitely differentiable and the maximum of their
derivatives on any bounded interval [0, d] of 7 is also bounded by a polynomial in |z|.
Thus the hypotheses of Theorem 4.11 are satisfied and hence Assumption 5 holds.

The REMM-7 method was designed to satisfy the conditions that

Q‘B(l)(oaxao) = —a()(x),
é(l)(o,x;ej) =a;(z), j=1,...,M,
qZ;(l)(O,a:,k) = Oa k ¢ {05817625 o aeM}a

which can be directly verified by differentiation, the details of which we shall omit.
Thus by Corollary 4.12 pointwise consistency Assumption 3 follows.

As Assumptions 1 through 5 hold, by Theorem 3.5 the method is first order (O(7))
convergent in total variation.

In order to verify Assumption 6 we shall verify the conditions of Theorem 4.15.
First we note that the only superlinear reaction is 1, and that as 0 < Ky < min{z1, 22}
it is clear that starting from a state z € Zf the state reached after the update x+14 K3
still remains in Zf .
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We note that [A(!)| < ¢35 and hence can take s = 1 in Lemma 4.13 regarding Ks.
Also we note that Na(z) < |z| and Ny(z) < |z| and |p§1)| < ¢9 and |p§ll)| < ¢4. Thus
we can take s; = 0 and s = 1 regarding both K5 and K, in Lemma 4.14. Hence all
the conditions of Theorem 4.15 are satisfied and we can conclude that Assumption 6
holds and hence by Theorem 3.7 the method is first order convergent in rth moment
variation for each r € N. This also implies the convergence of all moments.

5. Discussion of results and concluding remarks. For the purpose of this
discussion we need to differentiate the type of convergence considered in this paper
from the type of analysis which relates 7 to system size V as 7 = V7 and studies
convergence as V' — oo. We shall refer to the former as convergence in a fized system
sense and the latter as convergence in a large system limit.

While our (fixed system sense) convergence results were stated for general order
of convergence O(77), we have not seen a practical tau leap method that is O(72) con-
vergent in general in the fixed system sense. The weak trapezoidal method mentioned
in [25, 8] was shown to be second order consistent under the restrictive assumption
that &1a;(x +vg) — &ra;(x) > aj(z) for all z, j, and k, where & € [2,00) is a method
parameter. This leads to the condition that a;(x+vy) > a;(x)(1—1/&) for all z, j, k.
When z is on the boundary of Zf this may not hold for most systems. However, if
with probability close to 1 the system state is far away from the “bad” boundaries,
then one expects this method to be more accurate and for this to be valid one expects
the system size to be large. The midpoint tau method is shown to be O(7%) convergent
when V — oo with 7 = V=7 [7]. However, the midpoint method is only first order
convergent in the fixed system sense. In practice, for modestly large molecular copy
numbers one may expect higher accuracy for both these methods (than the explicit
tau leap), while for low copy numbers one may still expect these methods to be well
behaved because they are first order convergent in the fixed system sense.

As a general rule, if a tau leap method shows higher order accuracy in the large
system limit and is first order convergent in the fixed system sense it will be expected
to be more effective than the first order convergent explicit tau. On the other hand
if a method is higher order convergent in the large system limit but is nonconvergent
or (even worse) not zero stable in the fixed system sense, then the method should not
be used.

It is easy to come up with higher order accurate (in the fixed system sense)
tau methods that may not be practical. For instance one may take the tau update
probabilities ¢(7,z;k) = Prob(K = k|Y(t) = z) to agree with exact probabilities
B(7, k) up to O(79) for the case of |[k| = 1,...,q, set ¢(7,x; k) = 0 for |k| > g+1, and
set ¢(7,x;0) accordingly. (We note that p(r,z;k) = O(7/*l); see [18], for instance.)
Such a naive approach will result in a O(72) convergent method that will leap over
at most two reaction events (g events for the case of order ¢), not to mention other
practical issues that need to be dealt with such as truncated Taylor expansions being
for probabilities being nonnegative.

The analysis in this paper does not suggest new tau leap methods. However,
it does provide some guidance to ensure that a tau leap method is convergent and
zero stable (in the fixed system sense) so that the user does not have to worry about
the small step sizes resulting in large errors. The most delicate of the assumptions
is Assumption 6, which implies zero stability of the tau leap method (in terms of
moments). Zero stability may not be taken for granted. We refer to [15] for an example
(in the case of SDEs driven by Brownian motion) showing lack of convergence (and
lack of zero stability) of the moments of the Euler method. Theorem 4.5 provides
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sufficient conditions under which Assumption 6 can be verified and suggests that it
is best to use bounded random variables (such as binomials) in the tau update of
superlinear reactions (see Remark 4.6).

Finally we note that finding a tau leap method that is O(72) convergent uniformly
in system size V (after a suitable scaling by a power of V') might prove to be useful.
The error estimates derived in [7, 25, 8] contain system size V' and step size 7 (under
the bounded system condition and/or global Lipschitz condition on propensities).
None of the methods presented there are O(72) convergent uniformly in V. We
believe that the analysis in this paper can be extended to include the dependence of
the error in the moments of a tau leap method on V' and 7 for the case of unbounded
systems with nonlinear but polynomial growth propensities. While this exercise will
not automatically result in an “O(72) convergent uniformly in V”” method, it will help
provide some insights toward the construction of such methods.

Acknowledgment. We would like to thank the anonymous referees for the con-
structive feedback that helped improve this manuscript.
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